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Abst rac t .  Temporal constraint satisfaction problems (TCSPs) are typ- 
ically modelled as graphs or networks. Efficient algorithms are only avail- 
able to find solutions for problems with limited topology. In this paper, 
we propose constraint geometry as an alternative approach to modeling 
TCSPs. Finding solutions to a TCSP is transformed into a search prob- 
lem in the corresponding n-dimensional space. Violations of constriants 
can be measured in terms of spatial distances. As a result, approximate 
solutions can be identified when it is impossible or impractical to find 
exact solutions. A real-numbered evolutionary algorithm with special 
mutation operators has been designed to solve the general class of TC- 
SPs. It can render approximate solutions at any time and improve the 
solution quality if given more time. Experiments on hundreds of ran- 
domly generated problems with representative parameters showed that 
the algorithm is more efficient and robust in comparison with the path- 
consistency algorithm. 

1 I n t r o d u c t i o n  

A temporal constraint satisfaction problem (TCSP) is a problem that consists 
of a set of events and a set of constraints on the time points at which the events 
occur [1]. To solve a TCSP problem is to find a set of assignments, each of which 
assigns a time point to an event, such that all constraints are satisfied. 

When a solution to a TCSP is not available, either because no solution exists 
or because the algorithms cannot find it in time, an approximate solution may 
be a good alternative. In fact, there are many practical TCSP applications in 
which it is acceptable to violate some of the constraints with reasonable costs. 
Furthermore, there are cases in which a TCSP contains conflicting constraints. 

Constraint satisfaction problems are usually formulated as graphs or net- 
works, with algorithms based on graph theory and search [2]. In this paper, 
a geometric approach, constraint geometry, is proposed to model TCSPs. Us- 
ing this approach, TCSPs can be represented in an intuitive manner, and the 
concepts of exact and approximate solutions are straightforward. Besides, an 
evolutionary algorithm based on constraint geometry is also presented here to 
support anytime problem solving for TCSPs. 
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2 TCSPs  

This section introduces a formal definition of TCSPs,  which is more rigorous 
than the one commonly adopted in the literature [1]. 

Let X = { x l , x 2 , . . . , x n }  be a finite set of variables on R, the set of real 
numbers. A constraint c over X defines a function f : X --+ {true,false} which 
can be represented in the general form below. 

klXl + k2x2 -~-... -~- krnxm C [al, bl] U [a2, b2] U . . .  U [an, bn] 

where n is a finite positive integer; for i -- 1, 2 , . . . ,  n, we have ai, bi, ki E R and 

al ~ b l  < a u  < b 2 < . . . < a n  ~ b n  

We call the left-hand side of a constraint c the characteristic function of the con- 
straint, denoted by A[c]; and the right-hand side the true range of the constraint, 
denoted by v(c). For example, let cl be the constraint xl - x~ + x3 E [2, 4], then 
A[cl] is xl - x2 + x3 and r (c i )  is [2, 4]. The set of all ai's and bi's is called the 
landmark set of the true range v(c). 

A TCSP is a finite set of temporal constraints over X. Each constraint is either 
a unary constraint whose characteristic function is of the form xi, or a binary 
constraint whose characteristic function is of the form xi - xj.  A solution to a 
TCSP is a unifier [5] a = {xl e-  hi ,x2  +- h2, . . . ,x ,~ e- h , } ,  where hi E R, such 
that  all constraints are satisfied. If the unifier {xl +- hi,  x2 +- h 2 , . . . ,  x ,  +- hn} 
is a solution to a TCSP containing only binary constraints, the unifier {Xl e-  
hi + k, x2 e-  h2 + k , . . . ,  xn e-  hn + k}, for any constant k, is also a solution. 
More detailed definitions can be found in Yeh [8]. 

3 Constraint Geometry  

Constraint-satisfaction problems are often treated as search problems. Therefore, 
to solve a TCSP is to search for a solution in the problem space [6] defined by 
the TCSP. The basic idea of constraint geometry is to formulate a problem in an 
Euclidean space. Subsequently, the constraints and solutions to a TCSP  become 
geometric objects in the space. 

Given a TCSP P on the set of variables X = {xl, x ~ , . . . ,  x~}, the variable 
space of P,  denoted by u(P),  is the Cartesian product of the domains of all 
variables in X. The variable space of a constraint, denoted by u(c), is a Cartesian 
product of the domains of all variables occuring in c. 

