
A Comparison of MDG and HOL

for Hardware Veri�cation

So��ene Taharx and Paul Curzonz

xUniversity of Montreal, IRO Department, Canada.
z University of Cambridge, Computer Laboratory, UK.

Abstract. Interactive formal proof and automated veri�cation based on
decision graphs are two contrasting formal hardware veri�cation tech-
niques. In this paper, we compare these two approaches. In particular
we consider HOL and MDG. The former is an interactive theorem prov-
ing system based on higher-order logic, while the latter is an automatic
system based on Multiway Decision Graphs. As the basis for our com-
parison we have used both systems to independently verify a fabricated
ATM communications chip: the Fairisle 4 by 4 switch fabric.

1 Introduction

Formal hardware veri�cation techniques are starting to attract widespread in-
terest due to their potential to give very strong results about the correctness
of designs. Two very di�erent forms of formal veri�cation have arisen: interac-
tive proof and automated decision graph techniques. The aim of this paper is to
compare and contrast these two approaches.

In the interactive proof approach, the circuit and its behavioral speci�cation
are represented in the underlying logic of a general purpose theorem prover. The
user interactively constructs a formal proof which proves a theorem stating the
correctness of the circuit. Many di�erent proof systems with various forms of
interaction have been used for this purpose. In this paper we consider one such
system: HOL [7]. It is an LCF style proof system based on higher-order logic.

In the automated decision graph approach the circuit is represented as a
decision diagram, and techniques such as reachability analysis are used to auto-
matically verify given properties of the circuit or verify machine equivalence. We
consider the MDG system. It uses a new class of decision graphs called Multi-
way Decision Graphs [3]. They subsume the class of Bryant's Reduced Ordered
Binary Decision Diagrams [1] while accommodating abstract sorts and uninter-
preted function symbols.

As the basis of our comparison of HOL and MDG, we have used both to
independently verify the Fairisle [10] 4 by 4 switch fabric1. This is a fabricated
chip which forms the heart of an ATM communication switch. It does the ac-
tual switching of data cells from input ports to output ports within the switch,

1 See URL http://www.cl.cam.ac.uk/Research/HVG/atmproof/ for more details of
Fairisle, the 4 by 4 fabric design and both the MDG and HOL veri�cation projects.



arbitrating clashes and sending acknowledgments. It was not designed for the
veri�cation case study. Indeed it was fabricated and in use, carrying real user
data, prior to any formal veri�cation attempt.

There has been a vast amount of work on formal hardware veri�cation. We
mention here only that which is directly related to our study on verifying network
hardware components.

J. Herbert [8] used HOL to formally verify the ECL chip: a local area network
interface which formed part of the Cambridge Fast Ring. This is of roughly
similar complexity to the circuit we considered, though our HOL proof took less
time, demonstrating the increased maturity of the system.

B. Chen et. al at Fujitsu Digital Technology Ltd. [2] veri�ed an ATM circuit
that makes high-speed switching operations at 156 MHz and consists of about
111K gates. When the circuit was manufactured it showed an abnormal behavior
under certain circumstances. Using the SMV tool [11], the authors identi�ed
the design error by checking some properties expressed in Computational Tree
Logic [11]. Due to the restriction of the Boolean computation used by SMV and
in order to avoid a state space explosion, they had to abstract the data width of
addresses from 8 bits to 1 bit, and the number of addresses in the Write Address
FIFO from 168 to 5. Although the design error was diagnosed, there is no proof
showing that the abstracted circuit was itself correct.

K. Schneider et. al [12] formally veri�ed the Fairisle 4 by 4 switch fabric using
a veri�cation system based on the HOL theorem prover: MEPHISTO. They
described the structure of each of the modules used in the hardware design
hierarchically down to the gate level and provided their behavioral speci�cations
using hardware formulas. Although they automated the veri�cation of lower-
level hardware modules which implement the top-level block units, they have
not accomplished the complete veri�cation of the intended overall behavior of
the switch fabric against its implementation.

The outline of the paper is as follows. In Section 2 we give a brief overview of
the particular hardware considered: the Fairisle 4 by 4 switch fabric. We describe
its veri�cation using HOL in Section 3 and using MDG in Section 4. For each we
overview the veri�cation method, tools and our experiences on this case study.
Finally, in Section 5 we draw conclusions. Since we have considered only a single
case study it should be noted that such conclusions cannot be de�nitive.

