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Abstract:

In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed
Cascade Error ProJection (CEP) and a general learning frame work. This frame work can be used to

obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can

be calculated deterministically. In association with the dynamical stepsize change concept to convert the

weight update from infinite space into a finite space, the relation between the current stepsize and the

previous energy level is also given and the estimation procedure for optimal stepsize is used for validation
of our proposed technique.

The weight values of zero are used for starting the learning for every layer, and a single hidden
unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme.

Therefore, simplicity in hardware implementation is also obtained Furthermore, this analysis allows us

to select from other methods (such as the conjugate gradient descent or the Newton's second order) one

of which will be a good candidate for the learning technique. The choice of learning technique depends
on the constraints of the problem (e.g., speed, performance, and hardware implementation); one

technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical

analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity
and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-

bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is

demonstrated that this technique is able to compensate for less bit weight resolution by incoporating

additional hidden units. However, generation result may suffer somewhat with lower bit weight
quantization.

I-Introduction

There are many ill-defined problems in pattern recognition, classification,

vision, and speech recognition which need to be solved in real time [1-3]. One of the

most attractive features of the neural network is a massively parallel processing

topology that offers tremendous speed specially when implemented in hardware.

Generally, neural network approaches in hardware face two main obstacles:

(1) difficulty of network convergence due to the learning algorithm itself as well as
the limited precision of the devices;

(2) high cost of implementing hardware to truly mimic the synapse and neuron
transfer functions dictated by the algorithm.

Furthermore, the convergence and the implementable hardware have a mutual

correlation to each other; for example, the convergence of the learning network depends

on the weight resolution available in synapse [4-6], and the cost of implementation of

each bit in synapse grows, at least doubly, in silicon area, power, and connectivity[7-8]

In this paper, CEP learning algorithm is presented. It offers a simple learning
method using a one-layer perceptron approach and a deterministic calculation for the

other layer. Such a simple procedure offers a fast, reliable, and implementable learning

algorithm. In addition, the learning technique is not only tolerant of 3- and 4-bit weight

I



N # of hidden
units

20.

18.

16.

14.

12.

10.

8.

6.

• 5-btt PAR

• 6-bit PAR

[] 7-bit PAR

In 8-bit PAR

4-

2.

0
3-bit W 4-bit W 5-bit W 6-bit W 64-bit W

N # of bit resolution synapse

Figure 2: The chart shows CEP learning capability and the

number of hidden units required to correctly solve 5- to 8-bit

parity problems using round-off technique, x axis represents

weight quantization (3-6 and 64-bit) and y axis shows the

resulting number of hidden units (limited to 20). Each

learning hidden unit is provided with 100 epoch iterations.

As shown, a lager number of hidden units compensate for

the lower weight resolution.

Chaotic Time Series Problem:

The data in this problem represents chaos and never repeated. However, this data

between past, present, and future are correlated in high order. To validate the capability

of CEP as shown in theory, we use CEP learning technique under constraints of limited

weight quantization (4-, 6-, and 64-bit weight resolution) to capture the high order

correlation of this problem.

In this experiment, we use x i, Xi+l, xi+2, xi+3 and the target is xi+ 4 . The number of

training data is 351 and test data is 651 and no cross validating data is applied in this

phase.

1.6 18

1,4

1.2

1

08

06

04

02
02 04 06 08 1 12 14 18

14

12

I

08

08

04

02
2 04 06 08 1 12 14 16

(a) (b)



Figure 3: Data sets of chaotic time series problem. (a). training set to the

CEP neural network, and (b). Test set which has no overlap with training
set.
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Figure 4: Simulation Results of CEP for chaotic time series prediction

problem. Top trace contains four curves: ideal data, 64-bit, 6-bit and 4-bit

prediction results. Bottom trace contains : errors between ideal data and

64-bit, 6-bit, and 4-bit generalization data.

The results in Figure 4 show that the error between ideal data and prediction with 64-bit

weight learning network is within +/-0.01 and is like white noise, whereas, 6-bit error is

more harmonic than 4-bit error prediction. These results can be interpreted to infer that

the more bit weight quantization is available for learning the better and smoother the

transform would be. In addition, the better and smoother transformation will help

network to interpolate for predictions.