3.1 Geometry  of  Constraints  

For any TCSP problem P with n temporal  variables, each constraint is bounded 
by a set of parallel hyperplanes in the n-dimensional Euclidean space u(P) .  
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D e f i n i t i o n  1. B o u n d a r y .  Let c be a constraint in a TCSP P, and L(c) be the 
landmark set of 7(c). The boundary of c at a landmark 1 E L(c), denoted by 
b(c,l), is the set 

{PIP  E u(c) s.t. A[c](p) = l}. 

The boundaries  of the constraint c, denoted by B(c), is the union of its bound- 
aries at all landmarks, namely 

B(c)= U b(c,l). 

For example,  consider a constraint  cl : X l  - -  X 2  E [2,4]. Fig. 1 depicts the 
boundaries  b(cl, 2) and b(cl, 4), identified by the lines xl - x 2  = 2 and xl  - z 2  = 4 
respectively. The  shaded area consists of  points  tha t  satisfy cl. 

Fig.  1. The boundaries B(cl) of xl - x 2  E [2,4]. 

A point  p is said to be inside the boundaries  of  c iff A[c](p) E r(c) ,  or outside 
the boundaries  otherwise. A point  p is on the boundaries  iff A[c](p) E L(c). 
(Note tha t  L(c) C T(c).) The distance between a constraint  c and a point  p 
in the space is the shortest  distance between p and the boundaries  of  c if p is 
outside the boundaries.  The  distance is zero if p is inside any of  the boundaries.  

D e f i n i t i o n  2. D i s t a n c e .  Let c be a constraint with A[c](xl,  x2) = klx~ + k2x2, 
and L(c) be the landmark set of v(c). Le tp  be a point in u (X) .  For any landmark 
l E L(c), the distance between p and l, denoted by d(p, l), is the minimum of the 
distance between p and every point in the boundary of c at l. That is, 

d(p,l) = min  {d(p,q)} 
q~b(c,z) 
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where d(p,q) is the Euclidean norm of the vector from p to q. The distance 
between a point p and the constraint c, denoted by d(p, c), is defined as 

f 0 if n[c](p) e d(p, C) 
minteL(c) { d(p, l)} otherwise. 

Take the example from Figure 1. Consider the point ( - 1 ,  3), which is outside 
the boundaries of cl, since A[el ] ( -1 ,  3) = - 4  ~ v(el). By definition, the distance 
between ( -1 ,  3) and Cl is based on the boundary at 2, as shown in Figure 2. 

Fig. 2. The distance between (-1,3) and constraint Cl- 

Given any point p = ( p l ,  P2), we have 

d(p,l) - I I -  Pl + P~t 

When c is a unary constraint, the distance equation can be further reduced into 

d(p, l) = II - Pll 

These equations are very easy to compute, which makes highly efficient imple- 
mentations possible. 

3.2 G e o m e t r y  o f  T C S P  

Given a problem P, the variable space u(c) of any constraint c in P is a subspace 
of the variable space u(P).  To manipulate the constraints with respect to the 
space u(P) ,  two operations, projection and inverse projection, are necessary. 

Let S ~ be a subspace of a variable space S. The orthogonal projection (or 
simply projection) of a point p in the space S unto the space S ~, denoted by 
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~r[S, S'](p), is a point in S', say p', that  has the same value as p at every corre- 
sponding coordinate. The projection of an object o in S unto S I is the union of 
the projection of every points of o. 

The inverse orthogonal projection (or simply inverse projection) [4] can be 
defined in terms of projection. The inverse projection of a point pt in the space 
S' into S, denoted by ~r-l[S '., S](p') , is the set {PiP E S's.t.lr[S, S'](p) = p~). 
In other words, the inverse projection of pl is the union of all points in S whose 
projection is pl. It should be noted that  distances are invariant through inverse 
projection. 

Given a constraint c for a problem P, we can extend any boundary b(c, l) in 
the subspace u(c) to the variable space u(P). The boundary of c at I with respect 
to the variable space u(P) is the inverse projection of every point in b(c,l) into 
u(P), i.e. 

{~r-l[u(c), u(P)](p) [ p E b(c,/) }. 