2 The Fairisle 4 by 4 Switch Fabric

The Fairisle switch forms the heart of the Fairisle network. It consists of three
types of components: input port controllers, output port controllers and a switch
fabric. Each port controller is connected to a transmission line and to the switch
fabric. The port controllers synchronize incoming and outgoing data cells, ap-
pending control information to the front of the cells in a routing byte (header).
This byte is stripped o� before the cell reaches the output stage of the fabric. A
cell consists of a �xed number of data bytes which arrive one at a time. The fabric
switches cells from the input ports to the output ports according to the routing



PR
IO

R
IT

Y
FI

L
T

E
R

ackIn0
ackIn1
ackIn2
ackIn3

dataOut1
dataOut0

dataOut2
dataOut3R

eg
is

te
rs

TIMING

D
E

C
O

D
E

R

ACK

ARBITRATION

ou
tp

ut
D

is
ab

le
gr

an
t

DATASWITCH

A
R

B
IT

E
R

S

R
eg

is
te

rs
R

eg
is

te
rs

ackOut1
ackOut0

ackOut3
ackOut2

dataIn0
dataIn1
dataIn2
dataIn3 R

eg
is

te
rs

frameStart

Fig. 1. The Fairisle Switch Fabric

byte. If di�erent port controllers inject cells destined for the same output port
controller (indicated by route bits in the routing byte) into the fabric at the same
time, then only one will succeed. The others must retry later. The routing byte
also includes a priority bit that is used by the fabric during arbitration. It takes
place in two stages. First, high priority cells are given precedence, and for the
remaining cells the choice is made on a round-robin basis. The input controllers
are informed of whether their cell was successful using acknowledgment lines.
The fabric sends a negative acknowledgment to the unsuccessful input ports,
but passes the acknowledgment from the requested output port to the successful
input port. The port controllers and switch fabric all use the same clock, hence
bytes are received synchronously on all links. They also use a higher-level cell
frame clock{the frame start signal. It ensures that the port controllers inject
data cells into the fabric synchronously so that the routing bytes arrive at the
same time. In this paper, we are concerned with the veri�cation of the switch
fabric which is the core of the Fairisle ATM switch.

The behavior of the switch fabric is cyclic. In each cycle or frame, it waits
for cells to arrive, reads them in, processes them, sends successful ones to the
appropriate output ports, and sends acknowledgments. It then waits for the
arrival of the next round of cells. The cells from all the input ports start when
the active bit of any one of their routing bytes goes high. The fabric does not
know when this will happen. However, all the input port controllers must start
sending cells at the same time within the frame. If no input port raises the
active bit throughout the frame then the frame is inactive{no cells are processed.
Otherwise it is active.

Figure 1 shows a block diagram of a 4 by 4 switch fabric. It is composed of an
arbitration unit (timing, decode, priority �lter and arbiters), an acknowledgment
unit and a dataswitch unit. The timing block controls the timing of the decision
with respect to the frame start signal and the time the routing byte arrives.



The decoder reads the routing bytes of the cells and decodes the port requests
and priorities. The priority �lter discards requests with low priority and those
from inactive inputs. It then passes the actual request situation for each output
port to the arbiters. The arbiters (in total four{one for each port) make arbitra-
tion decisions for each output port and pass the result to the other units with
the grant signal. Using the output disable signals, the arbiters indicate to the
other units when a new arbitration decision has been made. The dataswitch unit
performs the actual switching of data from input port to output port accord-
ing to the latest arbitration decision (the grant signals). The acknowledgment
unit passes appropriate acknowledgment signals to the input ports. Negative
acknowledgments are sent until a decision is made.

Each of these units is repeatedly subdivided down to the logic gate level,
providing a hierarchy of modules. The design has a total of 441 basic compo-
nents (a multiple input logic gate or single bit 
ip 
op). It is built on a 4200
gate equivalent Xilinx programmable gate array. The switching element can be
clocked at 20 MHz and currently frame start pulses occur every 64 clock cycles.
The hardware was originally described in the Qudos HDL hardware description
language which was used for generating the Xilinx netlist. The Qudos simulator
was used to perform the original (non-formal) validation.

3 The HOL Veri�cation

The HOL90 theorem proving system is an LCF style theorem prover for higher-
order logic [7]. The original HOL system was intended as a tool for hardware
veri�cation. However, it is actually a general purpose proof system that has
subsequently been used in a wide variety of application areas. Proofs are input
to the system as calls to Standard ML functions. Because of the use of an abstract
type to represent theorems, the user can have a great deal of con�dence in the
results of the system. Programming errors cannot cause a non-theorem to be
erroneously proved unless they are in a few simple functions corresponding to
the primitive inference rules of the system.

The veri�cation of the 4 by 4 switch fabric used standard techniques [6].
We give only a brief overview. Structural and behavioral speci�cations of each
module were given in higher-order logic. A correctness theorem was then in-
dependently proved for each module that its implementation satis�ed (implied)
the speci�cation. Finally, the correctness theorems for the separate modules were
used to prove a correctness theorem for the whole design. The veri�cation was
conducted down to the level of the basic logic gates used by the simulator. As
in the simulator they were described behaviorally rather than structurally. The
modular nature of the proof facilitates the management of the complexity of
large designs.

In conducting the proof, the veri�er needs a very clear understanding of
why the design is correct, since a proof is essentially a statement of this. Thus
performing a formal proof involves a deep investigation of the design. It also
provides a means to help achieve that understanding. Having to write formal



speci�cations for each module helps in this way, but having to formulate the
reasons why the implementation has that behavior gives much greater insight.
In addition to uncovering errors, this can serve to highlight anomalies in the
design and suggest improvements, simpli�cations or alternatives [5].

