
Using Temporal Neighborhoods to Adapt

Function Approximators in Reinforcement

Learning

R. Matthew Kretchmar
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

kretchma@cs.colostate.edu

Charles W. Anderson
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

anderson@cs.colostate.edu

Abstract

To avoid the curse of dimensionality, function approximators are
used in reinforcement learning to learn value functions for individ-
ual states. In order to make better use of computational resources
(basis functions) many researchers are investigating ways to adapt
the basis functions during the learning process so that they better
�t the value-function landscape. Here we introduce temporal neigh-
borhoods as small groups of states that experience frequent intra-
group transitions during on-line sampling. We then form basis
functions along these temporal neighborhoods. Empirical evidence
is provided which demonstrates the e�ectiveness of this scheme.
We discuss a class of RL problems for which this method might be
plausible.

1 Overview

In reinforcement learning an agent navigates an environment (a state space) by se-
lecting various actions in each state. As the agent makes actions, it receives rewards
indicating the \goodness" of the action. Reinforcement learning is a methodology
which allows the agent to discover which actions to select in order to optimize the
rewards in each state. The value of a state is the immediate reward an agent will
receive from that state and the discounted sum of all future rewards encountered
by the agent. Detailed reviews of reinforcement learning are available [2, 3].

On-line algorithms use the experience of the agent as it moves about the state
space to learn the values of each state. Tables are often employed to \memorize"
the value for each individual state. However, many RL problems involve very large

state spaces, especially when the state space is multidimensional. The curse of
dimensionality arises because state spaces grow too large to store all individual
state values in a single table.

To lessen the curse of dimensionality, function approximators are commonly uti-
lized: they require far fewer resources than a table look-up method, and they gen-
eralize over other parts of the state space so that learning experience can be shared
among states. Function approximators commonly use �xed basis functions (such
as CMACs and Radial Basis Functions) which have shown to be stable in both
theory and in practice [8, 9]. Despite the proofs of convergence for �xed basis
function approximators, these RL algorithms are often slow to converge in practice.
Research indicates that di�erent types of basis functions are better suited to dif-
ferent problems, and they often need to be \�ne-tuned" to the particular task [4].
Fixed basis functions also tend to be somewhat wasteful of computational resources
because they do not accommodate the pecularities of the value function landscape;
one needs to be certain to employ enough �xed basis functions of adaquately �ne
resolution to learn a value function well.

There have been many attempts to adapt basis functions during learning to better �t
the value function landscape. The most common methods perform gradient descent
on an error metric but these techniques are generally slow to converge and are
overly sensative to various parameters. Singh's soft state aggregation demonstrates
success using a gradient descent technique to shape the basis functions [7]. There
are also various other adaptive approaches. Anderson's Hidden Restart Method [1]
relocates basis functions to regions of the state space which are not adequately
modelled. Whitehead and Choate employ genetic algorithms to position and form
basis functions [10]. Moore's Parti-Game Algorithm learns value functions by
dynamically creating variable resolution \basis functions" [6].

Here we develop a novel approach in which the basis functions are adapted according
to the perceived state transition probabilities. McCallum has shown successful
results in using Transitional Proximity for a faster Q-value update scheme [5].
We use the same information in much di�erent manner. Additionally, we provide
a theoretical discussion regarding the types of RL tasks that would bene�t from
using state transitions. In Section 2 we de�ne temporal neighborhoods and discuss
their role in forming basis functions for function approximation. Section 3 shows a
simple example illustrating the advantage of temporal neighborhoods. The details
of the algorithm are presented in Section 4. In Section 5 we apply the algorithm to
the more complex Mountain Car task. A summary and discussion of future work
are presented in Section 6.

2 Temporal Neighborhoods

With most local function approximators, basis functions are created to span a small
neighborhood of physically adjacent states. By \physically adjacent states" we
mean states which are near each other in Euclidean distance. Although states
may be physically adjacent, in many control problems it may be unlikely (or even
impossible) that the agent can transition between them. A better notion of nearness
is temporal adjacency. As the agent interacts with the environment, there tend to
be pathways or trajectories through the state space which the agent uses with high
frequency. The states which lie along these trajectories are temporaly adjacent.

Two states are temporally adjacent if when the agent currently
occupies one state, there exists a high probability that the agent
will transition to the other state on the next move.

A temporal neighborhood is a set of states which form along a com-
mon state space trajectory. When an agent is placed in one of these
states, it often transitions from one state to the next within the set.

Why might temporally adjacent states be important in the formation of basis func-
tions? We hypothesize that there exist a class of control problems in which the
reward signal is bounded at each step (often it is constant at each step). We de�ne
this class of RL control problems:

Frequency Bounded Problems are a class of control problems in
which the reinforcement signal at each step has an upper bound.
Therefore, the di�erence in the value function of any two tempo-
rally adjacent states is also bounded by this same quantity.