For simplicity, it is denoted by ~r-l[u(c), u(P)]{b(c,/)}. The boundaries B(c) in 
u(P) is defined in a similar way. 

Let us expand the example of cl by adding another constraint c2 : x2 - z3 E 
[1, 4]. Figure 3 shows the boundaries of e~ in u(c2), which is an R 2 plane. 

Fig. 3. The boundaries of constraint c2. 

Let X = (x l , z2 ,  z3} bc the set of variables in the new TCSP P,  whose 
variable space u(P) is R 3. To consider cl and e2 in u(P), it is necessary to 
compute the inverse projections of B(el) and of B(c2) into ~,(P). Figure 4 depict 
7r-l[u(cl), u(P)]{B(cl)} and 7r-l[u(e~), u(P)]{B(e2)}. 

Therefore, any solution to a given TCSP corresponds to a point that  is inside 
the boundaries of all the constraints in its variable space. For instance, for the 
sample TCSP P presented earlier, a point p is a solution if both d(p, cl) = 0 and 
d(p, c2) = 0, as shown in Figure 5. 
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Fig. 4. Inverse projections into v(P). 

Fig. 5. Solution region for the sample TCSP. 

4 A n y t i m e  C o n s t r a i n t  S o l v i n g  

Given a TCSP, looking for a solution in its variable space is a daunting task. A 
good search method should attempt to approach the regions inside the bound- 
aries of all constraints. Intuitively, searching for a solution involves a process 
of globally minimizing the total potential energy as defined by the distances 
from the constraints. This section presents an anytime search algorithm, called 
Evolutionary Constraint Optimizer (or ECO), which is a real number genetic 
algorithm that utilizes the spatial properties of constraint geometry to solve 
general TCSPs. 

4.1 Preprocess ing  

There are two preparatory tasks before ECO applies genetic algorithms to solve a 
bounded TCSP: transforming the problem into a canonical form and constricting 
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the domains of the variables. Canonicalization is necessary for the muta t ion  
operators described later in this section. The canonicalization procedure is the 
following: 

1. Define a partial  order i on the variables such that  for any two distinct variables 
xi and x j ,  if a constraint involving the two variables is in P ,  then either 
zl  < x j  or x j  < xi ,  but not both. If  more than one partial  order is possible, 
choose one arbitrarily. 

2. Canonicalize binary constraints: For every binary constraint xi - x j  E Q in 
P,  if xi < z j ,  replace the constraint with an equivalent constraint x j  - xi  E 
- Q ,  where - Q  is { - z  ] z E Q}. For example, if P contains a constraint 
Zl - x2 E [1, 2] and ECO determines that  xt < x2, then it is replaced with 
a new constraint x2 - xl E [ - 2 , - 1 ] .  

3. Given constraints with the same characteristic function, ECO will merge 
them by taking the intersection of their true ranges. 

Constricting variable domains helps identify a more reasonable range for the 
genetic algorithms to explore. For any variable xi ,  ECO determines its min imum 
value l ( x i )  and m a x i m u m  value u(x i )  among all solutions of P.  The details of 
the method can be found in Yeh [8]. 

4.2 G e n e t i c  E n c o d i n g  

Every individual in ECO consists of a single chromosome representing a possible 
solution of P.  Each gene on the chromosome corresponds to a variable of P:  the 
xl-gene, the x~-gene, and so on. Therefore, the number  of genes in a chromosome 
is the same as the number  of variables. For ease of presentation, we use the same 
symbol for a variable and its corresponding gene. 

The allele value for a gene g may  be either independent  or dependent. The 
structure of an independent allele is a specific number  representing the value 
assigned to the corresponding variable in P.  The strucutre of a dependent allele 
is a 3-tuple, (h, v, 5), where h is either 0 or another gene, v is a closed interval, 
and 5 is a number indicating an offset. Each 3-tuple should satisfy the following 
conditions: 

- The canonicalized problem P contains a constraint c with the characteristic 
function Z~[c] = g - h. 

- The interval v is a component  of its true range r(e). 

