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1. Conventional Information Retrieval

Information retrieval systems normally provide effective procedures
for the storage, processing, and retrieval of information items in
response to requests submitted by a population of users. Host conven-
tional retrieval methods utilize the well-known inverted file technology
in which an auxziliary index (the inverted index) is used in addition to
the main file of informztion records. The index contains for each
allowable search term a list of the record identifiers for all records
identified by the corresponding term. The methods needed to identify
the records responding to particular search requests thus are based
principally on list processing operations involving the lists of record

identifiers stored in the inverted index.

Consider as an example a typical Boolean query formulation such as
((TERM A ARD TERM B) OR TERM C), implying that the user wishes to see
items containing either the combination of terms A and B, or else term
C. The following steps are needed to obtain the identifiers for all

records to be retrieved from the main files:

a) the inverted index is used to obtain the list of record iden-

tifiers for all records containing term Aj;

b) the index is used to obtain the list of record identifiers for

all records containing term B:

¢) a list intersection operation furnishes the list of all items

that are present on both the lists obtained under a) and b);
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d) the inverted index is used to obtain the list of record iden-

tifiers for all records containing term C;3

e) a list union operation generates the list of unique items con-

tained either on the list obtained under c¢) or the list

obtained under d).

A typical inverted index process is illustrated in the example of Fig.

1.

Following the list merge operations, the actual records correspond-
ing to° the identifiers contained on the final merged 1list must be
retrieved from the main file. It should be noted that the full file of
records is accessed only when records represen;ing ansvers to the user
queries must zctually be retrieved. The operations needecd to identify
records that directly respond to a user query are all carried out by
using the list processing methods in the inverted index as shown in Fige.

2.

The conventional retrieval operations described earlier are expen-

sive to carry out for three main reasons:

a) the inverted index is typically very large because several

tens of thousands of terms must be included in the index;

b) the 1lists of document identifiers corresponding to certain
popular terms are long, and the list merge operations are

therefore costly to carry out;

c) the number of records that may actually respond to a given

user query may be large, implying that a substantial number of
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file accesses are required in the main document file to

retrieve the records.

To respond to these potential inefficiencies, three types of
improvements have been suggested that render the conventional retrieval
operations more efficient: the use of a number of different search pro-
cessors all operating simultaneously on different portions of the files;
the use of comparison and merge networks to simplify the list processing
operations; and finally, the use of so-called associative memories. All
of these devices are based on the concept of parallelism: the opera-

tions are briefly explained in the next section.

2. Parallel Processing in Conventional Retrieval Systems

In many systems the files to be searched tend to become large.
Thus in many operational retrieval systems, the number of stored records
is of the order of several tens of thousands. In such cases a consider-
able effort is needed to find any particular item in the files. One
obvious approach to reducing the search time (but not necessarily the
cost) is to brezk up the files into a variety of subfiles--sometimes
called cells--and to provide separate search fécilities for each sub-
file. Typically, special purpose, back-end processors may be used, each
charged with the management of ome subfile., Furthermore, all the back-
end processors are charged to operate in parallel on the data included
in their particular subfile. A typical partitioned file organization of

this type is shown in simplified form in Fig. 3. [1-5]

A partitioned file may be used to store either the inverted index
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or the main document file, or both. When the main file is partitioned,
the search is speeded up by passing on to the individual back-end pro-
cessors the record identifiers of all records satisfying the search
logic. The several processors can then retrieve the corresponding
records from their respective subfiles from where they are passed on to
the host computer that actuvally transumits the results to the users.
When the inverted index is also partitiomed, the back-end processors are
used to retrieve the lists of document references for the terms stored
in each relevant subfile. The search logic consisting of the various
list merge operations can then be carried out by connecting the back-end
processors with each other; alternatively, the lists may be passed on to
the general-purpose host computer for processing, or some other

special-purpose device may be used.

When the number of search terms available in a retrieval system is
large, the time reéquired to find the addresses of the lists of document
references corresponding to each search term may become substantial. In
such a case it may be useful to maintain the list of search terms in a
parallel-access memory, known as an associative memory, or assoclative
store. In an associztive memory all entries are searched in parallel
and when a match is found betwveen an input search term and a stored
entry, the corresponding entry is immediately flagged. The basic system
diagran for a computer using an associative store is shown in Fig. 4 and

the corresponding search operations are illustrated in Fig. 5. [6-8]

In the example of Fig. 5, each line of the associative store con-
tains a particular term used to identify the documents of a collection.