The Structural Speci�cations No simpli�cation was made to the imple-
mentation to facilitate the veri�cation. While some simpli�cation was made to
the surface description (such as grouping components into extra modules), the
netlists of the structural speci�cations used corresponded to that actually imple-
mented. The basic building blocks used were logic gates and single bit registers.
These corresponded to the basic units of the simulator used by the designers.
Qudos structural descriptions can be mimicked very closely in HOL up to sur-
face syntax. However, the extra expressibility of HOL was used to simplify and
generalize the description. For example, in HOL words of words are supported.
Therefore, a signal carrying 4 bytes can be represented as a word of 4 8-bit words,
rather than as 4 separate signals or as one 32-bit signal. This allows more 
exible
indexing of bits, so that the module duplication operator FOR can be used. To
illustrate the expressibility of HOL, we consider the Qudos HDL description of
the following multiplexing component of the dataswitch{DMUX4T2:

DEF DMUX4T2(d[0..3],x:IN;dOut[0..1]:IO); xBar:IO;

BEGIN

Clb:=XiCLBMAP5i20(d[0..1],x,d[2..3],dOut[0..1]);

InvX:= XiINV(x,xBar);

B[0]:= AO(d[0],xBar,d[1],x,dOut[0]);

B[1]:= AO(d[2],xBar,d[3],x,dOut[1]);

END;

The Clb statement is a dummy declaration providing information about the
way the component design should be mapped into a Xilinx gate array. XiINV is
an inverter and the AO components are AND-OR logic gates. Using HOL, this
module can be expressed as follows with only a single occurrence of AO rather
than two as in the Qudos version.

DMUX4T2((d,x),dOut) = LOCAL xBar.

XiINV(x,xBar) ^
FOR i :: TO 2 .

AO((SBIT 0 (SBIT i d),xBar,SBIT 1 (SBIT i d), x), SBIT i dOut)

In HOL, arithmetic can also be used to specify which bit of a word is con-
nected to an input or output of a component. For example, we can specify that
for all i, the 2i-th bit of an output is connected to the i-th bit of a subcomponent.
This again meant that a single module could be used instead of needing to write
essentially identical pieces of code several times.

The Behavioral Speci�cations The behavioral speci�cation against which
the structural speci�cation was veri�ed describes the actual un-simpli�ed be-
havior of the switch fabric. It is presented at a similar level of abstraction to



that used by the designers, describing the behavior over a frame in terms of tim-
ing diagrams represented as interval temporal operators. Within the interval,
the values output are functions of the input values and state at earlier times.

As an example, consider the speci�cation for the acknowledgment signal on
a frame where cell headers arrive at time th. The predicate AFRAME speci�es that
we are dealing with intervals corresponding to such active frames. The ackOut

signal must be zeroed until time th + 3. Thereafter, its value depends on the
arbitration decision made. This depends on the value of the data injected into
the fabric at time th (the header), the value of the last arbitration decision,
and the value of the acknowledgments coming in from the output ports. This
behavior is speci�ed by a function argument to the interval operator DURING.
We omit the details here for the purposes of exposition.

(AFRAME ts th te fs ...) �
STABLE (ts + 1) (th + 3) ackOut (ZEROW ...) ^
DURING (th + 3) (te + 1) ackOut

(�t. ... (d th) ... (last (th + 2)) ... (ackIn t) ...)

The correct operation of the fabric relies on an assumption that the envi-
ronment maintains the frame structure of repeated frame start signals and that
cells will not arrive at certain times within a few clock cycles of the frame start.
The cycles on which the cells cannot arrive was speci�ed and veri�ed precisely.

Time Taken The module speci�cations (both behavioral and structural) were
written prior to any proof. This took between one and two person-months. No
breakdown of this time has been kept. Much of the time was spent in under-
standing the design. The structural speci�cations were adapted directly from
the Qudos HDL. The behavioral speci�cations were more di�cult. The speci�er
had no previous knowledge of the design. There was a good English overview
of the intended function of the switch fabric. This also outlined the function of
the major components. While it gave a good introduction, it was not su�cient
to construct an unambiguous behavioral speci�cation of all the modules. The
behavioral speci�cations were instead constructed by analyzing the HDL. This
was very time-consuming.

Approximately two person-months were spent performing the veri�cation.
Of this one week was spent proving theorems of general use. Approximately 3
weeks were spent verifying the upper modules of the arbitration unit, and a
further week was spent on the top two modules of the switch. 3-4 days were
spent combining the correctness theorems of the 43 modules to give a single
correctness theorem for the whole circuit. The remaining time of just over two
weeks was spent proving the correctness theorems for the 36 lower level units.
The proofs of the upper-level modules were generally more time-consuming for
several reasons: there were more intervals to consider; they gave the behavior
of several outputs; and those behaviors were de�ned in terms of more complex
notions. They also contained more errors which severely hampered progress.
The veri�er had not previously performed a hardware veri�cation, though was



a competent HOL user. Apart from standard libraries, the work did not build
directly on previous theories.