The TCSP variable corresponding to g is assigned the value of h plus 5, 
or simply 5 if h is 0. For example, given a TCSP with xa,m2, x3 E R and the 
following constraints (with the partial  order xl < x2 < x3): 

xl E [ -1 ,  0.18] U [0.63, 0.97] 
x2 E [ - 1 , - 0 . 9 6 ]  U [ - 0 . 7 2 , - 0 . 4 9 ]  U [0.4, 1] 
x3 ~ [ -0 .71,  -0 .53]  U [0.31,0.79] 
x2 - x l  E [ - 0 . 5 9 , - 0 . 3 6 ]  U [0.01, 1] 
x3 - xl  E [ -1 ,  -0 .27]  U [0.35, 0.58] U [0.7, 1] 
x3 - x2 e [ -1 ,  -0 .72]  U [ -0 .25,  0.69] 
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Figure 6 illustrates a chromosome consisting of two dependent alleles and 
one independent allele. 

i 
t (0,10.63,0.971,0.72) 

x z 0.33 

(xr[0.35,0.58],0.4) 

Fig. 6. A chromosome with two dependent alleles. 

The allele value of the xl-gene depends on 0 by an offset of 0.72, thus the 
value of zl  is 0 + 0.72 = 0.72. The allele value of the x2-gene is independent, 
thus the variable z2 is assigned the value 0.33. The allele value of the z3-gene 
is dependent on xt by an offset of 0.4, so the allele value of the x3-gene is 
0.72 + 0.4 = 1.12. In other words, this chromosome represents the unifier {xt 6- 
0.72, z2 +- 0.33, x3 6- 1.12}. 

4.3 G e n e t i c  O p e r a t o r s  

ECO adopts the uniform crossover operator [7]. In addition, three mutat ion oper- 
ators are defined in ECO: the or-mutation, the/3-mutation, and the */-mutation. 
The first two apply to genes having either independent or dependent alleles, 
while the 7-mutation is specially designed for genes with dependent allels only. 

T h e  o r - M u t a t i o n  The a-mutat ion allows ECO to explore the neighborhood 
of the current individuals. An or-mutated gene has an independent allele. The 
new allele value is decided by a random variable whose probability distribution 
is a combination of two normal distributions. More precisely, let x be the gene 
being a-mutated,  I = l(z), u = u(z),  and # be the interpretation of the allele 
value of z before mutation. The probability density function ~(z; #, l, u) [3] of 
the random variable is shown in Equation (1). 

_ z _ b ,  2 

e ~ p ( ~ )  i f z < p # l  
l, u) = (1) 

~' ~(u-"12' if z > # # u 

Figure 7 shows a sample case of a with # < l, that  is, the interpretation of 
the original allele value falls outside of the constricted range. Note that  by the 
definition of c~-mutation, the farther # strays from the range between 1 and u, 
the more likely for the new allele value to be outside that  range. The rationale 
is that  if an individual with a stray allele is reproducing, bearing the straying 
allele is possibly advantageous for the individual. This is particularly important  
when ECO faces problems with conflicting constraints. 
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i 0.2 

2 3 

Fig. 7. The probability density function a with p = -1.5, l = -1 ,  and u = 1 

T h e  / 3 - M u t a t i o n  The /? -muta t ion  enforces an individual to satisfy a certain 
constraint. Contrary to the c~-mutation, the /? -muta t ion  turns the subject gene 
into having a dependent allele (h, v, 5). Let x be the gene being/?-mutated,  and 
B be the set of all constraints that  have x as the first te rm of their characteristic 
functions in P.  For each constraint c in B, let y(c) be the TCSP variable in 
the second term of A[c], or 0 if c is a unary constraint; let K(c) be the set of 
components of v(c). We can construct a set  Z as 

z : U • K(c)] 
c E B  

Choose a random member  e from Z with a uniform probabil i ty distribution. 
Now h and v in the new allele (h, v, 5) are decided: h is assigned the first element 
of e, which represents the variable symbol,  or 0; and v is assigned the second 
element of e, the closed interval. The value of 5 is then decided by a random 
variable with a uniform probabili ty distribution over the interval v. 

T h e  " T - M u t a t i o n  The "/-mutation is very similar to the a -muta t ion ,  except 
that  it applies to genes with dependent alleles only and it results in a dependent 
allele. Assume that  a gene having allele value (h, [p, q], 5) is -/-mutated. The only 
change is its 5 value, which is decided by a random variable with the probabil i ty 
density function c~(z; 5, p, q). 

4.4 M e a s u r e m e n t  o f  F i t ne s s  

The fitness measurement  f is defined in terms of the distances between the 
potential  solution corresponding to an individual and every constraint of the 
given TCSP. 