The query term currently being processed is stored in the comparand
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register. A mask register may also be available that prevents certain
character positions of the comparand register from taking part in the
comparison operation. In general, all lines of the associative store
are simultaneously compared with the entry in the comparand register,
and proper matches are signalled in the response register. For the
example of Fig. 5 a match exists with line 2 of the associstive array.
In inverted file processing, the response register might be used to
indicate not only the location of a matching entry, but also the address

of the corresponding list of document references.

The use of back-end processors and associative memories speeds up
search operations involving large files. However, these devices do
nothing directly for the list merging operation. Consider in particular
the list processing operations p;eviously illustrated in the example of
Fig. 1. Assuming that ordered lists of document references are main-
tained in the inverted index for each search term, the following list
merging operations are needed when two search terms are combined by the

connectives AND, OR, and NOT, respectively:

a) A OR B:
the two ordered lists are merged into one ordered list, and

one element of each duplicated entry is removed;

b) A AND B:
the two ordered lists are merged and all single entries are

removed as well as one occurrence of each duplicated entry;

c) A NOT B:

the two ordered lists are merged and both occurrences of each
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duplicated entry are removed as well as all single entries

originally on the D list.

The normal method for merging two ordered lists consists in compar-
ing the first element from list A with the first element from B and
transferring the smaller of the two elements--say the one from A--to the
output. The next element from the A list is then compared with the
first element from the B list, and the smaller one is chosen once again.
The pairvise comparisons are then continued until the 1lists are
exhausted. Assuming that each input list contains 1i/2 elements, N com-

parison operations are needed to merge the two lists.

The merging operation may be speeded up considerable by using
severél comparison units in parallel, each capable of comparing two
input elements and identifying- the smaller of the two. Thus N/2
separate comparison units may be used for lists of length N/2 to handle
the first, second; third, and eventually the last entries from each of
two ordered lists, respectively. The output from the first comparison
stage can then be fed to additional comparison units constituting a
second stage. Further stages of pairwise comparisons between certain
list elements then follow until the finzl output represents a single
ordered list. A sorting network of this type is outlined in Fig. 6. It
is known that if thke input comsists of two ordered lists of 1i/2 entries,
the number of stages needed in the ordering process when multiple com-

parison units are used is (l+rlo~ H/i]) instecd of N as before, and the

E)Z

nuuber of comparison units needed is of order N + N/2 log, n/2. [9-13]

The foregoing developments are all based on the same philosophy:

search operations invelving large files or lists of many elements may be
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speeded up by performing many operations in parallel. Such a solution,
unfortunately, does not help in resolving a basic weakness of the con-
ventional search and retrieval methodology: as the search queries
become longer and involve more search terms, the zmount of work needed
to identify the matching records continually grows, because additional
lists of document identifiers must then be processed. At the same time,
the number of records to be retrieved from the main file becomes very
hard to control: for Boolean queries involving ten or more search terms
it is impossible to predict whether 0 records will eventually be
retrieved, or 1,000, In either case, the user will presumably be dissa-
tisfied. This suggests that a different retrieval philosophy may be
needed not based on Boolean query formulations or on exact match stra-
tegies (where the stored documents are retrieyed only when the terms
assigned to the documents precisely match the query specification).
This alternative retrieval enviromment is introduced in the next sec-

tion.

3. The Vector Processing lodel

Consider a collection of documents, each identified by a set of
content identifiers, or terms. A given document, Di’ may then be

represented by a term vector of the form

D, = (dil’diz""’dit ) (1)

where dij represents the importance factor, or weight, of the jth term
assigned to Di’ and t is the total number of distinct terms assigned to

the collection. A weight of 0 may be assumed for terms that are absent



- 0 -

from a given vector, while a positive weight may be used for terms actu-

ally assigned to a vector.

