arXiv:0705.0453v1 [cs.DB] 3 May 2007

OCB: A Generic Benchmark to Evaluate the
Performances of Object-Oriented Database
Systems

Jérome Darmont
Bertrand Petit
Michel Schneider

Laboratoire d’Informatique (LIMOS)
Université Blaise Pascal — Clermont-Ferrand II
Complexe Scientifique des Cézeaux
63177 Aubiere Cedex
FRANCE
darmont@libd1.univ-bpclermont.fr

Abstract. We present in this paper a generic object-oriented bench-
mark (the Object Clustering Benchmark) that has been designed to eval-
uate the performances of clustering policies in object-oriented databases.
OCB is generic because its sample database may be customized to fit
the databases introduced by the main existing benchmarks (e.g., OO1).
OCB’s current form is clustering-oriented because of its clustering-oriented
workload, but it can be easily adapted to other purposes. Lastly, OCB’s
code is compact and easily portable. OCB has been implemented in a
real system (Texas, running on a Sun workstation), in order to test a
specific clustering policy called DSTC. A few results concerning this test
are presented.

Keywords: object-oriented databases, clustering, performance evaluation,
benchmarking, DSTC.

1 Introduction

This study originates from the design of clustering algorithms to improve the
performance of object-oriented databases. The principle of clustering is to store
related objects close together on secondary storage, so that when an object is
accessed from disk, all its related objects are also loaded into the main memory.
Subsequent accesses to these related objects are thus main memory accesses,
instead of much slower I/Os.

But clustering involves some overhead (to gather and maintain usage statis-
tics, to reorganize the database...), so it is not easy to determine the real impact
of a given clustering heuristic on the overall performances. Hence, clustering al-
gorithms are validated only if performance tests demonstrate their actual value.

The validation of clustering methods can be achieved by several ways. First,
mathematical analysis can be used to ascertain the complexity of a clustering

http://arxiv.org/abs/0705.0453v1

algorithm [7]. Although mathematical analysis provides exact results, it is very
difficult to take into account all the parameters defining a real system. Hence,
simplification hypothesis are made, and results tend to differ from reality. Sim-
ulation may also be used, and offers several advantages [8]. First, clustering
algorithms that are possibly implemented on different OODBs and/or operat-
ing systems can be compared within the same environment, and thus on the
same basis. A given algorithm can also be tested on different platforms to de-
termine how its behavior might be influenced by its host system. Simulation
also allows the a priori modeling of research prototypes before they are actually
implemented in an OODB. Eventually, the most customary mean to measure
the performances of DBMSs in general is the use of benchmarks, that directly
gauge the response of an existing system, and, a fortiori, the performances of
a clustering algorithm implemented in an existing system. However, the usual
general purpose benchmarks are not well suited to the evaluation of clustering
algorithms, that are very data dependent.

Some authors propose dedicated tools to evaluate the performances of their
own clustering heuristic. We preferred to design generic tools, in order to be
able to compare different algorithms on the same basis, using standard and easy
to implement metrics. It is actually interesting to compare clustering policies
together, instead of comparing them to a non-clustering policy. We can also
use different platforms to test a given algorithm. We are actually involved in
the development of both simulation models and a benchmark. We focus in this
paper on the latter, a generic, clustering-oriented benchmark called the Object
Clustering Benchmark (OCB).

The remainder of this paper is organized as follows. Section 2 presents the
most popular benchmarks for evaluating the performances of OODBs. Our own
benchmark, OCB, is then described in Section 3. Section 4 presents experiments
we performed to validate our benchmark. Section 5 eventually concludes this
paper and provides future research directions.

2 Related Work

Benchmarking the performances of an OODB consists of performing a set of tests
in order to measure the system response under certain conditions. Benchmarks
are used to compare the global performances of OODBs, but also to illustrate
the advantages of one system or another in a given situation, or to determine
an optimal hardware configuration (memory buffer size, number of disks...) for
a given OODB and/or application. Several well-known standard object-oriented
benchmarks are used nowadays. The presentation of three of them (OO1, Hy-
perModel, and OOT7) follows.
Typically, a benchmark is constituted of two main elements:

— a database (a conceptual schema, and a database generation method);
— a workload (a set of operations to perform on the database, e.g., different
kind of queries; and a protocol detailing the execution of these operations).