We refer to these collections of states as being frequency-bounded because the value
function remains relatively constant across them. If the di�erence in state values of
two temporally adjacent states is bounded by the reward signal r, then a series of
k transitions among k+1 states implies that the maximal di�erence in state values
is limitted to k � r.

Notice the class of RL control problems commonly referred to as steps-to-goal prob-
lems are a subset of the class of frequency bounded problems. The steps-to-goal
class includes Mountain Car, Puddle World, Maze World / Grid World, Acrobot,
and many others. In these types of problems, the value function is a measure of how
many steps remain before the agent reaches the goal state. Here the reinforcement
signal is constant at each step. Also included in the class of frequency bounded
problems are goal-avoidance problems such as the Pole Balancer.

In selecting a function approximator for RL tasks we desire to have each basis
function cover states in which the optimal value functions are similar. This is
advantageous because the value or weight of the basis function must generalize
to all the states which it covers. We do not want to form a basis function that
covers states whose optimal values di�er widely. The method we present in this
paper forms basis functions along temporal neighborhoods. We do this because we
believe that the value functions of two temporally adjacent states are likely to be
more similar than the value functions of two physically adjacent states. Thus, if
we can form basis functions along temporal neighborhoods, we should expect to be
able to better model the value function of the state space.

3 A Simple Markov Example

To facillitate discussion of this method, we will use a simple example to demonstrate
how temporal neighborhoods work and their e�ectiveness in better modelling the
value function. In Figure 1a we have a six state Markov Chain. State 1 is the goal
state (absorbing); there is one action available from each state which transitions
according to the arrows in the diagram. There is a reward signal of +1 for each
step. We \sample" by starting randomly in one of the states and taking actions
until we reach the goal state.

It is easy to compute the true optimal value function (steps-to-goal function) by
inspection; the value function is shown in Figure 1b. We now apply traditional
TD(0) [8] using three basis functions: �1, �2, �3 where �1 covers states 1 and 2,
�2 covers states 3 and 4, and �3 covers states 5 and 6. By \covering" we mean
that �1 is active when the agent is in state 1 or state 2: �1 = 1:0 in these states
while �2 = �3 = 0. This means that the weight associated with �1 will generalize to

1 2 3 4 5 6

1 2 3 4 5 6
0

1

2

3

4

5

6
Optimal Value Function

State

S
te

ps
 to

 G
oa

l

1 2 3 4 5 6
0

1

2

3

4

5

6
Value Function: FFA−3

State

S
te

ps
 to

 G
oa

l

a. Markov Chain b. Optimal Value Function c. Approx Value Function

Figure 1: A six state Markov Chain

approximate the value functions for states 1 and 2. The weight associated with each
basis function, Wi is trained by on-line sampling. We arrive at the approximated
value function shown in Figure 1c. We can see that this function approximator
represents the true value function with reasonable accuracy.

Next we change the example slightly by re-aligning the transition probabilities ac-
cording to the arrows in Figure 2a. This example purposely contrasts physical
adjancency (the states are lined up 1 through 6) with temporal adjacency (the
states transition in the order 5 7! 2 7! 6 7! 3 7! 4 7! 1).

4 5 61 2 3

1 2 3 4 5 6
0

1

2

3

4

5

6
True Value Function

State

S
te

ps
 to

 G
oa

l

1 2 3 4 5 6
0

1

2

3

4

5

6
Value Function: FFA−3

State
S

te
ps

 to
 G

oa
l

a. Markov Chain b. Optimal Value Function c. Approx Value Function

Figure 2: Six State Temporal Markov Chain

The optimal value function for this new chain is shown in Figure 2b. We also apply
TD(0) with the same basis functions in the previous problem (�1 covers states 1 and
2, �2 covers states 3 and 4, and �3 covers states 5 and 6). The approximated value
function is shown in Figure 2c. As can be seen, the approximated value function
does not accurately represent the true value function. Here is a classical case of how
a poor choice of function approximator can drastically a�ect the performance of the
learning algorithm. At this point, traditional research methods would typically
attempt to overcome this problem by adding more basis functions. An alternative
would be to re-arrange the basis function coverage to better suit the true value
function. Because this problem is relatively simple it is easy to see that �1 = f1; 4g,
�2 = f3; 6g, and �3 = f2; 5g would be a better choice for basis functions. However
this realization requires that we know the transition probabilities a priori.

What is required is an algorithm which aligns basis functions along these trajectories
by sampling the transition probabilities.

4 Temporal Neighborhoods Algorithm

In this section we sketch the major elements of an algorithm which aligns basis
fuctions according to temporal neighborhoods. We have a state space with N states.
We will cover this state space with a function approximation matrix � composed of

K orthogonal basis functions (�1; : : : ; �K). Each basis function is an N dimensional
column vector where each entry indicates the \activation level" (amount of coverage)
of the basis function for that state.