Given two particular documents D. and Dj’ it becomés possible to
compute a similarity coefficient between them based on the number of
common terms in the vectors, and on the weight of the common terms.
Typical similarity measures might be the inner procuct between the
corresponding vectors or the cosine coefficient (expressions (2) and

(3), respectively):

t
S(D.,D.) = 3 d. d. (2)
1] k=1 ik "jk
t
"'il di.k _']1\
s(D.,D.) = - . (3
3 t t )
2 =
2 (d.,)° . 2 (d..)
k=1 K k=1 IF

Both of these similarity measures produce a 0 zero value for vec-
tors that have no common terms, and have a positive values when cormon

terms exist. The maximum value of the cosine measure is equal to 1.

The computation of pairwise similarity measures between stored
records suggests that documents whose vectors are sufficiently similar
to each other be grouped to form classes of related documents. Consider
the illustration of Fig. 7: if the distance on the plane is assumed to
be inversely proportional to the vector similarity, then
S(Di’Dj)>>(Di’Dk) for the example of Fig. 7. In that case D; and D,

J

might be grouped into a common class; DP however would be excluded from

N\

the class. This leads to a clustercd document collection of the type
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shown in Fig. 8 where certain items are grouped into common classes, OrT
clusters, Each class may itself be identified by a class vector, also

known as the centroid

Cp=(°p1’°p2"”’°pt) (4)

pj represents the weight of term j in the centroid for

class p. The centroid could be defined as the average vector for all

where once again c

the documents in a given class. Assuming a class of m items

_ 1
."m b3 d.. . (5)

In the vector processing model, a given user query may also be

represented as a vector of terms

Qk = (qkl’qu""’qkt) (6)

vhere qkj represents the weight of the jth query term in Q- In these
circumstances the complete retrieval operation may be reduced to a set

of vector comparison operations as follows:

a) given a query Qk’ perform the similarity computation S(Qk.Cp)

between Qk and all cluster centroids Cp;

b) consider those clusters for which S(Qk,Cp)>T1 for some thres-
hold value Tl; for all documents in the corresponding clus-

ters, computer S(Qk’Di);

c) arrange the documents in decreasing order of the similarity

S(Qk'Di) and present to the user all items such that
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S(QI,.Di)>T2 for some threshold value T2.

' ﬁy changing the values of the threshold Tl and Tz, a variable
number of items may be retrieved from the main file. Furthermore, the
items may be presented to the user in decreasing order of presumed use-
fulness (that is, nearness to the query). The system again uses two
principal files: the meain document file, and an auxiliary file of clus-
ter centroids that replaces the inverted index of the conventional sys-

tem.

It is not possible in the present context to describe the vector
processing model in greater detail. [14,15] What has been said so far
should make it clear that the parallel search facilities described ear-
lier in this study are applicable in a vector processing system as they
are in the standard retrieval enviromment. Obviously, if several docu-
ment vectors could be compared simultaneously to a given query vector,
the retrieval operations would be speeded up. In additiorn, the need to
manipulate the query, document, and centroid vectors-- for example, by
computing similarity coefficients between many vector pairs-- suggests
that additional improvements are obtainable by using efficient methods
for performing the numerical computations. This possibility is con-

sidered in the remainder of this study.

4, Array Processors

Many areas of computer application are distinguished chiefly by the
need for substantial computational power. For example, in signal pro-

cessing, large quantities of data are rececived over external devices,
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such as radar or satellite equipment, that subsequently require process-
ing and "cleaning up.™ In such circumstances, the need for fast internal
computation becomes overvhelming., To respond to this demand special
processors, known as array processors (AP) have been developed that pro-
vide very fast arithmetic facilities and work in conjunction with a gen-
eral purpose computer (the host computer) to which they are attached.

