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Abstract. Local interactions between individual organisms influence
the population dynamics of species and impact their evolution. We de-
scribe high-performance simulation of evolutionary aspects of epidemics
in spatially explicit, individual based models of multi-species habitat.
Evolution comnsists of two processes, selection between genotypes and
mutations producing novel genotypes. In this paper we focus on the ef-
fects of selection between genotypes in a model with a single host species
and two competing pathogens with fixed (i.e. non-evolving) genotypes.
We present the foundations of a model that represents two competing
host species, a parasite serving as a disease vector, and a vector borne
pathogen. The model is implemented as cellular automaton that tracks
individual organisms to account for heterogeneity of the habitat. The
implementation targets parallel distributed memory machines (including
IBM SP-2 and a network of workstations) and NUMA shared memory
architectures (SGI Origin 2000). We demonstrate also that this model
yields qualitatively new biological results.

1 Introduction

Certain parasites evolve to impair their host’s survival and reproduction only
minimally. The primate lentiviruses offer an interesting example [16]. In older
coevolutionary associations, such as simian immunodeficiency virus and African
green monkeys, infection is essentially non-pathogenic, while in the recent asso-
ciation between HIV and humans, infection leads to serious disease. However,
a long-standing coevolutionary association does not always imply reduced par-
asite virulence [7]. In fact, virulence exhibits a great deal of variation among
host-parasite associations, and often varies temporally within a particular asso-
ciation [11,9,19].
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Current theory for the evolution of virulence equates virulence with extra
host mortality due to parasite infection, and than assumes that selection should
increase a parasite’s rate of reproduction. As a parasite exploits host resources
at a greater rate, it increases the rate of transmission to new hosts. But the
host’s mortality rate increases as a consequence, decreasing the length of the
period during which the parasite can be transmitted. Depending on the func-
tional relationship between parasite transmission rate and virulence (i.e., the
trade-off between transmission rate and infectious period), selection may favor
low, intermediate or increasing virulence [15, 16, 10].

A number of recent models address variations of the trade- off just described.
Important extensions include analyses of (i) interactions between virulence and
host recovery rate (”clearance” by the immune system [1,2]); (ii)competition
between different parasite strains infecting the same host individual ( ”coinfec-
tion” [3,8,19]); (iil) competition between parasites when a more virulent strain
excludes a less virulent strain infecting the same host (”superinfection” [11,12,
16]); and and (iv) effects of mutation and relatedness among parasites infecting
the same and different hosts [10].

This paper presents a series of computational models of increased complexity,
with the goal of creating a final model encompassing analysis of all described
above interactions (separately or simultaneously). We introduce two important
elements into coevolutionary analysis of virulence. Ecologically, our model as-
sumes an individual-based, spatially explicit basis for birth, death and infection
processes [6]. Evolutionally, our model employs genetic algorithms to simulate
mutation, recombination [13], and selection processes.

2 A Model of Selection between Competing Strains

To verify that the spatial effects are important for evolution in epidemics, we
simulated competition between two microparasite strains. The simplest case of
such competition arise when there are just two competing strains transmitted
via direct contact and a host is infected by at most one strain at a time [11].

For simplicity, we assume the selection on virulence. The reward function for
increased virulence is defined by the primary effect of increased pathogen repro-
ductive rate (as is manifested by infecting nearby hosts). The penalty function
for increased virulence (i.e., a constraint) is the consequence of the increased
mortality rate for hosts in presence of a more virulent pathogen.

Let sg, and s; denote two pathogen strains that differ in virulence. Super-
infection is a disease preemption during which a host infected with sy becomes
infected by strain s; via exposure from a nearby host. Coinfection occurs when
multiple strains infect a host and order of infection matters. To denote coinfec-
tion when sqg arrives first, we adopt the notation for the “pseudo-strain” sg;, but
when s; arrives first then we introduce a pseudo-strain s1o !. Typically, coin-

! To model coinfective systems in which order of infection does not matter one can
treat states with infection by either strain as equivalent thereby “merging” these two
states into one.
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Fig. 1. State Diagram of Coinfection/Competition Model

fection and superinfection are modeled exclusively of each other, so our model
provides a mechanism for disabling these events (although, as can be seen be-
low, we permit the user to enable both as well). The state diagram of this simple
model is shown in Figure 1.