2.1 001

OO1 (Objects Operations 1), sometimes called the ” Cattell Benchmark” [6], is
customarily used to evaluate the performances of both relational and object-
oriented DBMSs.

001 Database: OO1’s database is based on two classes: Part, and Connec-
tion. The parts are composite elements that are connected (through Connection
objects) to three other parts. Each connection references two parts: the source
(From), and the destination part (70).

The database is generated the following way:

1. create all the Part objects and store them into a dictionary;
2. for each part, randomly choose three other parts and create the associated
connections.

The locality of reference (objects are often linked to relatively close objects)
is simulated by a reference zone. L.e., Part #i is randomly linked to parts which
Id are in the interval [Id-RefZone, Id+ RefZone]. The probability that the links
are determined this way is 0.9. Otherwise, the linked parts are chosen totally at
random.

001 Workload: OO1 performs three types of operations. Each of them is run
10 times. Response time is measured for each run.

— Lookup: access to 1000 randomly selected parts.

— Traversal: randomly select a root part, then explore the corresponding part
tree (in depth first) through the Connect and To references, up to seven
hops (total of 3280 parts, with possible duplicates). Also perform a reverse
traversal by swapping the To and From directions.

— Insert: add 100 parts, and the corresponding connections, to the database.
Commit the changes.

Comments: OO1 is a simple benchmark, and hence is very easy to implement.
It was used to test a broad range of systems, including object-oriented DBMSs,
relational DBMSs, and other systems like Sun’s INDEX (B-tree based) system.
Its visibility and simplicity actually make of OO1 a standard for OODB bench-
marking. However, its data model is too elementary to measure the elaborate
traversals that are common in many types of applications, like engineering appli-
cations. Furthermore, OO1 only supports simple navigational and update tasks,
and has no notion of complex objects (e.g., composite objects).

2.2 The HyperModel Benchmark

The HyperModel Benchmark (also called the Tektronix Benchmark in the lit-
erature) [I][2] offers a more complex database than OO1. Furthermore, it is
recognized for the richness of the tests it proposes.

HyperModel Database: The HyperModel Benchmark is based on an ex-
tended hypertext model. Hypertext is a generic graph structure consisting of
nodes and links. The main characteristic of this database is the various rela-
tionships existing between classes: inheritance (the attributes of a Node object
may be inherited from another Node object), aggregation (an instance of the
Node class may be composed of one or several other instances), and eventually
association (two Node objects may be bound by an oriented link).

HyperModel Workload: The benchmark consists of 20 operations. To mea-
sure the time to perform each operation, the following sequence is followed.

1. Setup: prepare 50 inputs to the operations (the setup is not timed);

2. Cold run: run the operation 50 times, on the 50 inputs precomputed in the
setup phase; then, if the operation is an update, commit the changes once
for all 50 operations;

3. Warm run: repeat the operation 50 times with the same input to test the
effect of caching; again, perform a commit if the operation was an update.

The 20 possible operations belong to seven different kinds:

Name Lookup: retrieve one randomly selected node;

— Range Lookup: retrieve the nodes satisfying a range predicate based on an
attribute value;

Group Lookup: follow the relationships one level from a randomly selected
starting node;

Reference Lookup: reverse Group Lookup;

— Sequential Scan: visit all the nodes;

Closure Traversal: Group Lookup up to a predefined depth;

— FEditing: update one node.

Comments: The HyperModel Benchmark possesses both a richer schema, and a
wider extent of operations than OO1. This renders HyperModel potentially bet-
ter than OO1 to measure the performances of engineering databases. However,
this added complexity also makes HyperModel harder to implement, especially
since its specifications are not as complete as OO1’s. Lastly, the HyperModel
Benchmark still has no notion of complex object.