The machine time taken to completely rebuild the proofs from scratch by re-
running the scripts in batch mode is several hours on a Sparc 10. Single theories
representing individual modules generally take minutes to rebuild. In the initial
development of the proof the machine time is generally not critical, as the human
time is so much greater. However, since the proof process consists of a certain
amount of replay of old proofs, a speed up would be desirable.

If changes are made to the design, it is important that the new veri�cation
can be done quickly. Since proof is very time consuming this is especially impor-
tant. This is attacked in several ways in the HOL approach: the proofs can be
made generic; their modular nature means that only a�ected modules need to
be reveri�ed; and proofs of modules which have changed can often be replayed
with only minor changes. While the 4 by 4 switch fabric took several months
to specify and verify, modi�ed versions took only a matter of hours or days [4].
Generic proofs were not used to as great an extent as was possible in this study
as it was generally easier to reason about speci�c values than general ones. Fur-
thermore, there were many di�erent ways that the design and its submodules
could be made generic. It was not clear which if any of these might be utilized in
subsequent designs. It thus seemed sensible in the �rst instance to stick closely
to the actual design. Indeed the limited ways that the proofs were made generic
turned out not to cover design changes incorporated into later designs.

One of the biggest disadvantages of the HOL system is that its learning
curve is very steep. Furthermore, interactive proof is generally a time-consuming
activity even for the expert. Much time is spent dealing with trivial details of
a proof. Recent advances in the system such as new simpli�ers and decision
procedures may alleviate these problems. However, more work is needed to bring
the level of interaction with the system closer to that of an informal proof.

Errors No errors were discovered in the fabricated hardware. Errors that had
inadvertently been introduced in the structural speci�cations (and could just as
easily have been in the implementation) were discovered. The original versions
of the behavioral speci�cations of many modules contained errors.

A strong indication of the source of detected errors was obtained. Because
each module was veri�ed independently, the source of an error was immediately
narrowed down to being in the current module, or in the speci�cation of one
of its submodules. Furthermore, because performing the proof involves under-
standing why the design is correct, the exact location of the error was normally
obvious from the way the proof failed. For example, in one of the dataswitch
modules, two wires were inadvertently swapped. This was discovered because
the subgoal ([T, F] = [F, T]) was generated in the proof attempt. One side
of this equality originated from the behavioral speci�cation and one from the
structural speci�cation. It was clear from the proof attempt that two wires had
been swapped and also which signals they were from the context of the subgoal.
It was not immediately clear in which speci�cation they had been swapped.



A further example of an error that was discovered concerned the time the
grant signal was read by the dataswitch. It was speci�ed that the two bits of
the grant signal from each arbiter were read on a single cycle. However, the
implementation read them on consecutive cycles. This resulted in a subgoal of the
form grant t = grant (t+1). No information was available in the goal to allow
this to be proven, suggesting an error. In this case it was in the speci�cation.

Occasionally false alarms occurred: an unprovable goal was obtained, sug-
gesting an error. However, on closer inspection it was found that the problem
was that information had been lost in the course of the proof. For example, if
t1 < t2 is turned into t1 � t2 during the proof, the information that the two
times are not equal is lost. Such a false alarm could lead to an unnecessary
change in the implementation being made.

Many trivial typing errors were caught at an early stage by type-checking.
However, many other trivial mistakes were made over the size of words and
signals. For example, words of size 4 by 2 were inadvertently speci�ed as 2 by
4 words. These errors were found during the proof process. It would have been
much better if they had been picked up earlier. This would have been possible
if dependent typing had been available.

Scalability In theory, the HOL proof approach is scalable to large designs.
Because the approach is modular and hierarchical, increasing the size of the
design does not necessarily increase the complexity of the proof. However, in
practice the modules higher in the hierarchy do take longer to verify, partly
because there are more cases to consider. This is made worse if the interfaces
between modules are left containing lots of low level detail. For example, in
the proof of the switch fabric, low level modules required assumptions to be
made about their inputs. These assumptions had to be dealt with in the proofs
of higher level modules adding extra proof work manipulating and discharging
them. If the proof is to be tractable for large designs, it is important that the
interfaces between modules are as clean as possible. This is demonstrated by the
fact that two of the upper most modules took approximately half of the total
veri�cation time{a matter of weeks. However, it should be noted that the very
top module which simply added various delays to various inputs and outputs of
the main module, only took a day to verify.

4 The MDG Veri�cation

In the second study, the same circuit was veri�ed using a decision graph ap-
proach. A new technique called abstract implicit enumeration has been devel-
oped where decision graphs are used to represent sets of states as well as the
transition and output relations [3]. Based on this technique hardware veri�ca-
tion tools have been developed which perform combinational circuit veri�cation,
safety property checking and equivalence checking of two state machines.

The formal system underlying MDGs is many-sorted �rst-order logic aug-
mented with a distinction between abstract and concrete sorts. Concrete sorts



have enumerations, while abstract sorts do not. A data value can be represented
by a single variable of abstract sort, rather than by concrete Boolean variables,
and a data operation can be represented by an uninterpreted function symbol
(cross-operator). MDGs permit the description of the output and next state re-
lations of a state machine in a similar way to the way ROBDDs do for FSMs.
We call the model an Abstract State Machine (ASM) since it may represent an
unbounded class of FSMs, depending on the interpretation of the abstract sorts
and operators. For circuits with large datapaths, MDGs are thus much more
compact than ROBDDs. As the veri�cation is independent of the width of the
datapath, the range of circuits that can be veri�ed is greatly increased.