� =

0
B@ �1 �2

... �K

1
CA

There are a set of K weights stored in a column vector W . The weights are trained
via TD(0) to arrive at the best approximation which is computed as V alue = ��W .
In order to keep basis functions local and to ensure even distribution throughout the
state space we use a normalization procedure. Here is a sketch of how the algorithm
operates:

1. The agent starts in state i, selects an action and transitions to state j.

2. We then �nd the basis function k which currently has the largest activation
for states i and j combined: k = argmaxf�k(i) + �k(j)g.

3. We then increase the activation for basis function k on states i and j:
�k(i)+ = �, �k(j)+ = �.

4. The basis functions are then normalized to ensure that each remains local
and that the state space is adequately covered.

We alternate periods of TD(0) with iterations of the above temporal neighborhoods
algorithm to alternately train the weights and shape the basis vectors.

In the previous six state Markov Chain we show the �xed function approximator
below on the left. After applying the temporal neighborhoods algorithm, the basis
vectors have re-aligned to those shown on the right. In Figure 3a is the optimal
value function for this Markov Chain. Figure 3b shows the results of TD(0) on
the �xed function approximator and Figure 3c is the value function for the basis
functions formed by the temporal neighborhoods method. As can be seen, the tem-
poral neighborhoods basis functions clearly better approximate the optimal value
function.

�fixed =

0
BBBBB@

0:5 0 0
0:5 0 0
0 0:5 0
0 0:5 0
0 0 0:5
0 0 0:5

1
CCCCCA

�Temp: Neigh: =

0
BBBBB@

0 0:57 0
0 0 0:51

0:56 0 0
0 0:54 0
0 0 0:49

0:47 0 0

1
CCCCCA

1 2 3 4 5 6
0

1

2

3

4

5

6
True Value Function

State

S
te

ps
 to

 G
oa

l

1 2 3 4 5 6
0

1

2

3

4

5

6
Value Function: FFA−3

State

S
te

ps
 to

 G
oa

l

1 2 3 4 5 6
0

1

2

3

4

5

6
Value Funtion: TNA−3

State

S
te

ps
 to

 G
oa

l

a. Value Function b. w/ Fixed Bas Fxn c. w/ Temp Neigh

Figure 3: Value Functions for Temporal Markov Chain

The temporal neighborhoods algorithm succeeded in redistributing the basis func-
tions according to transition probabilities. The improved basis functions did indeed
better approximate the value function for this task. This task is purposely triv-
ial so that one can follow closely the details of the algorithm. Next we present a
more complex task, the mountain car, to further demonstrate the e�ectiveness of
temporal neighborhoods.

5 Moutain Car Problem

There is a small car positioned in a valley (see Figure 4a). The goal is to drive the
car out of the valley to the hill on the right. However, the car's engine does not have
enough power to drive straight up the hill; �rst the car must rock backward to gain
momentum and then drive to the top of the hill. For reference, the optimal value is
shown in Figure 4b. Along the x-axis (the bottom right) is the car's position. The
y-axis (bottom left) indicates the car's velocity. The z-axis is the value function at
each (x,y) state { this represents the number of steps to the goal from that state.
A contour plot of the value function is shown below in Figure 4c.

GOAL

a. Mountain Car Task

0 5 10 15 20 25 30 35 40 45 500

20

40

60
−20

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

b. Optimal Value Function c. Contour Plot of Value Function

Figure 4: Mountain Car Task

We use 25 discrete basis functions to learn the value function at this coarse level
using TD(0). The basis functions are initially deployed in a 5x5 non-overlapping
grid (orthogonal)on the two dimensional state space. In Figure 5a the grid is visible
on the contour plot. Each \box" is a basis function. The weight of the basis function
will learn to approximate the values of the states inside the box.

When we apply TD(0) each basis function will approximate the average value func-
tion the states in its \box". Notice from the contour plot of the value function, that
several basis functions span states which have very di�erent values. In particular
the basis function highlighted with the dark border in Figure 5b sits right on the
edge of a \steep value-function cli�"; this is not a good position for this basis func-
tion because it must average the low state values on one side and the high state
values on the other side.

The arrows in in Figure 5b show a typical trajectory as the mountain car moves
through the state space. The car starts from rest at the bottom of the hill (the

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

a. 5x5 Grid of Basis Fxns b. Typical MtnCar Trajectory

Figure 5: Contour Plot of MtnCar Task

center of the contour plot), it rocks backward (spirals clockwise toward the bottom
right) and then drives forward to the top of the goal hill. This trajectory spirals
clockwise out from the center to the upper right-hand corner.