2.3 007

007 [f] is a more recent benchmark than OO1 and HyperModel, and hence
uses the structures described in the previous paragraphs to propose a more com-
plete benchmark, and to simulate various transactions running on a diversified
database.

007 Database: OQT’s database is based on a conceptual model that is very
close to the HyperModel Benchmark’s, though it contains a higher number of
classes. Four kinds of links are also supported (IS-A, 1-1, 1-N, M-N). There are
three sizes of the OO7 database: small, medium, and large.

OO0O7 Workload: The range of transactions offered by OO7 is also close to
HyperModel’s. Three main groups may be identified:

— Traversals browse the object graph using certain criteria. These traversals are
very close to OO1’s. There are ten different operations that apply depending
on the database characteristics (basically, its size);

— Queries retrieve objects chosen in function of various criteria. There are eight
kinds of queries;

— Structural Modification Operations deal with object insertion and deletion
(two operations).

Comments: OO7 attempts to correct the flaws of OO1, and HyperModel.
This is achieved with a rich schema and a comprehensive set of operations.
However, if OO7 is a good benchmark for engineering applications (like CAD,
CAM, or CASE), it might not be the case for other types of applications based
on objects. Since its schema is static, it cannot be adapted to other purposes.
Eventually, OO7 database structure and operations are nontrivial, hence making
the benchmark difficult to understand, adapt, or even implement (yet, to be fair,
OO7 implementations are available by anonymous FTP).

3 The Object Clustering Benchmark

OCB'’s first purpose is to test the performances of clustering algorithms within
object-oriented systems. Hence, it is structured around a rich object base in-
cluding many different classes (and thus many different object sizes, numbers of
references, etc.), and numerous types of references (allowing the design of mul-
tiple interleaved hierarchies). OCB’s workload is purposely clustering-oriented,
but can be easily extended to be fully generic as well.

OCB’s flexibility is also achieved through an extensive set of parameters
that allow the benchmark to be very adaptive. Many different kinds of object
bases can be modeled with OCB, as well as many different kinds of applications
running on these databases. Since there exists no canonical OODB application,
this is an important feature. Eventually, the great majority of these parameters
are very easy to settle.

3.1 OCB Justification

We initially felt the need for a clustering-oriented benchmark because the ex-
isting benchmarks are not adapted to test the performances of most kinds of
clustering algorithms, including semantic clustering algorithms. General pur-
pose benchmarks are useful when testing the performances of an OODBMS as a
whole, but inherently do not model any specific application, even if most exist-
ing benchmarks were designed in a CAD/CAM/CASE context. Hence, they are
not well suited to benchmark the performances of clustering algorithms. Some
of their queries simply cannot benefit from any clustering, e.g., queries that scan

through the whole database, or random accesses. Furthermore, clustering is very
data dependent, what is not taken into account by the synthetic benchmarks,
that all adopt a somewhat simple database schema. Consequently, we designed
a rich and complex database (though very easy to code and generate), and a set
of adapted queries.

OCB’s main characteristic is indeed its double aptitude to be both generic
and clustering-oriented. The clustering orientation definitely comes from the
workload, but the set of transactions we use can be easily extended to achieve
full genericity. On the other hand, OCB’s database is wholly generic. OCB can
be easily either parameterized to model a generic application, or dedicated to a
given type of object base and/or application.

The last version of OCB (currently in development) also supports multiple
users, in a very simple way (using processes), which is almost unique. As far
as we know, only OO7 has a multi-user version also in development. OO1 was
designed as multi-user, but the published results only involve one single user.

Eventually, OCB’s code is very compact, and easy to implement on any plat-
form. OCB is currently implemented to benchmark the Texas persistent storage
system for C++, coupled with the DSTC clustering technique. The C++ code is
less than 1,500 lines long. OCB is also being ported into a simulation model de-
signed with the QNAP2 simulation software, that supports a non object-oriented
language close to Pascal. The QNAP2 code dealing with OCB is likely to be
shorter than 1,000 lines.