We described the actual hardware implementation of the switch fabric at two
levels of abstraction. We gave a description of the original Qudos gate-level im-
plementation and a more abstract RTL description which holds for an arbitrary
word width. Using the MDG tools, we veri�ed the gate-level implementation
against the abstract (RTL) hardware model. The n-bit words of abstract sort of
the latter were instantiated to 8 bits using uninterpreted functions which encode
and decode abstract data to Boolean data and vice-versa [13].

Starting from timing-diagrams describing the expected behavior of the switch
fabric, we derived a complete high-level behavioral speci�cation in the form of
a state machine. This speci�cation was developed independently of the actual
hardware design and includes no restrictions with respect to the frame size,
cell length and word width. Using implicit reachability analysis, we checked
its equivalence against the RTL hardware model when both seen as abstract
state machines. That is, we ensured that the two machines produce the same
observable behavior by feeding them with the same inputs and checking that an
invariant stating the equivalence of their outputs holds in all reachable states [9].

By combining the above two veri�cation steps, we hierarchically obtain a
complete veri�cation of the switch fabric from a high-level behavior down to
the gate-level implementation. Prior to the full veri�cation, we also checked
both behavioral and RTL structural speci�cations against several speci�c safety
properties of the switch. Here, we combined an environment state machine with
each switch fabric speci�cation yielding a composed machine which represented
the required platform for checking if the invariant properties hold in all reachable
states of the speci�cation. Although the properties we veri�ed do not represent
the complete behavior of the switch fabric, we were able to detect several injected
design errors in the structural description.

When an invariant is not satis�ed during the veri�cation process, a coun-
terexample is provided to help with identifying the source of the error. Like
ROBDDs, the MDGs require a �xed node ordering. Currently, the node order-
ing has to be given by the user explicitly. Unlike ROBDDs where all variables are
Boolean, every variable used in the MDGs needs to be assigned an appropriate
sort and type de�nitions must be provided for all functions. Rewrite rules may
need to be provided to partially interpret the otherwise uninterpreted function
symbols.



The Structural Speci�cation As with the HOL study, we translated the Qu-
dos HDL gate-level description into a suitable HDL description; here a Prolog-
style HDL, called MDG-HDL. As in the HOL study, extra modularity was added
over the Qudos descriptions, while leaving the underlying implementation un-
changed. A structural description is usually a (hierarchical) network of compo-
nents (modules) connected by signals. The MDG-HDL comes with a large library
of prede�ned commonlyused basic components (such as logic gates, multiplexors,
registers, bus drivers, ROMs, etc.). Multiplexors and registers can be modeled
at the Boolean or the abstract level using abstract terms as inputs and outputs.
A translator from a subset of VHDL into MDG-HDL is under development.

As an example, the following is an MDG-HDL description of the DMUX4T2

module given in Section 3:

module(DMUX4T2
port(inputs((d0; bool); (d1; bool); (d2; bool); (d3; bool)); (x; bool));

outputs((dOut0; bool); (dOut1; bool)));
structure(

signals(xBar; bool);
component(InvX;NOT(input(x);output(xBar)));
component(AO 0;AO(input(d0; xBar; d1; x);output(dOut0)));
component(AO 1;AO(input(d2; xBar; d3; x);output(dOut1))))):

Here, the components NOT and AO are basic components provided by the
MDG-HDL library. Note also that the data sorts of the interface and internal
signals must always be speci�ed.

Besides the gate-level description, we also provided a more abstract (RTL)
description of the implementation which holds for arbitrary word width. Here,
the data-in and data-out lines are modeled using an abstract sort wordn. The ac-
tive, priority and route �elds are accessed through corresponding cross-operators
(functions). In addition to the generic words and functions, the RTL speci�ca-
tion also abstracts the behavior of the dataswitch unit by modeling it using
abstract data multiplexors instead of logic gates. We thus obtain a simpler im-
plementation model of the dataswitch which re
ects the switching behavior in a
more natural way and is implemented with fewer components and signals. For
example, a set of four DMUX4T2 modules is modeled using a single multiplexor
component. For more details about the abstraction techniques used refer to [13].

The Behavioral Speci�cation MDG-HDL is also used for behavioral de-
scriptions. A behavioral description is given by high-level constructs as ITE
(If-Then-Else) formulas, CASE formulas or tabular representations. The tabu-
lar constructor is similar to a truth table but allows �rst-order terms in rows.
It can be used to de�ne arbitrary logic relations. In the MDG study, we gave
the behavioral speci�cation of the switch fabric in two di�erent forms: 1) as a
complete high-level behavioral state machine and 2) as a set of properties which
re
ect the essential behavior of the switch fabric as it is used in its environment.