IV. Conclusions

In this paper, we have shown that CEP is a reliable technique for both software- and

hardware-based neural network learning. From this analysis, it is shown that the CC

algorithm is a special case and can be understood in greater depth with this analysis.

Moreover, the theoretical analysis provides us with the general framework of the leaming



architecture, and the particular learning algorithm can be independently studied for its

suitability for a given application associated with given constraints specific to each

problem. For example, for hardware implementation CEP is advantageous, but for

software, covariance or Newton's second order method is more advantageous). For the

CEP learning algorithm, the advantages can be summarized as follows:

• A fast and reliable learning techniqi]e

• A hardware implementable learning technique

• Learning scheme is tolerant of lower weight resolutions.

• A robust model in learning neural networks

Acknowledgments:

The research described herein was performed by the Center for Space Microelectronics

Technology, Jet Propulsion Laboratory, California Institute of Technology and was

jointly sponsored by the Ballistic Missile Defense Organization/Innovative Science and

Technology Office (BMDO/IST), and the National Aeronautics and Space

Administration (NASA). The authors would like to thank Drs A. Stubberud and A.
Thakoor for useful discussions.

R eferen ces:

[I] T.A. Duong, T. Brown, M. Tran, H. Langenbacher, and T. Daud, "Analog

VLSI neural network building block chips for hardware-in-the-loop learning," Proc.

IEEE/1NNS Int'l Join Conf. on Neural Networks, Beijing, China, Nov. 3-6, 1992.

[2] T.A. Duong et. al, "Low Power Analog Neurosynapse Chips for a 3-D

"Sugarcube" Neuroprocessor," Proc. of IEEE Intl' Conf. on Neural

Networks(ICNN/WCCI), Vol III, pp. 1907-1911, June 28-July 2, 1994, Orlando, Florida.

[3] B.E. Boser, E. Sackinger, J. Bromley, Y. LeCun, and L.D. Jackel, "An Analog

Neural Network Processor with Programmable Topology," 1EEE Journal of Solid State
Circuits, vol. 26, NO. 12, Dec. 1991.

[4] P.W. Hollis, J.S. Harper, and J.J. Paulos, "The effects of Precision Constraints in

a Backpropagation learning Network," Neural Computation, vol. 2, pp. 363-373, 1990.

[5] M. Hoehfeld and S. Fahlman, "Learning with limited numerical precision using

the cascade-correlation algorithm," IEEE Trans. Neural Networks, vol.3, No. 4, pp 602-
611, July 1992.

[6] T.A. Duong, S.P. Eberhardt, T. Daud, and A. Thakoor, "Learning in neural

networks: VLSI implementation strategies," In.' Fuzzy logic and Neural Network

Handbook, Chap. 27, Ed: C.H. Chen, McGraw-Hill, 1996.

[7] S.P. Eberhardt, T.A. Duong, and A.P. Thakoor, "Design of parallel hardware

neural network systems from custom analog VLSI "building-block" chips," IEEE/INNS

Proc. IJCNN, June 18-22, 1989 Washington D.C., vol. II, pp. 183.

[8] T.A. Duong, S. P. Eberhardt, M. D. Tran, T. Daud, and A. P. Thakoor,

"Learning and Optimization with Cascaded VLSI Neural network Building-Block

Chips," Proc. IEEE/INNS International Join Conference on Neural Networks, June 7-

11,1992, Baltimore, MD, vol. I, pp. 184-189.

[9] Y.A. Duong, Cascade Error Projection_An sufficient Hardware learning theory.
Ph.D. Thesis, UCI, 1995.



[10] S.E. Fahlmann, C. Lebiere, "The Cascade Correlation learning architecture," in

Advances in Neural Information Processing Systems II, Ed: D. Touretzky, Morgan
Kaufmann, San Mateo, CA, 1990, pp. 524-532.

[l l] T.A. Duong, "Cascade Error Projection-An efficient hardware learning

algorithm," Proceeding Int'l IEEE/ICNN in Perth, Western Australia, vol. 1, pp. 175-178,
Oct. 27-Dec l, 1995 (Invited Paper). "

[12] T.A. Duong, A. Stubberud, T. Daud, and A. Thakoor, "Cascade Error Projection-

A New Learning Algorithm," Proceeding Int'l IEEE/ICNN in Washington D.C., vol. 1,
pp. 229-234, Jun. 3-Jun 7, 1996.

9