3.2 OCB Database

OCB’s database is both rich and simple to achieve, very tunable, and thus highly
generic. The database is constituted of a predefined number of classes (NC), all
derived from the same metaclass (Fig. [Il). A class is defined by two parameters:
MAXNREF, the maximum number of references present in the class’ instances;
and BASESIZE, the class’ basic size (increment size used to compute the In-
stanceSize after the inheritance graph is processed during the database genera-
tion). Note that, on Fig.[I], the Unified Modeling Language (UML) ”bind” clause
indicates that classes are instanciated from the metaclass using the parameters
between brackets. Since different references can point to the same class, 0-N,
1-N, and M-N links are implicitly modeled. Each reference has a type. There
are NREFT different types of reference. A reference type can be, for instance,
a type of inheritance, aggregation, user association, etc. After instanciation of
the database schema, an object points to at most MAXNREF objects from the
iterator of the class referenced by this object’s class.
The database generation proceeds through three chief steps.

1. Instanciation of the CLASS metaclass into NC classes: creation of the classes
without any reference, then selection of the classes referenced by each class.
The type of the references (TRef) can be either randomly chosen according
to the DIST1 random distribution, or fixed a priori. The referenced classes
belong to an [INFCLASS, SUPCLASS] interval that models a certain locality

Schema

MAXNREF: Integer
BASESIZE: Integer

Ref: Array [1..MAXNREF] of TypeRef

Ref: Array [1..MAXNREF] of Reference to CLASS
terator: Array [0..*] of Reference to OBJECT
nstanceSize: Integer

CLASS #1 CLASS #2 CLASS4NC |

Instances

OBJECT

lassPtr: Reference to CLASS

Ref: Array [1..Class. MAXNREF] of Reference to OBJECT
ackRef: Array [0..*] of Reference to OBJECT

iller: Array [1..Class.InstanceSize] of Byte

Fig. 1. OCB database schema (UML Static Structure Diagram)

of reference at the class level. The class reference selection can be either
performed at random according to the DIST2 random distribution, or set
up a priori. NIL references are possible.

. Check-up of the database consistency: suppression of all the cycles and dis-
crepancies within the graphs that do not allow them (e.g., the inheritance
graph, or composition hierarchies).

. Instanciation of the NC classes into NO objects: creation of the objects,
first without any reference (their class is randomly determined according
to the DISTS random distribution), then random selection of the objects
referenced by each object. The referenced objects belong to an [INFREF,
SUPREF] interval that models the locality of reference as introduced by
0OO1. The object reference random selection is performed according to the
DIST/ random distribution. Reverse references (BackRef) are instanciated
at the same time the direct links are.

The full database generation algorithm is provided in Fig.

// Schema: Classes
For i = 1, NC do
For j = 1, MAXNREF (i) do
Class (i).TRef (j) = RAND (DIST1, 1, NREFT)
End for
Class (i).InstanceSize = BASESIZE (i)
End for

// Schema: Inter-classes references
For i = 1, NC do
For j = 1, MAXNREF (i) do
Class (i).CRef (j) = RAND (DIST2, INFCLASS, SUPCLASS)
End for
End for

// Schema: Graph consistency for hierarchies without cycles
For i = 1, NC do
For j = 1, MAXNREF (i) do
If In_No_Cycle (Class (i).TRef (j)) then
// Browse through class CRef (j) graph,
// following the TRef (j) references
If Class (i) belongs to the graph or a cycle is detected then
Class (i).CRef (j) = NULL
Else
If Is_Inheritance (Class (i).TRef (j)) then
// Browse through class CRef (j) inheritance graph
// and add BASESIZE (i) to InstanceSize for each subclass
End if
End if
End if
End for
End for

// Instances: Objects
For i = 1, NO do

Object (i).ClassPtr = RAND (DIST3, 1, NC)