The main behavioral description of the switch fabric was as an abstract state
machine (ASM) which re
ects its complete behavior under the assumption that



et st +2>

et t h+2>

t h st +2>
st 0t +1>

st

st +2

st +1

st +3+j

t h t h+1 t h+2

0t0t +2+i 0t +1

t h+3 t h+4 t h+5+k

6 7 8 9 10
r a a a,d

5

3

4

11

12

13

d

d
s,

~h
~s

,~
h

~s,h ~s ~s ~s ~s

~s

s,
~h

s,
~h

s,
~h

~s
,~

h

~s
,~

h

s,
~h

~s
,~

h

~s
,~

h

2 1 0~s~s

~s

~s,~h

Fig. 2. ASM Behavioral Speci�cation

the environment maintains certain timing constraints on the arrival of the frame
start signal and headers. A schematic representation of the ASM speci�cation
of the 4 by 4 switch fabric is shown in Figure 2. The symbols t0, ts, th and te
in the �gure represent the initial time, the time of arrival of the frame start
signal, the time of arrival of the routing bytes and the time of the end of a
frame, respectively. There are 14 conceptual states: States 0, 1 and 2 along the
time axis t0 describe the initial behavior of the switch fabric. States 2, 3, 4 and
5 along the time axis ts describe the behavior of the switch on the arrival of a
frame start signal. States 6 to 13 along the time axis th describe the behavior
of the switch fabric after the arrival of the headers. The waiting loops in states
2, 5 and 10 are illustrated in the �gure by the non-zero natural numbers i, j
and k, respectively. Figure 2 also includes many meta symbols used to keep the
presentation simple. For instance, the symbols s and h denote a frame start
and the arrival of a routing tag (header), respectively, and the symbol "�"
denotes negation. The symbols a, d and r inside a conceptual state represent
the computation of the acknowledgment output, the data output and the round-
robin arbitration, respectively. The absence of an acknowledgment or a data
symbol means that no computation takes place and the default value is output.

To formally describe this ASM using MDGs, we �rst introduced some ba-
sic sorts, constants and functions (cross-operators), e.g. a concrete sort port =
f0; ::; 3g, an abstract sort wordn, a constant zero of sort wordn and a cross-
operator rou of type [wordn ! port] representing the route �eld in a header.



Further, the generation of the acknowledgment and data output signals is de-
scribed by case analysis on the result of the round-robin arbitration. This is done
in MDG-HDL using ITE-constructs. For example, the acknowledgment output
is described by four formulas determining the value of ackOuti, i 2 f0; ::; 3g:

if ((co0 = 1) and (ip0 = i)) then (ackOuti = ackIn0)
ef ((co1 = 1) and (ip1 = i)) then (ackOuti = ackIn1)
ef ((co2 = 1) and (ip2 = i)) then (ackOuti = ackIn2)
ef ((co3 = 1) and (ip3 = i)) then (ackOuti = ackIn3)

else (ackOuti = 0)

where coi (i 2 f0; ::; 3g) of sort bool and ipi (i 2 f0; ::; 3g) of sort port are state
variables generated by the round-robin computation and corresponding to the
output disable and grant signals, respectively (Figure 1).

Although this ASM speci�cation describes the complete behavior of the
switch fabric, we also validated (in an early stage of the project) the fabric
implementation by property checking. This is useful as it gives a quick veri�-
cation result at low cost. We veri�ed that the structural speci�cation satis�es
its requirements when the ATM switch fabric works under the control of its
operating environment, i.e. the port controllers. We provided for this purpose
a set of properties which re
ect the essential behavior of the switch fabric, e.g.
for checking of correct priority computation, circuit reset or data routing. We
�rst simulated the environment as a state machine with one state variable s of
enumerated (concrete) sort [1..68]. This allowed us to map the time points t0, ts,
th and te to speci�c states. We then described the properties as invariants which
should hold in all reachable states of the speci�cation model. The following is an
example of a property which checks for correct routing to port 0. It is expressed
in MDG-HDL using an ITE construct.

if (s 2 f17; ::; 68g) and priority[0::3] = [1; 0; 0; 0] and route[0] = 0
then dataOut[0] = dataIn0[0]

Here priority[0::3] indicates the priority bits for all input ports, route[0] repre-
sents the routing bits for input port 0 and dataIn0[0] is the data input on port 0
delayed by 4 clock cycles. Further examples of properties are described in [13].