[16,17]

Array processors are often implemented as specialized, high-speed
floating-point machines working in parallel with their host computer.
No character manipulation or input output facilities are normally pro-

vided. The computational power of AP's is due to two main features:

‘a) parallel functional units: instead of including all arith-
metic and logical fuqctional of the processor in a simple
Yarithmetic and logical unit" as is done in standard comput-
ers, the various functions of the central processing unit are
split up into separate functionzl units that can all function
in parallel; thus in some array processors it is possible to
perform an addition in the adder, and also a multiplicztion in
the multiplier, and also a fetch operation to retrieve an itenm
of data from memory, and also an instruction decoding opera-
tion; all of these operations can be carried out in parallel

using separate functional units.

b) pipelined functional units: some units of the array processor
are pipelined to speed up the processing of a single function,
notably addition and multiplication; this means that a given

operation is carried out in steps, or stages, in such a way
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that a given processing unit can effectively carry out several
operations at the same time, provided each operation is in a
separate stage. A pipelined processing unit, say a multi-
plier, consisting of three stages 1is shown schematically in
Fig. 9. Three operations (multiplications) can in principle
be carried out in the multipiier at the same time: the first
multiplication that was started earliest is in stage 3 in the
illustration of Fig. 9, the second multiplication started ome
stage later is in stage 2, and the third started most recently
is in stage l. After each time unit the pipelined processor
advances by one stage; that is a new operation can be started
in each unit of time if the pipeline is filled, the results of

the operation being available three stages later.

Because of the limited set of functions provided, the cost of AP
processing is inexpensive (typically $40 per hour) compared with the

cost of a large standard computer (typically $1,000 per hour).

When an array processor is coupled to a gemeral-purpose (host) com-
puter as shown in Fig. 10, all input-output, program set-up, and data
base operations are normally carried out by the host. Computational
tasks can however be assigned to the AP after transfer by the host of
relevant instructions and data into the array processor. The AP then
executes its program while the host waits or performs other tasks unre-
lated to what is going on inside the AP, When the AP finishes its task,
a "device interrupt"™ is sent to the host; the host then reads the

results out of the AP, and processing continues.

Whether it pays to use an AP with a host computer depends on
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whether the savings obtained by executing a routine in the AP outveigh
the costs of transferring programs and data between host and AP. The

following factors appear important in this connection:

a) the data manipulations should be executable as floating-point
arithmetic rather than as address, character, or integer mani-

pulations;

b) the application should include long computations to justify

the required host overhead and data transfer time;

c) the program to be executed should be small and the indexing

requirements should be simple.

Information retrieval appears to furnish a poor application for
AP's because of the large data base to be processed, and the many data
transformation, as opposed to arithmetic, operations to be performed.
On the other hand, it was seen earlier that the computational require-
ments are certainly not mnegligible in many information retrieval
processes. [Examples are the computation of similarity coefficients
between vectors, and the generation of cluster centroids for clustered
document collections. The parallel execution of one of these operations

is covered in detail in the remainder of this study.

5. Vector Comparison Operations Using Array Processors

A typical information retrieval process consists of the following
main operations: indexing, that is, assigning content identifiers and

weights to the stored records; classification and file organization;
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query formulation; searching and retrieving; query reformulation and
search repetition, if necessary. All of these operations may be based
on vector manipulations that could be carried out with array processors.
[18] For present purposes, the single illustration involving informa-

tion searching must suffice.

Consider a typical search operation. Assuming that a combination
of processors is available consisting of a general-purpose host computer
coupled to an array processor, the sequence of operations outlined in
the flowchart of Fig. 11 might be used to search a clustered cocument
collection. The assunption is that the files are stored in the host
cowpute; but that all vector comparisons (query-centroid and query-

document matches) are carried out in the array processor.

It may be seen from Fig. 11 that the search operations consist of
information transfers and of vector comparison operations of the form
S(Qk.cp) and S(Qk,Di)' Many different vector similarity measures are
discussed in the literzture. For present purposes, the cosine coeffi-

cient of expression (3) may be assumed as a standard. [14,15]

The computations of the cosine measure between two vectors--for
example a query Qk and a document Di--may be broken down into two dis=

tinct parts:

t
a) the generation of the inner product Qi: qkzdil

1

b) the generation of the inverse norms of the vectors

t
2
(1/ 5:1 (q.q)" and 1/\] 3 (dg,)
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and the multiplication by the inverse norms.

Since the inverse norms represent constants for each vector, they can be
computed in advance and stored with each corresponding term vector.

This insures that the norms are available when needed.