The parameters for the system are given in Table 1. Let p(z,y) be the prob-
ability of going from state z to state y in a single time step.

An empty site will remain unpopulated with probability p(0,0) = H?=1 [(1 —
pi)‘”], otherwise, it is colonized by an offspring from a nearby populated site.
Since congenital immunity is disallowed: p(0,1) = 1 — p(0,0).

Consider next a site occupied by a susceptible (i.e., an uninfected host). It
may either die with probability p(1,0) = u1 or be infected by a strain from
their neighbors. The probability of a host in state 1 avoiding exposure to strain
si,t € 0,1 is denoted A; with: 49 = (1 — a0)??(1 — @o1,0)7*(1 — @10,0)°® and
A = (1 —01)%(1 — ao1,1)*(1 — a10,1)°® The Poisson single transition rule
implies that if a susceptible is exposed to both strains, only one of them will
be successful in infecting the host, so the probability of catching strain 0 is
p(1,2) = (1 —p1)(1— Ao) [A1 +v(1 — A;)] and the probability of catching strain
Lis then: p(1,3) = (1 — ) (1 — A1) [Ao + (1 — 7)(1 — Ao)]

A host infected with strain s will die (i.e., be removed) with probability
p(2,0) = po, and will recover (without immunity) with probability p(2,1) =
(1 — p2)ptsy - It will become coinfected with strain s; after being infected by so.1
with probability p(2,4) = (1 — p2)(1 — ps,)(1 — Ap) and will remain in the same
state otherwise.

Finally, consider the case of a host infected with strain s;. The probability
that it dies is p(3,0) = ps. It will recover with probability p(3,1) = (1 — u3) s, ,
and superinfection by sg will occur with probability p(3,2) = (1 — u3)(1 —
ts1)Psi(1—po1)(1 — A1). Coinfection by sg will occur with probability p(3,5) =
(1= p3)(L = psy )(1 = ps1)por (1 — Ao).



| Symbol | Meaning and values

ai, i € {0,1} Probability of exposure to s;
from an infective in state 2 or 3 within 4.
A;i e {0,1} The probability that a susceptible avoids exposure to s;
wij ki, g,k € {0,1},i #£ 5 Probability of exposure to s;
from a coinfected host infected by strain s; then s;
5y The competitive advantage of so over s1
when susceptibles are exposed to both strains
Ok The interaction region about site &, 6z € {32,117, 33%}
ui, i € {1,2,3} Probability of host mortality, y1 = 0.5, ug = 0.25
ue € {{0.251,0.35, 0.45, 0.55, 0.65, 0.75, 0.85,0.95}
ws;,t € {0,1} Probability of recovery from a single strain s;
Wijksy %, J, k € {0,1},4# j | Probability of recovery of a coinfected host from s
psr Post-Exposure Superinfection probability of so psr = 0.3
Po1 The probability that a host infected with s
can be coinfected with sg1 upon exposure to s1
P10 The probability that a host infected with s1
can be coinfected with s19 upon exposure to sg
pi,t €1,2,3,4 Probability of host in state ¢ placing
a propagule nearby (in 4), (1—pi)® € {0.24,0.2,0.15,0.11}
oi(k),7 € {0,1,2,3} Number of hosts in state ¢ about site k

Table 1. Symbols Used in Direct Transmission Two Competing Strains Model

Consider a coinfected host, where sg infected the host first. The host can die
with probability p(4,0) = u4, or it can recover from strain so with probability
p(4,3) = (1 — pa)(1 — po1,1)po1,0- The host can recover from strain s; with
probability p(4,2) = (1 — pa)(1 — po1,0)to1,1, otherwise, the host will remain in
its current state 2.

Consider the complementary coinfected host, where s; infected the host first.
The host can die with probability p(5,0) = ps. It can recover from strain s with
probability p(5,3) = (1 — us)(1 — p10,1)#10,0- The host could recover from strain
s1 with probability p(5,2) = (1 — ps)(1 — p10,0)ft10,1 otherwise the host will
remain in its current state 3.

Similar reasoning can be used to extend this model to vector-borne pathogenic
strains.