Time Taken The user time required for the speci�cation and veri�cation is
hard to determine since it included the improvement of the MDG package,
writing documentation, etc. The translation of the Qudos design description to
the MDG-HDL gate-level structural model was straightforward and took about
one person-week. The description of the RTL structural speci�cation including
modeling required about one person-week. The time spent for understanding
the expected behavior and writing the behavioral speci�cation was about one
person-week. The time taken for the veri�cation of the gate-level description
against the RTL model, including the adoption of abstraction mechanisms and
correction of description errors, was about two person-weeks. The veri�cation
of the RTL structural speci�cation against the behavioral model required about



Veri�cation CPU Time (s) Memory (MB) MDG Nodes Generated

Gate-Level to RTL 183 22 183300
RTL to Beh. Model 2920 150 320556
P1: Data Output Reset 202 15 30295
P2: Ack. Output Reset 183 15 30356
P3: Data Routing 143 14 27995
P4: Ack. Output 201 15 33001
Error (i) 20 1 2462
Error (ii) 1300 120 150904
Error (iii) 1000 105 147339

Table 1. Experimental Results for the MDG Veri�cation

one person-week of work. The user time required to set up four properties, build
the environment state machine, conduct the property checking on the structural
speci�cation and interpret the results was about one person-week. Checking of
these same properties on the behavioral speci�cation took about one hour. The
average time for the injection and veri�cation of an introduced design error was
less than one hour. The experimental results in machine time are shown in Ta-
ble 1 including CPU time (on a SPARC station 10), memory usage and number
of MDG nodes generated.

A disadvantage of MDGs is that much veri�cation time is spent �nding
an optimal variable ordering. This is crucial since a bad ordering easily leads
to a state space explosion. This occurred after an early ordering attempt. For
more information about the variable ordering problem, which is common to all
ROBDD-based systems, see [1].

Because the veri�cation is essentially automatic, the amount of work re-
running a veri�cation for a new design is minimal compared to the initial e�ort
since the latter includes all the modeling aspects. Much of the e�ort is spent
on determining a suitable variable ordering. Depending on the kind of design
changes adopted, it is not obvious if the original variable ordering could still be
used on a modi�ed design without major changes.

The MDG gate-level speci�cation is a concrete description of the fabricated
implementation. In contrast, the RTL structural and ASM behavioral speci�ca-
tions are generic. They abstract away from frame, cell and word sizes, provided
the environment timing assumptions are kept. Design implementation changes at
the gate-level that still satisfy the RTL model behavior would hence not a�ect
the veri�cation against the ASM speci�cation. For property checking, speci�c
assumptions about the operating environment were made, (e.g. that the frame
interval is 64 cycles). This is sound since the switch fabric will in fact be used
under the behest of its operating environment, i.e. the port controllers. However,
while this reduces the veri�cation cost, it has the disadvantage that the veri�-



cation must be completely redone if the operating environment changes. Still,
the work required is minor as only a few parameters have to be changed in the
description of the environment state machine (which is a simple machine [13]).

Errors As with the HOL study, no errors were discovered in the implementation.
For experimental purposes, however, we injected several errors into the imple-
mentation and checked them using either the set of properties or the behavioral
model. Errors were automatically detected and identi�ed using the counterexam-
ple facility. The injected errors included the main errors introduced in the HOL
study, discussed in Section 3. We summarize here three further examples. (i)
We exchanged the inputs to the JK Flip-Flop that produces the output disable
signal. This prevented the circuit from resetting. (ii) We used, at one point, the
priority information of input port 0 instead of input port 2. (iii) We used an AND
gate instead of an OR gate within the acknowledgment unit, thus producing a
faulty ackOut[0] signal. Experimental results for these three errors, which have
been checked by verifying the RTL model against the behavioral speci�cation,
are reported in Table 1.

While checking properties on the hardware structural description, we also
discovered some errors that we mistakenly introduced in the structural speci�-
cations. However, we were able to easily identify and correct these errors using
the counterexample facility of the MDG tools. Also during the veri�cation of the
gate-level model, we found a few errors in the description that were introduced
during the translation from Qudos HDL to MDG-HDL. These were easily re-
moved by comparing both descriptions, since they included the same collection
of gates. Finally, many trivial typing errors were highlighted at an early stage of
the description process by the error messages output after each compilation of
the speci�cation's components.

Scalability Like any FSM-based veri�cation system, the MDG proof approach
is not directly scalable to large designs. This is due to the possible state space ex-
plosion that results from large designs. Unlike other ROBDD-based approaches,
however, MDGs do not need to cope with the datapath complexity since they
use data of abstract sort and uninterpreted functions. Still, a direct veri�cation
of the gate-level model against the behavioral model or even against the set of
properties is practically impossible. We overcame this problem by providing an
abstract RTL structural speci�cation which we instantiated for the veri�cation
of the gate-level model. In order to handle large designs, major e�orts are in
general required to set up the appropriate model abstraction levels.

5 Conclusions

The MDG and HOL structural descriptions are very similar, both to each other
and to the original designer's description. HOL provides signi�cantly more ex-
pressibility allowing more natural speci�cations. Some generic features were in-



cluded in the MDG description that were not in the HOL description. This could
have been done with only minimal additional e�ort, however.

The behavioral descriptions of the two approaches are totally di�erent. The
MDG speci�cation is based on a state machine model while the HOL one is based
on interval temporal logic operators, explicitly describing the timing behavior
using a set of formulas that include di�erent scenarios of the switch fabric be-
havior, e.g. active or inactive frames. Both describe the behavior in a clear and
comprehensive form. Which of these is preferred is perhaps a matter of taste.

An advantage of MDG is that a property speci�cation is easy to set up and
verify. Expected operating conditions can be used to simplify this, even if the
full speci�cation is more general. This is useful for verifying that a speci�ca-
tion satis�es its requirements. It can greatly reduce the full veri�cation cost by
catching errors at an early stage.