Object (i).ClassPtr.Add_Object_Into_Iterator (Object (i))
End for

// Instances: Inter-objects references
For i = 1, NC do
For j = 1, Class (i).Get_Iterator_Count() do
For k = 1, MAXNREF (i) do
1 = RAND (DIST4, INFREF, SUPREF)
Iterator (i).0Object (j).ORef (k) = Class (CRef(k)).Iterator (1)
Add_BackRef (Class (CRef(k)).Iterator (1), Iterator (i).Object (j))
End for
End for
End for

Fig. 2. OCB database generation algorithm

Note: The random numbers used in the database creation are generated by
the Lewis-Payne random generator.
The database parameters are summarized in Table [T}

3.3 0OCB Workload

Since benchmarking the performances of clustering algorithms is our main goal,
we focused OCB’s workload on a set of transactions that explore the effects

Name Parameter Default value
NC Number of classes in the database 20
MAXNREF (i)|Maximum number of references, per class 10
BASESIZE (i) Instances base size, per class 50 bytes
NO Total number of objects 20000
NREFT Number of reference types 4
INFCLASS | Inferior bound, set of referenced classes 1
SUPCLASS | Superior bound, set of referenced classes NC
INFREF Inferior bound, set of referenced objects 1
SUPREF Superior bound, set of referenced objects NO
DIST1 Reference types random distribution Uniform
DIST2 Class references random distribution Uniform
DIST3 Objects in classes random distribution Uniform
DIST4 Objects references random distribution Uniform

Table 1. OCB database parameters

of clustering. Hence, we excluded at once some kinds of queries that simply
cannot benefit from any clustering effort, e.g., creation and update operations,
or HyperModel Range Lookup and Sequential Scan [g].

To model an appropriate workload for our needs, we used the types of trans-
actions identified by [4] and [10] (Fig.B). These operations are at the same time
well suited to explore the possibilities offered by clustering, and they can be tai-
lored to model different kinds of applications. They are basically divided into two
types: set-oriented accesses, and navigational accesses, that have been empiri-
cally found by [I0] to match breadth-first and depth-first traversals, respectively.
Navigational accesses are further divided into simple, depth first traversals, hi-
erarchy traversals that always follow the same type of reference, and finally
stochastic traversals that select the next link to cross at random. Stochastic
traversals approach Markov chains, that simulate well the access patterns caused
by real queries, according to [12]. At each step, the probability to follow reference
number N is p(N) = 1/2¥. Each type of transaction proceeds from a randomly
chosen root object (according to the DIST5 random distribution), and up to a
predefined depth depending on the transaction type. All these transactions can
be reversed to follow the links backwards (”ascending” the graphs).

The execution of the transactions by each client (the benchmark is to be
multi-user) is organized according to the following protocol:

1. cold run of COLDN transactions which types are determined randomly, ac-
cording to predefined probabilities. This step’s purpose is to fill in the cache
in order to observe the real (stationary) behavior of the clustering algorithm
implemented in the benchmarked system;

2. warm run of HOTN transactions.

A latency time THINK can be introduced between each transaction run.
The OCB workload parameters are summarized in Table

TRANSACTION

Root object
Depth
SET-ORIENTED NAVIGATIONAL
ACCESS ACCESS
In breadth first on
all the references rmﬁéf’ér’éﬁé’er7t7)7p7é””3
SIMPLE HIERARCHY | STOCHASTIC
TRAVERSAL TRAVERSAL TRAVERSAL
Random
In depth first on Following a given thes:éift:g:e?efnce
all the references type of reference to follow

Fig. 3. OCB transaction classes (UML Static Structure Diagram)

The metrics measured by OCB are basically the database response time
(global, and per transaction type), the number of accessed objects (still globally,
and per transaction type), and the number of I/O performed. We distinguish
the I/Os necessary to execute the transactions, and the clustering I/O overhead
(I/Os needed to cluster the database).

4 Validation Experiments

The Object Clustering Benchmark has been used to measure the performances
of the DSTC clustering technique, that is implemented in the Texas system, run-
ning on a Sun workstation. The efficiency of DSTC had already been evaluated
with another benchmark called DSTC-CluB [3], that was derived from OOL.
Hence, some comparisons are possible.

