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A b s t r a c t .  This work address the problenl of extracting the Jominy hardness profiles of steels 
directly from the chemical composition. Wavelet and Neural networks provide very interesting 
results, especially when compared with classical methods. A hierarchical architecture is pro- 
posed, with a first network used as a parametric modeler of the Jominy profile, and a second 
one estimating parameters from the steel chemical composition. Suitable data preprocessing 
helps to reduce network size. 

1 Introduct ion 

Hardenal)ility is a basic feature of steels: in order to characterize it, manufacturers 
usually perform the so-called Jominy end-quench test [1], which consists in measuring 
the hardness along a specimen of a heat-treated steel, at prcdefincd positions; tlle 
measured values form the Jominy hardness profile. 

Hardenability depends on chemical composition in a partially unknown fashion, 
therefore black-box models have been developed to predict the shape of Jominy profiles 
directly from chemical analysis. Most of them are linear, but this affects accuracy, 
especially when a wide variety of steels is considered. 

Neural Networks (NNs)  seem to cope well with such a modeling problem, as they 
are good approximators for strongly non-linear functions. An at tempt to apply NNs 
to predict Jominy profiles has been made in [2] by using a standard Multi-Layer 
Perceptron (MLP) with one hidden layer, but there is no rel)ortcd at tempt to use 
Wavelet Networks, ( W N s )  for thc same task. 

Unfortunately, most methods llased on NNs alone sulfei from sew~ral caveats. 
For instance, their initialization and training requires a large alnount of data, which 
are sehtom easily and rapidly available. In addition, simple NNs may often predict 
profiles which are not l)hysically plausible, unless very eomi)lex networks are used and 
long training processes are employed. It is therefore mandatory to accurately select 
the network structure, in order to obtain good performance, to reduce as much as 
possible the number of free parameters, and consequently to reduce the required size 
of tile training set. 

Another drawback of NNs alone is that no information related to physical char- 
acteristies of the steel can be extracted fl'om the trained network; this means that 
NNs can only be used to predict the profiles themselves, lint not any other steel 
characteristic. 

This paper presents some more powerful methods based on two combined Neuro- 
Wavelet Networks (NW Ns) ,  where one network provides a parametric model of the 
Jominy profile, while the second one predicts tile parameters as a flmction of chemical 
composition. The extracted parameters do have a strong relationship with the Jomiuy 
profile, of which they are a compact representation. 
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2 N e u r o - W a v e l e t  U n i f i c a t i o n  

Radial Wavelet Networks are based on Wavelet decomposition and use radial Mother 
Wavelets ~(IIXII) E L2(~ N) suitably dilated and translated. Such networks are based 
on Radial Wavelons (WAVs) which havc a model bascd oil the Euclidean distancc be- 
tween the input vector X and a translation vector E,  where each distance component 
is weighted by a component of a dilation vector T: 

A function O(.) is admissible as a radial Wavelet only if its Fourier transform satisfies 
a few constraints not discussed here [5]. A commonly used function is the Mexican 
hat e ( z )  = ( l  - 2z2) . e - " .  

Radial Wavelet Networks, as well as many other neural and fuzzy paradigms, can 
be viewed into a unified perspective by means of the Weighted Radial Basis Functions 
( W R B F )  [4]. 

Each layer (array) of WRBF neurons is associated with a set of 1)arameters: an 
ordern E ~R, defining the neuron's metric (mostly n E {0, 1, 2}), a weight matrix V(,  a 
center matrix C, a bias vector 0 and an activation function F (z). The mathematical 
model of a W R B F  neuron of order n (or, WRBF-n)  is: 

where F (z) can be any function (although in most cases monotonic flmetions or 
Wavelets or linear or polynomial functions are used) and the distance .function 79,,(.) 
is defined as: 

I)n(Xj Cji) A I ( X j - C j i )  f o r n = 0  
- = (3)  

/ I x j  - c ~ t  ~ fo~ n r o 

All the NWN paradigms used here have been re-conduced to WRBF in order 
to have common paradigms, methodologies, initialization strategy and learning rule, 
which is the main advantage of unification; Radial Wavelons are WRBF-2 neurons 
with Wii = (1/Tji) 2, and C = E (i.e. the matrix made of one translation vector 
E per neuron), while the activation fimetion comes from tile radial Mother Wavelet 
F (z) = ~ (v~) .  Details on the unification of other neural paradigms can be found 
in  [7, 4].  

As far as initialization of NWNs is concerned, in this work we have used three, 
forms of initialization: 

- Fixed initialization: all weights, biases and centers are initialized to a predcfincd 
vahm (or set of values). This has been used for all the networks of the parametric 
model described in section 4. 

- Random initialization: the l)aramcters are initialized to ran(lore values (uniform 
distribution). This has been used for the WRBF-0 networks of the parameter 
estimator described in section 5. 