The inner product computation consists of multiplications between
vector elements, additions, and of course memory fetches to extract the
required operands from storage. When an array processor is used to per-

form the operations it appears that several steps could be overlapped:

a) the multiplication of the jth vector elements from Q and D,

respectively, that is, qkj . dij

b) the addition of the (j-1)th product to the previous vector

sum, that 1is

c) the fetching from memory of the operands needed for the next
product, that 1s, qk,j+1 and di,j+l'
In order to describe the process in more detail it is necessary to
introduce a specific format for storing the vectors in the array proces-
sor, and a particular array processor to carry out the operations. In
principle, a full vector format may be used to store the document, cen-

troid, and query vectors (expressions (1), (4) and (6)), where the kth
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vector element is used to store the weight of term k in the vector. In
such 5 case, each vector is of length t, where t represents the total
number of terms assignable in a particular indexing system. In a typi-
cal document retrieval enviromnment t may be of the order of 10,000, but
the number of terms actually present in a given vector may be of the
order of 100, If a full vector format were used, up to 9,900 terms that
are absent from a given vector would then be represcnted by veighting

elements set equal to O.

To avoid the storage of such long vectors most of whose elements
are equal to 0, a sparse vecior format may be used which includes only
terms having a nonzero weight. Assuming that L nonzero term weights are
present, a vector may then be represented by 2L vector elements as fol-

lows

(tl,wl;tz,...,tL,wL)

where ti represents the index of the ith nonzero term and W, represents

the corresponding weight.

The array processor used for current purposes is the FPS 190-L con-
sisting of a two-stage floating point adder ana a three-stage floating
point multiplier as shown in Fig. 12. At Cornell University, an IBM
370/168 acts as a general- purpose host computer in conjunction with the

190-1‘0

In the 190-L array processor, memory fetches from the main data
memory can be started every other cycle, but an actual data item brought

in from memory is available after three cycles only. Thus six cycles
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are needed to fetch two operands from the data memory, both data ele-
ments being available at the beginning of the seventh cycle. An addi-
tion and a multiplication can be started on every cycle, but the
corresponding sum and product requires two and three cycles respectively
for completion. The 190-L AP also includes a fast table memory in which
memory fetches take only two cycles, instead of three for the data
memory. A separate instruction memory is used to store the AP instruc-

tions.

On the 190-L array processor, one cycle of operations is performed
every 167 nanoseconds, and as will be seen one complete loop for the
inner product computation requires 4 cycles (667 nanoseconds). Various
formats are usable to store the document and query vectors. For current
purposes a sparse format is assumed for the document vectors stored in
the data memory, and an expanded format for the queries stored in the

fast table memory. In particular, a sparse document may appear as

1

L
2
,le,th,Dwz,...,DtL,DwL.O./ iil (Dwi) )’

D = (L+1,Dt1

where L+1 represents the number of nonzero term weights L plus 1, and
the last term is the inverse norm required for the cosine computation.
Each Dt:i designates the index, or column number of a term, and Dwi is
the corresponding nonzero term weight. An expanded query vector appears

as

t
Q= (1/\ iil (Wi)z’ let szs LAY th)
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vhere Qwi is a query term veight, and t is the total nuwmber of terms in
the vocabulary. lost Qwi's will appear as 0 in the expanced query for-

mat.

The only query weights of interest for the inmer product are those
corresponding to nonzero document weighfs. Hence a given document term
index Dt cen be used directly as an address to retrieve tkhe correspond-
ing query weight Qu (equal to Q(Dti)) from the fast table memory. The 0
stored in the document term vector following element DtL is used as the

index to retrieve the zeroth element from the query vector, representing

t
the inverse norm of the query (1/ b3 (Qwi)z) . This can then be mul-
1=1

tiplied with the inverse norm for the document vector (the last element

of D) as required for the cosine computation.

The basic four-cycle loop used to conmpute one step of the imner
product is shown in Fig. 13. Three cycles are neeced to fetch a docu-
ment weight Dwi from the data mewory. The previous product Pi~1 =

Q(Dti_l) « Du. is started on cycle 4 to be ready two cycles later.

i-1
The partial sum can then be initiated on the following cycle. (The

i-1
used in Fig. 13 stands for 2 Qu

notation SUM.
i- .
j=1

2 . ij) . A scratch

3
pad memory also available on the AP is used as a loop counter: L+l loops

are needed to complete the computation.