Let i be an individual representing the unifier 

dr---- ( X l  + "  a l , x 2  +-a2,...,Xn +"-an) 
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and p = (al ,  a s , . . . ,  aN) be a point in the space. The fitness value of i is defined 
a s  

f(i)  = exp( -~ /~cecd(p ,  c) 2) 

where d(p, c) denotes the distance between the point p and the constraint c of 
the TCSP C. Since 0 _< d(p, c) < eo for each c, it follows that  0 < f ( i )  <_ 1, and 
f( i)  = 1 iff each of the distances is equal to zero, that  is, ~ is a solution of P.  

4.5 E x p e r i m e n t  R e s u l t s  

In order to test the performance of ECO, we performed three sets of experiments, 
examining the influence of the following factors on the performance of ECO: the 
number of variables, mean dispersion, and constraint density. The experiments 
used samples generated from a generic random CSP generator [8] based on a 
well distributed set of parameters.  

The mean dispersion of a TCSP is the algebraic average of the dispersion of 
each constraint in the problem. The dispersion of a constraint c is the number 
of intervals that  T(c) contains. The constraint density of an n-variable TCSP is 
the number  of constraints it has divided by the maximal  number  of constraints 
an n-variable TCSP may  have. 

N u m b e r  o f  V a r i a b l e s  The goal of the first set of experiments is to test how 
the number  of variables affects the performance of ECO. The experiments tested 
70 sample problems, each having 5 to 15 variables. The problems were divided 
into 7 groups; each group consisted of 10 problems that  have the same number  of 
variables. The mean dispersion was 1.5. Figure 8 contrasts the t ime required by 
ECO to find an exact solution to the theoretically estimated O(n 3) t ime required 
by conventional algorithms based on Floyd-Warshall 's algorithm. 

time 

- -  con'~enlJonal: . ~  algorithms 

i i i i i ! 
6 7 8 9 10 11 

number of ~ f iab les  

Fig. 8. Time required vs. number of variables 
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Mean  Dispers ion  The second set of experiments shows how mean dispersion 
affects the performance of ECO. The experiments tested 150 sample problems 
with the mean dispersion between 1 and 15. The problems were divided into 
15 groups; each group consisted of 10 problems with the same mean dispersion. 
Each sample problem had 5 variables and 10 constraints. Figure 9 contrasts the 
time required by ECO to find an individuM exact solution to that by conven- 
tional algorithms, assuming that path consistency algorithms reduced the mean 
dispersion by 0%, 50%, 80%, and 95%, respectively. 

time 

i 
0.5 

bruteforce 

path consistency (50%) I 

path consistency (80%) 

path consistency (95%) 

8 ECO: for exact so ution 

A J  f 

, - - - - "  . " . " , 

1.5 2.5 3.5 4.5 5.5 6.5 7.5 
mean dispersion 

Fig. 9. Time required vs. mean dispersion 

Constraint Density The third set of experiments tested 80 sample problems, 
each having 9 variables, with constraint density from 0.3 to 1. The problems 
were divided into 8 groups; each group consisted of 10 problems with the same 
constraint density. Figure 10 contrasts the average time required by ECO to 
find an individual whose fitness value > 0.8, > 0.9, and = 1 (that is, an exact 
solution) of the sample problems in each of the 8 groups to the (theoretically 
estimated) time required by conventional algorithm with 50% path consistency 
and that by the brute-force algorithm. 

5 C o n c l u s i o n  

This paper proposes using constraint geometry to model TCSPs. The problem of 
finding a solution becomes a search problem in n-dimensionM Euclidean space. 
An evolutionary algorithm, ECO, has been developed to find exact or approx- 
imate solutions. Implementation based on the constraint geometry is relatively 
straightforward and efficient. Our experiments showed that the time required 
to find exact solutions is usually much less than exponential (worst case time). 
The time needed to find good approximate solutions is generally much shorter 
than finding the exact solutions. Moreover, ECO can return an answer whenever 
requested, and the quality of the solution improves over time. 
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t ime - - ~  for flb~ess to be 1 
. - -O. .  - for i l lness to exceed 0.9 

path consistency 
- -  brute force 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

con straint dens ity 

Fig .  10. Time required vs. constraint density 
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