Writing the behavioral speci�cations was far slower in HOL, as separate
speci�cations were needed for each module. In MDG this was not necessary
because the whole design was veri�ed in one go, rather than a module at a time.
This also reduced the MDG veri�cation time because fewer mistakes were made.

Both approaches successfully highlight errors, and help determine their lo-
cation. However, the way this information manifests itself di�ers. MDG is more
straightforward, outputting a trace of the input sequence that leads to the er-
roneous behavior. In HOL, errors manifest themselves as unprovable goals. The
form of the goal, the context of the proof and the veri�er's understanding of the
proof are combined to track down the location, and understand its cause.

The HOL veri�cation was much slower, taking a matter of months. This
time includes the veri�cation of each of the modules and the veri�cation of their
combination. Using HOL, a large number of lemmas had to be proved and much
e�ort was required to interactively create the proof scripts. For example, the
time spent for the veri�cation of the dataswitch unit was about 3 days. Here
the proof script was about 530 lines long (17 KB). The MDG veri�cation was
achieved automatically without the need of a proof script. All that was required
was the careful management of the MDG node ordering (as with ROBDDs).
However, this is a matter of hours or at most a few days of work.

In both the HOL and MDG approaches, the amount of work necessary to
verify a modi�ed design, once the original has been veri�ed, is greatly reduced.
Both allow generic veri�cation to be performed, though HOL has the potential to
be more 
exible. Because MDG is automated and fast, the re-veri�cation times
would largely be just the time taken to modify the speci�cations and to �nd a
new variables ordering. In the HOL approach, the behavioral speci�cations of
many modules and the proof scripts themselves may need to be modi�ed.

An advantage of the HOL approach in contrast to the MDG method is the
con�dence in the tool the LCF approach o�ers. Although the MDG software
package has been successfully tested on several benchmarks and has been con-
siderably improved, it is not yet a mature tool. It cannot guarantee the same
level of proof security as HOL. The main advantage of the MDG approach is
that it is much quicker and is automatic. On the other hand the theorem prov-



ing approach is potentially scalable and involves a comprehensive investigation
of why the design works correctly. However, these advantages are only likely to
be realized in practice if the level of proofs which must be provided to the system
can be raised closer to the level of informal proofs.

Acknowledgements We are grateful to Zijian Zhou, Xiaoyu Song and Eduard
Cerny at the University of Montreal, Canada and Michel Langevin at GMD-SET,
Germany for initiating and advocating this study. Ian Leslie and Mike Gordon
at Cambridge University were also of great help. This work was partially funded
by EPSRC research agreements GR/J11133 and GR/K10294.

References

1. R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8):677{691, August 1986.
2. B. Chen, M. Yamazaki and M. Fujita. Bug Identi�cation of a Real Chip Design

by Symbolic Model Checking. In Proc. of the Int. Conf. on Circuits And Systems,
pages 132{136, June 1994.

3. F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision
Graphs for Automated Hardware Veri�cation. Formal Methods in System Design,
To appear. Available as IBM research report RC19676(87224), July 1994.

4. P. Curzon. Tracking Design Changes with Formal Machine-checked Proof. The

Computer Journal, 38(2):91{100, July 1995.
5. P. Curzon and I.M. Leslie. A Case Study on Design for Provability. In Proc. of

the Int. Conf. on Engineering of Complex Computer Systems, pages 59{62, IEEE
Computer Society Press, November 1995.

6. M.J.C. Gordon. HOL: A Proof Generating System for Higher-order Logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation
and Synthesis, pages 73{128. Kluwer Academic Publishers, 1988.

7. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving En-

vironment for Higher-order Logic. Cambridge University Press, 1993.
8. J.M.J. Herbert. Case Study of the Cambridge Fast Ring ECL Chip using HOL.

Technical Report 123, University of Cambridge, Computer Laboratory, February
1988.

9. M. Langevin, S. Tahar, Z. Zhou, X. Song and E. Cerny. Behavioral Veri�cation of
an ATM Switch Fabric using Implicit Abstract State Enumeration. In Proc. of the
Int. Conf. on Computer Design, IEEE Computer Society Press, October 1996.

10. I.M. Leslie and D.R. McAuley. Fairisle: An ATM Network for the Local Area.
ACM Communication Review, 19(4):327{336, September 1991.

11. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
12. K. Schneider and T. Kropf. Verifying Hardware Correctness by Combining The-

orem Proving and Model Checking. In J. Alves-Foss, editor, International Work-

shop on Higher Order Logic Theorem Proving and Its Applications: B-Track: Short

Presentations, pages 89{104, August 1995.
13. S. Tahar, Z. Zhou, X. Song, E. Cerny and M. Langevin. Formal Veri�cation of an

ATM Switch Fabric using Multiway Decision Graphs. In Proc. of the Great Lakes

Symp. on VLSI, pages 106{111, IEEE Computer Society Press, March 1996.

This article was processed using the LATEX macro package with LLNCS style