The indexing operation used to retrieve a particular query term
weight Qwi, corresponding to a nonzero Dwi. is superimposed on the inner
product computation. The indexing operation is shown in detail in Fig.
14. Since the data memory of the AP stores floating-point numbers, the

floasting point representation of Dti nust be transformed to fixed point
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notation before being used as an address to retrieve the corresponcing

Qwi. This operation is outlined in Fig. 1l4.

It is not possible in the present context to completely evaluate
the operations of the combined host-AP configuration used for informa-
tion retrieval purposes. This requires detailed consideration of the
complete retrieval process which must remain beyond the scope of the
present study. It may suffice for present purposes to cite experimental
timing and cost figures relating to the imnner product computation only.

[18,19]

It was seen. earlier that about 2/3 of a microsecond (0.667
nanoséconds) are required per nonzero term for the inner product compu-
tation on the array processor. This compares with about 1.75
microseconds for the same action carried out on a 370/168 computer. The
speed of the AP is offset by two kinds of overhead: first, the host
processor overhead needed to decode the channel programs that transfer
data and instructions between the host and the AP; and second the actual
channel transfer times. For the combined 370/168-190L configuration, 7
milliseconds are needed to fill the AP data memory, 3 milliseconds to
transfer results computed by the AP to the host machine, 6 milliseconds
to transfer AP instructions to the AP instruction memory and to invoke
the AP instructions, and finally 53 milliseconds to initialize the AP.
The latter operation is required once for a given job when the AP is

first turned on.

It is obvious from these figures that the extra cost of data and
instruction transfer between host and AP must be offset by economies in

the computations. For the retrieval application used as an illustration
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this appears relatively easy because the processing of a given query
involves the gemeration of many vector corrclations between query and
centroid or document vectors. A sample chart appears in Fig. 15
reflecting the time needed to perform similarity computctions between a
17-tern query and 400 documents exhibiting an average of 155 norzero
terms. If the host time is assumed to be $140C/hour end the AP time is
charged at $40/hour, the 400 correlations cen be cerried out at a total
cost of 5.8 cents when the host operates alone; the host-AP combination

costs less than one-tenth that zmount (0.5167 cents) for that operation.

Complete timing studies are of course required to justify the use

of array processing in a multi-user on-line retrieval environment.
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Term A : {12, 25, 36, 89, 125, 128, 215}
Term B : {11) 12) 17' 36’ 78; 136’ 215}

Term C : {11, 18, 36, 125, 132, 216}

'a) Initial Lists of Document Identifiers from Inverted Index

Term A AND Term B : {12, 36, 215}

((TERM A AND TERM B)
OR TERM C) : {11, 12, 18, 36, 125, 132, 215, 216}

b) List Intersection and List Union Operations

Example of Inverted File List Processing Operations

Fig. 1
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Input Query

Use inverted index to retrieve
the list of document identifiers
for each query term

N

Carry out search logic by performing
list intersections for AND operators,
and list unions for OR operators

Y/

For each record identifier on the final
merge list retrieve the corresponding
record from the main document file

Answers

Conventional Inverted File Processing

Fig. 2
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General
Purpose
(Host)
Computer

Control

Interface

Backend

Processor 1f° s Subfile 1
packend Subfile 2
Processor 2
packend Subfile n
Processor n

Use of Multiple Backend Search Processors

Fig. 3

Host Computer

Auxiliary
Storage

Control System

Associative Sto

re

—~—provides

parallel input
and output

System Using Host Computer with Associative Store

Fig. 4
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) 13
Comparand . .BLUE. ....
T I
Mask Register .00111100. ..
Response
HEENERNEREEN Rezister
BLUE-CURTAINS 0
SEA-BLUE---- - 1
Associative CORAL-BLUE--- 0
Matrix RED-AND-WHITE 0
Storage PURPLE-~----- - 0
SNOW-WHITE-~-~- 0
Parallel Associative Matching
Fig. 5
] [ |
St 1
age | ! | Stage 1 +
N/2 Merge 1 Stage 2 ; ceeeceanae |
Elements : ] : r1082 N/277
1
| |
| | ‘I
—
. Iy |
o |1 |
™ .
ml [ A\ | T
— FJR: ::-' vV
] ‘- \ -
il bl \I/G:
l H Vi
Input: s i bl /1/
two lists -4 | 1= /v Output:
of N/2 < ” | | — lﬂ one
elements ra— -——11 . - sorted
each — y 4 ] > list of N
]
— o | l| elcments
| I | !
| | Ly
1 ' /] L J
. ’ ] ) |
— — | L/ | | »
' J
: | '