We then apply the Temporal Neighborhoods Algorithm on the Mountain Car prob-
lem which causes the basis functions align themselves along this common trajectory.
As in the simple Markov Chain example, we alternate episodes of TD(0) with Tem-
poral Neighborhoods. In Figure 6 we can see the result of the re-alignment of basis
functions. Many of the basis functions have aligned themselves along the clockwise
spiral trajectory that dominates the mountain car state space.

MtnCar: Temporal Neighborhoods

Car Position

C
ar

 V
el

oc
ity

Figure 6: Temp Neigh Basis Functions

Basis Function Average Approx Error

Fixed 5x5 Grid 25.4
Temporal Neigh. 17.6

Because these new basis functions are aligned along common trajectories (temporal
neighborhoods), fewer of the basis functions cover drastically steep gradients in
the value function. These basis functions can therefore better approximate the
mountain car steps-to-goal value function. In the table below, we summarize the
average approximation error (mean squared error as measured by the optimal value
function) for both the standard 5x5 basis functions and the basis functions shaped

by temporal neighborhoods. The temporal neighborhoods algorithm reduced the
approximation error by 31

6 Summary and Future Work

Here we introduce the notion of temporal neighborhoods which are small sets of
states that experience frequent intra-set transitions. We present an algorithm which
aligns basis functions along temporal neighborhoods. We have discussed why this
might be an improvement for selecting basis functions over the grid method: namely
we believe that for certain classes of problems (frequency bounded problems) the
value function is more similar for temporally adjacent states than it is for pysi-
cally adjacent states. Thus we should expect that basis functions aligned along
temporal trajectories should be better able to model the optimal value function.
We have supported our theory with empirical evidence. In a very simple Markov
Chain we see a dramatic di�erence in function approximation performance using the
temporal neighborhoods algorithm to align basis functions. In the more complex
Mountain Car task, again we see the bene�ts of using temporal sequences to form
basis functions.

The primary reason for approximating the value function is that the curse of di-
mensionality makes it intractable to use a table method in which we maintain the
value function for each individual state. There are simply too many states to create
such a table. The work in this paper sidesteps this issue; namely we have built
basis functions using large state vectors. This is impracticle for large and highly
dimensional state spaces. A more plausible scheme is to use CMACs, radial basis
functions, or some other standard approximation method. This work does indicate
the utility of re-alignment of basis functions along temporal trajectories; an obvious
next step for this work is to combine the temporal neighborhoods algorithm with
these more tractable function approximation schemes.

Re-aligning basis functions may not be the most powerful use of temporal percep-
tions. Recently there has been breakthrough work in Reinforcement Learning at
multiple temporal scales. This work shows immense potential at bridging the gap
between symbolic-level planning and subsymbolic-level AI. A key concept in these
multiple time scale algorithms is the formation of options (aka meta-actions, sub-
goals) in the state space. The early work in multiple time scale RL has \hand
crafted" these subgoals in various regions of the state space. Temporal neighbor-
hoods provide a way to construct options incrementally on-line. We have prelim-
inary results indicating the successful application of temporal neighborhoods in
multiple time scale Reinforcement Learning.

References

[1] Charles W. Anderson. Q-Learning with Hidden-Unit Restarting. Advances in
Neural Information Processing Systems, volume 5, S. J. Hanson, J. D. Cowan,
and C. L. Giles, eds., Morgan Kaufmann Publishers, San Mateo, CA, pp. 81{
88.

[2] Andrew G. Barto, and Richard S. Sutton. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA. 1988.

[3] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-
ment Learning: A Survey. Journal of Arti�cial Intelligence Research: 4, May
1996.

[4] R. Matthew Kretchmar and Charles W. Anderson. Comparison of CMACs
and Radial Basis Functions for Local Function Approximators in Reinforce-
ment Learning. Proceedings of the International Conference on Neural Net-
works. 1997.

[5] R. Andrew McCallum. Using Transitional Proximity for Faster Reinforcement
Learning. International Conference on Machine Learning, 1992.

[6] Andrew W. Moore. The Parti-game Algorithm for Variable Resolution Rein-
forcement Learning in Multidimensional State-spaces. Machine Learning: 21,
1995.

[7] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement
Learning with Soft State Aggregation. NIPS94, 1994.

[8] Richard S. Sutton. Learning to Predict by the Methods of Temporal Di�er-
ences. Machine Learning:3, 1988.

[9] John N. Tsitsiklis, and Benjamin Van Roy. An Analysis of Temporal-Di�erence
Learning with Function Approximation. IEEE Transactions on Automatic
Control, Vol. 42, No. 5, May 1997.

[10] Bruce A. Whitehead, and Timothy D. Choate. Cooperative-Competitive Ge-
netic Evolution of Radial Basis Function Centers and Widths for Time Series
Prediction. IEEE Transactions on Neural Networks, Vol 7, No 4. July 1996.