A subset of the parameters presented in Table 1 was selected as a collection
of control parameters and based on TEMPEST, we implemented a tool, called

2 Due to the Poisson single transition rule, we treat the possibility of simultaneous
recovery from both strains as an impossible event. However if this event were to be
considered possible with non-negligible probability, the formulation might look like
p(4,1) = (1 — pa)por,0p01,1

3 Again, due to the Poisson single transition rule, we treat the possibility of simulta-
neous recovery from both strains as an impossible event. However if this event were
to be considered possible with non-negligible probability, the formulation might look
like p(5,1) = (1 — ps)p10,0/410,1-



STORM, to simulate the simplified model. In the simulation runs, we varied
the spatial parameters governing host fecundity, p;,i € {1,2,3} and rate of
disease exposure from local infectives o;,j € {0,1} so that the intensity of
these processes would not be unduly impacted by variations in the area of the
ecological stencil of each site.

The space was toroidally wrapped to avoid impact of boundaries on the
simulation results. Initially 25% of the sites were populated by susceptible hosts
in a spatially uniform density. Small clusters of infective hosts (0.25% of the sites)
were placed in the initial environment, with maximum spatial separation to avoid
premature extinctions induced by local superinfection events. The experiments
presented use a region of 100 x 100 sites, however STORM has capacity for
much larger simulations. STORM was run using the fixed spatial configuration
for 2000 generations for each parameter combination.

The results of the experiment have shown a remarkable richness in the range
of outcomes generated. First consider a case with two competing strains which
are equal except for (i) a small difference in their virulence induced mortality
and (i) the possibility of superinfection by the more virulent strain, so. We
observe that the the more virulent strain, sg can drive the less virulent strain,
s1 to extinction via superinfection as seen in Figure 2(a) and 2(b). The rise and
decline of s; is governed by the rate at which the epidemic can spread through
the environment, which is in turn correlated to the stencil’s area, §. With larger &
values, both sy and s; infection disperse more quickly so that the superinfection
induced extinction occurs earlier.

Now consider a similar case, except that the virulence induced mortality
difference is large. In this case, even the competitive advantage of superinfection
is not sufficient to prevent extinction of sg, as shown in Figure 2(e) and 2(f).
The rise and decline of sg in this case reflects expansion of sg infection from its
original small cluster and later a denial of access to susceptibles occurs due to
the prevalence of s; infection.

Finally consider an intermediate level of virulence induced mortality, as seen
in Figure 2(c) and 2(d). For a small stencil (e.g., the 3 x 3 case), the more virulent
strain, sg, drives the less virulent strain, s; extinct by gradually excluding it
from susceptible hosts. For intermediate sized interaction neighborhoods (e.g.,
the 11 x 11 case), the virulent less strain, s1, drives the more virulent strain,
so extinct because of rapid death of hosts infected by sq. For large stencils
(e.g., 33 x 33) s and s; coexist, the first thanks to superinfection and the
second because of increased access to susceptibles. This range of results can
only be found in spatially explicit models and cannot be generated by spatially
homogeneous models.

3 Implementation and Performance of STORM

The STORM model was implemented using C++ and MPI much like the TEM-
PEST model described in [14]. Prior performance analysis of TEMPEST [17, 14]
was done on a SIMD mesh architecture (a MasPar MP-1), a network of worksta-
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tions and a coarse grained MIMD architecture(an IBM SP2) [14]. In this paper
we introduce performance results from a tightly coupled cache coherent SMP ar-
chitecture, an SGI Origin 2000 (our configuration has 12 processors). We briefly
review implementation issues and then provide a performance comparison.

The underlying model of STORM has strong locality of interaction, so a static
block data decomposition was selected (much like in TEMPEST [14]) At each
time step, the state transition probabilities are computed, which involves count-
ing the number of sites in each state within the interaction neighborhood [14].
The processor which “owns” the partition in which a particular site resides is re-
sponsible for computing its next state, and therefore requires information about
the current state of boundary sites on neighboring processors (since some stencils
can span partitions). We exchanged this information using MPI directly on the
SGI, rather than allowing a direct read of data owned by neighboring proces-
sors. This allowed a short development time (with regards to porting the code)
and avoided race conditions. We used the shared memory chameleon (mpich)
implementation.