4.1 Texas and the DSTC Clustering Technique

Texas is a persistent storage for C++, designed and developed at the University
of Texas, Austin [I1]. Texas is a virtual memory mapped system, and is hence
very efficient. Memory data formats are those of C++. Persistent objects are
stored on disk using this same format. Thus, when a disk page is loaded into
memory, all the disk addresses towards referenced objects are swizzled to virtual

Name Parameter Default value
SETDEPTH Set-oriented Access depth 3
SIMDEPTH Simple Traversal depth 3
HIEDEPTH Hierarchy Traversal depth 5
STODEPTH Stochastic Traversal depth 50

COLDN | Number of transactions executed during cold run 1000

HOTN |Number of transactions executed during warm run 10000

THINK Average latency time between transactions 0

PSET Set Access occurrence probability 0.25
PSIMPLE Simple Traversal occurrence probability 0.25
PHIER Hierarchy Traversal occurrence probability 0.25
PSTOCH Stochastic Traversal occurrence probability 0.25

RAND5 Transaction root object random distribution Uniform

CLIENTN Number of clients 1

Table 2. OCB workload parameters

memory addresses, and vice versa, when a page is trashed from the virtual
memory.

The Dynamic, Statistical, and Tunable Clustering technique has been devel-
oped at Blaise Pascal University (Clermont-Ferrand II) as a Ph.D. project [4].
DSTC is heavily based on the observation of database usage (basically, inter-
object links crossings). It utilizes run-time computed statistics to dynamically
reorganize the database whenever necessary. The DSTC strategy is subdivided
into five phases.

1. Observation Phase: During a predefined Observation Period, data related to
the transactions execution is collected and stored in a transient Observation
Matrix.

2. Selection Phase: Data stored in the Observation Matrix are sorted. Only
significant statistics are saved.

3. Consolidation Phase: The results of the Selection Phase are used to update
the data gathered during the previous Observation Periods, that are stored
in a persistent Consolidated Matrix.

4. Dynamic Cluster Reorganization : The Consolidated Matrix statistics are
used either to build new Clustering Units, or to modify existing Clustering
Units.

5. Physical Clustering Organization: Clustering Units are eventually applied to
consider a new object placement on disk. This phase is triggered when the
system is idle.

4.2 Material Conditions

DSTC is integrated in a Texas prototype (version 0.2.1) running on a Sun
SPARC/ELC workstation. The operating system is SUN OS version 4.3.1. The

available main memory is 8 Mb, plus 24 Mb of disk swap. The disk is set up
with pages of 4 Kb. Texas and the additional DSTC modules are compiled using
the GNU C++ (version 2.4.5) compiler.

4.3 Experiments and Results

These results are not the outcome of extensive tests performed on the Texas /
DSTC couple. They are rather significant experiments to demonstrate OCB’s
feasibility, validity, and functionality.

Object Base Creation Time: The aim of this series of tests is to demonstrate
the mere feasibility of OCB. Since we recommend the use of a complex object
base, we had to check if our specifications were possible to achieve. Figure El
presents the database average generation time depending on the database size,
with a 1-class schema, a 20-class schema, and a 50-class schema. The time re-
quired to create the object base remains indeed reasonable, even for the biggest
OCB database (about 15 Mb) used with Texas. The number of classes in the
schema influences the database generation time because the inheritance graph
consistency is rendered more complex by a high number of classes.

=
Q
5]
(=]
o
1
1

-
(O]
2 10000 +
E /
& 1000 + _— —e— 1 class
g —8— 20 classes
% 100 + 4//0 — —50 classes
8 107 -
&
a

1 } } } |

10 100 1000 10000 20000

Database size (number of instances)

Fig. 4. Database average creation time, function of the database size

I/O Cost: We obtained a first validation for our benchmark by comparing
the results achieved by DSTC-CluB (the DSTC Clustering Benchmark) [3] with

those achieved by OCB. First, we tuned OCB’s database so that it approximates
DSTC-CluB’s (the OCB database parameters values are provided by Table []).
The results, in terms of I/O cost, are sum up in Table[d Note that DSTC-CluB
measures the number of transaction I1/Os before, and after the DSTC algorithm
reorganizes the database.