Sample Merge Network

(N inputs, 1 + rlogz N/27 stages, order N + N/2 lo_r},2 N/2 comparison elements)

Fig. 6
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Document Distances or Similarities

Fig. 7

x dindividual document

e class centroid

Clustered Document Collection

Fig. 8
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input

L

stage 1 third operation

stage 2 second operation

stageA3 first operation

!

output

Pipelined Processing Unit

Fig. 9
console General-Purpose |, input-output Array
. B —— 3 ey
devices Host Computer channel Processor

|

other input-output
devices (disks, printer)

Simplified Diagram of Host-AP System

Fig. 10
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Host Computer Array Processor (AP)

1. User types in query which is trans-
formed into a term vector and sent idle
into the AP

2. The query vector is compared with the

host idle (could perform stored centroid vectors for the clustered
other work) documents and the best centroids are
identified

3. The document vectors corresponding |3. The AP starts comparison of query with

to the best centroids are sent to some of the document vectors
the AP
4, Search results are obtained from 4, Query-document comparisons are carried
the AP and corresponding documents out and identifiers for the most highly
retrieved from files matching documents are sent to the host
5. Document citations are presented 5. AP is initialized for a new search
to the user and query may be
reformulated

Typical Search Process Using Host-AP Combination

Fig. 11
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Host Computer

Interface Channel

data paths (one word in parallel)i

|

;

Instruction

Decoder

N A
Data Memory Fast Table Instruction
(typically Memory Memory
64 K words) (typically (typically
2 K words) 4 X words)
U, —
Two Stage " Three Stage

Floating Point {— —
Adder

Floating Point
Multiplier

Y

Typical Floating Point Array Processor

(constants, data and instruction; are
kept in separate memories; multiplier
and adder are pipelined; integer
arithmetic, instruction decoder, adder
and multiplier are separate functional
units)

Fig. 12

B
I
1

/

control
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One Loop

N

Functional Cycle 1 Cycle 2 Cycle 3 Cycle 4
Unit
Data Memory Fetch Dwj from Dwi now available;
(documents) next memory save it in register;
location — | Dw._, to multiplier
/ \bl—l
c vl =
Adder Start SUhi_2
SUM, _ + P,
i-3 i-2
Multiplier Step 2 of Product P, = Start P, =
product Q(Dt ) i-2 i-1
i-2? " Dy QG - P

now ready

Table Memory
(queries)

Scratch Memory

Fetch Q.
J

from table
memory (Q.
is query
weight for
term i-1,

is Q(Dt; ;)

1

——

that

,——————————————-in now available for

use in multiplier

Decrement loop
counter

Repeat loop of index
not negative

Basic 4 Cycle Loop to Carry Out Inner Product Computation

Fig.

13
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One Loop

S T

Functional Cycle 1 Cycle 2 Cycle 3 Cycle 4
Unit
Data Memory Dti now avail- Start fetch of
(documents) able; send to Dti+l from next
adder to trans-| location in
form to integer| memory
- format
Fix Dt. to Fixed Dti now
i
Adder integer format | ready (when new
(previous sum is started)
| SUM, now store into
( reaé;§ scratch memory
N
. ’)
Table Memory Start fetch of
(queries) Q(Dti_l)
Scratch Load fixed
Dt, as ad-
Memory i-1
dress to
initiate fetch
of Q(Dt; ;)

Indexing Operation Needed to Find Address

for Next Required Query Term

Fig. 14
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Operétion Host alone Host AP
Send documents into - 7.87 7.87
AP memory
Perform similarity 145 - 31.84
computation
between one query
and 400 document
vectors
Return results from - 5.40 5.40
AP
Total time in 145 13.27 45.11
milliseconds
Total cost in cents 5.80 0.5162 0.0005

Timing and Cost Figures for 400 Similarity

- Computations between Query and Document Vectors

(17 query terms, 155 nonzero terms per document)

Fig. 15
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