The stochastic nature of the model (state transitions are selected randomly
according to predefined distribution) require many runs of the same model with
different parameters, initial configurations and random number generator seeds
to obtain meaningful results (this process resembles sampling the state space
with Monte Carlo methods in numerical analysis). Hence, the speed of compu-
tation is of utmost importance. We ran simulations for 100 time steps for an
environment of 600 x 600 sites using stencil sizes of 3 x 3, 11 x 11 and 33 x 33
on 1, 4, 9 and 12 processors. The run times were relatively insensitive to varia-
tion of the interaction neighborhood’s area as shown in Figure 3. The associated
speedup curves (see Figure 3) were within 85% of optimal, but approximately
linear with a small knee at 9 processors. We believe that some of the slowdown
observed at 12 processors might have to do with the systems software stealing
cycles (since we utilized all 12 processors in our configuration).

Typically users, including those using our system, are often interested in the
ability of machines to run large scale simulations, and will increase the problem
size in response to increased capacity. In the following experiment we assigned a
fixed number of sites to each processor, with per processor allocation being one
of the following: 1002,2002, 3002, 4002,500% or 6002 sites for 100 time steps on
1,4,9 or 12 processors on the SGI Origin 2000. The interaction neighborhood
size was fixed at 11 x 11. The timings shown in Figure 4 demonstrate some slow-
down when going from single processor to multiprocessor runs (due to copying
of boundary information) and another slowdown when all 12 processors were
utilized. The slowdown when 12 processors were used was most pronounced for
large per processor allocations. This might reflect increased contention of the
cache coherent memory, and the overhead of systems software stealing resources
to run during the simulations. The 600 x 600 problem size had a repeatable in-
crease in run time when 4 processors were used over the 9 processor runs of about
10%. We suspect that this increase is due to contention of processors for memory
access in the interconnection hub, but more research is required to check this hy-
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pothesis. We noted that the scaled speedup curves looked remarkably similar to
the shape of the speedup curves for 9 or less processors, but had a performance
degradation when all 12 processors were used (achieving a speedup of about 8).
For smaller problem sizes, the system finished within 85% of optimal speedup,
but for larger problem sizes, the parallel efficiency was limited to 66%.

Measuring the per processor throughput of the SGI Origin 2000 (denoted
Tsqr) for the largest problem size yields:

100timesteps x 4.32 x 106% 156 x 10%transitions

Tsar = =~
sel 12processors x 276.7sec. sec. 1)

Similar computations for TEMPEST presented in [14] showed that the per pro-
cessor throughput of a MasPar MP-1 was Thyp—1 = 44%7 while the per
processor throughput of an SP2 was Tsps = 1.2 X 105W. The depart-
mental network of workstations achieved Tnow = 2.7 X 104W. Assuming
that the two simulations do roughly equivalent per site computation (which is
reasonable), the SGI Origin 2000’s processors can be thought of as capable of
doing the work of over 35000 MasPar MP-1 processors, 13 SP2 processors and
57 NOW processors.

4 Conclusions and Future Directions

Evolution is the result of the combined effects of selection and mutation. In this
paper we presented a model that analyzes only one these processes. By isolat-
ing and modeling the impact of selection on simple non-evolving systems, we
provided a platform for validating and interpreting results when the complexity
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of evolution is added. We have observed good performance characteristics on a
surprisingly wide range of architectures due to their localized interactions and
algorithm selection [18,14] for frequently performed operations.

Work is in progress to develop a cellular automaton model of genetic varia-
tion (and mutation) of two competing host species, one macro-parasite spread
via direct contact transmission, and a vector-borne micro-parasite. The evolution
of the species is accomplished using the genetic algorithms on the genetic infor-
mation, copying, mutation, and (where applicable) crossover. Hosts are modeled
individually and sites are small enough to contain at most one host, in the same
fashion as the model presented here and the Szymanski-Caraco model [17]. The
host species are assumed to have sexual reproduction (and hence crossover of
genetic material) while the parasitic species are treated as asexual. Such a model
poses novel computational challenges, including: computing the lineage of each
organism, measuring the simulation trajectory given within site diversity, model-
ing intrahost competition of parasites. This work also addresses specific defenses
against infection (i.e. acquired immunity).

Efficiency and fidelity concerns motivate the consideration of whether a syn-
chronous cellular automata or discrete event simulation engine is better for the
simulation kernel. Our experience with Lyme disease simulation (without evolu-
tionary effects, cf. [5,4]), indicates that in the case of complex species interactions
or large diversity of time scales between species an optimistic approach with roll-
back for correcting potential causality errors may be very efficient. Hence, we
plan to implement the presented system using PDES approach and compare
efficiency of the resulting system with the current implementation.
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