Name Parameter Value
NC Number of classes in the database 2
MAXNREF|Maximum number of references, per class 3
BASESIZE Instances base size, per class 50 bytes
NO Total number of objects 20000
NREFT Number of reference types 3
INFCLASS| Inferior bound, set of referenced classes 0
SUPCLASS| Superior bound, set of referenced classes NC
INFREF | Inferior bound, set of referenced objects | Partld - RefZone
SUPREF |Superior bound, set of referenced objects|Partld + RefZone
DIST1 Reference types random distribution Constant
DIST2 Class references random distribution Constant
DIST3 Objects in classes random distribution Constant
DIST4 Objects references random distribution Special

Table 3. OCB database parameters in order to approximate DSTC-CluB’s
database

Benchmark| Number of I/O0s Gain Factor
(before reclustering)
66

61

Number of I/0s
(after reclustering)
DSTC-CluB 5 13,2

OCB 7 871

Table 4. Texas/DSTC performance, measured with OCB, and DSTC-CluB

Though the actual values are a little different (due to the size of objects, that
is constant in DSTC-CluB, and varies from class to class in OCB), the general
behavior remains the same. We have just showed that OCB can be tuned to
mimic the behavior of another benchmark, and thus illustrated its genericity.

In a second phase, we benchmarked Texas and DSTC using OCB parame-
ters default values (Table). The results, presented in Table B show that OCB
indicates a lesser performance for DSTC than DSTC-CluB. This is because
DSTC-CluB has only one type of transaction (OO1’s traversal) running on a
semantically limited object base. Since OCB runs several types of transactions
on the database (thus more closely modeling a real transaction workload), the

access patterns, and the associated usage statistics, are much less stereotyped.
Hence, clustering with DSTC is demonstrated not to be as good as stated in [3].
It though remains an excellent choice, since it still improves Texas’ performances
by a 2.5 factor.

Benchmark| Number of I/Os Number of I/Os |Gain Factor
(before reclustering)|(after reclustering)
OCB 31 12 2,58

Table 5. Texas/DSTC performance, measured with OCB

5 Conclusions and Future Research

OCB has been demonstrated to be valid to benchmark the performances of clus-
tering algorithms in OODBs. We have indeed proved that, properly customized,
OCB could confirm results obtained with the previous benchmark DSTC-CluB,
and even provide more insight about clustering policies performance than DSTC-
CluB (and, a fortiori, OO1).

OCB’s main qualities are its richness, its flexibility, and its compactness. OCB
indeed offers an object base which complexity has never been achieved before in
object-oriented benchmarks. Furthermore, since this database, and likewise, the
transactions running on it, are wholly tunable through a set of comprehensive
(but easily set) parameters, OCB can be used to model any kind of object-
oriented database application. Lastly, OCB’s code is short, reasonably easy to
implement, and easily portable, even in non object-oriented environments like
QNAP2.

The perspectives opened by this study are numerous. First, we have men-
tioned that OCB could be easily enhanced to become a fully generic object-
oriented benchmark. Since OCB’s object base is already generic, this goal can
be achieved by extending the transaction set so that it includes a broader
range of operations (namely operations we discarded in the first place because
they couldn’t benefit from clustering). We think too, that existing benchmark
databases might be approximated with OCB’s schema, tuned by the appropriate
parameters.

Another obvious future task is the actual exploitation of OCB: the bench-
marking of several different clustering techniques for the sake of performance
comparison, and possibly each time on different systems (OODB/OS couple).
We also plan to integrate OCB into simulation models, in order to benefit from
the advantages of simulation (platform independence, a priori modeling of non-
implemented research prototypes, low cost).

Eventually, when designing our benchmark, we essentially focused on per-
formance. However, though very important, performance is not the only factor

to consider. Functionality is also very significant [2]. Hence, we plan to work in
this direction, and add a qualitative element into OCB, a bit the way [9] oper-
ated for the CAD-oriented OCAD benchmark. For instance, we could evaluate
if a clustering heuristic’s parameters are easy to apprehend and set up, if the
algorithm is easy to use, or transparent to the user, etc.

References

1. T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider: The Hyper-
Model Benchmark. International Conference on Extending Database Technology,
Venice, Italy, March 1990, pp. 317-331

2. A.J. Berre, T.L. Anderson: The HyperModel Benchmark for Evaluating Object-
Oriented Databases. In ”Object-Oriented Databases with Applications to CASE,
Networks and VLSI CAD”, Edited by R. Gupta and E. Horowitz, Prentice Hall
Series in Data and Knowledge Base Systems, 1991, pp. 75-91

3. F. Bullat, M. Schneider: Dynamic Clustering in Object Database Exploiting Effec-
tive Use of Relationships Between Objects. ECOOP ’96, Linz, Austria, July 1996;
Lecture Notes in Computer Science No. 1098, pp. 344-365

4. F. Bullat: Regroupement dynamique d’objets dans les bases de données. PhD Thesis,
Blaise Pascal University, Clermont-Ferrand II, France, January 1996

5. M.J. Carey, D.J. Dewitt, J.F. Naughton: The OO7 Benchmark. Technical report,
University of Wisconsin-Madison, January 1994

6. R.G.G. Cattell: An Engineering Database Benchmark. In ”The Benchmark Hand-
book for Database Transaction Processing Systems”, Edited by Jim Gray, Morgan
Kaufmann Publishers, 1991, pp. 247-281

7. S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald: Clustering Techniques for Object-
Oriented Database Systems. 38" IEEE Computer Society International Conference,
San Francisco, February 1993, pp. 232-242

8. J. Darmont, A. Attoui, M. Gourgand: Simulation of clustering algorithms in OODBs
in order to evaluate their performance. Simulation Practice and Theory, No. 5, 1997,
pp- 269-287

9. J. Kempe, W. Kowarschick, W. Kieflling, R. Hitzelberger, F. Dutkowski: Bench-
marking Object-Oriented Database Systems for CAD. 6" International Conference
on Database and Expert Systems Applications (DEXA 95), London, UK, 1995;
LNCS Vol. 978 (Springer), pp. 167-176

10. W.J. Mc Iver Jr., R. King: Self-Adaptive, On-Line Reclustering of Complex Object
Data. ACM SIGMOD Conference, Minneapolis, Minnesota, 1994, pp. 407-418

11. V. Singhal, S.V. Kakkad, P.R. Wilson: Texas: An Efficient, Portable Persistent
Store. 5" International Workshop on Persistent Object Systems, San Miniato, Italy,
1992

12. M.M. Tsangaris, J.F. Naughton: On the Performance of Object Clustering Tech-
niques. ACM SIGMOD International Conference on Management of Data, San
Diego, California, June 1992, pp. 144-153

PART

To

Id: Integer
Type: String[10]
X: Integer

Y: Integer
Build: Date

*

From

CONNECTION

3
\—Connect—

Length: Integer
Type: String[10]

1

RefTo/RefFrom
(Association M-N)

Parent/Children
(Aggregation 1-N)

JURI

NODE

uniqueld
ten
hundred

thousand
million

(Ag

(Specialization)

PartOf/Parts

gregation M-N)

TEXT NODE FORM NODE
text bitMap
width

height

MANUAL

MODULE

1 1

Design
Root

1

DESIGN OBJ

Assemblies

ASSEMBLY

*

SubAssemblies

COMPLEX
ASSEMBLY

BASE
ASSEMBLY

*

Priv

Shared

CONNECTION

DOCUMENT

*

1

Documentation

1

,_Components

| Components |

COMPOSITE
PART

\ 1 1
Root
Part

R,

ATOMIC PART

	OCB: A Generic Benchmark to Evaluate the Performances of Object-Oriented Database Systems

