
CASE Tools and Software Factories

Erik G. Nilsson

Center for Industrial Research (SI)
Forskningsveien 1, P.O. Box 124, Blindem

N - 0314 Oslo 1
Norway

Abstract

The present paper addresses CASE tools as they are today, and what we
believe will be the next generation CASE tools - Software Factories (or IPSEs
- Integrated Project Support Environment, or ISDEs - Integrated Software
Development Environments).

The paper first gives a definition of CASE tools, and investigates strong and
week sides in todays CASE tools. One of the major drawback of todays CASE
tools is the lack of integration between specification tools and construction
tools. The paper describes four different techniques for such an integration,
one of them being usage of a Software Factory architecture.

Then the paper gives a definition of Software Factories - integrated software
development environments - , investigates who makes Software Factories,
what is achieved by using Software Factories and describes one particular
Software Factory - Eureka Software Factory (ESF).

ESF is a multinational, european research and development project that is
developing a framework for integrated software development environments,
and special environments for special application areas. ESF has a deep
foundation in the industry. The paper describes the ESF project, the technical
architecture used, and results so far.

Introduction

CASE tools have gathered much interest recent years. From being quite simple drawing
tools, powerful ones with wide functionality have emerged. The interest in this kind of
tools (and the tools themselves) come(s) mainly from the industry, not from academic
circles. Thus, the topic CASE tools has become an area discussed among practitioners, not
by academics. Because of this, there are not many general publications (at conferences or
in scientific journals) treating CASE tools as a phenomena [HEDQ88, CASE89, BUBE88,
NILS88, ROEV89b], but there exists quite a number of articles in computer magazines

42

(like BYTE, Datamation, Computerworld, etc.), both on specific tools and on the field in
general [BYTE89, COWO87, COWO88a, COWO88b, ELEC87, IEEE88, DAMA88,
INWO88]. One of the reasons for the large interest among practitioners, is the huge
amounts of available tools.

Within the field Software Factories, the situation is the other way around. There has been
quite a lot of research done on integrated software development environments, but few (if
any at all) available products exist. Because of this, the knowledge of and interest in such
environments is not big among practitioners.

CASE Tools

In this section we take a closer look at CASE tools as they are today. We give a definition of
our understanding of what a CASE tool is, we investigate week and strong sides, and we
describe how an ideal CASE tool should be, as view from the user (i.e. primarily software
developers). As the number of commercial available CASE tools are very high (at least
three digits), we make this presentation quite general, without any references to specific
tools. Because new tools are emerging all the time, making such references complete would
be meaningless. Readers who are interested in specific tools should read[ROEV89b,
HEDQ88 and COWO88a].

What is a CASE tool?

The term CASE tool has become a buzzword the last years. Linguisticly, the term
Computer Aided Software Engineering could cover almost any tool that supports software
engineering (even a compiler), and a lot of vendors indeed use the term in a very wide
sense to be able to put the CASE tool label on their products.

The term is also used quite inhomogeneously by different people. From the beginning of
CASE tools, the term denoted tools that support specification work, i.e. systems analysis
and to some extent systems design. As CASE tools grew more popular, the meaning of the
term "expanded" to cover tools for the all aspects of systems design, and also systems
construction. This expansion of meaning is consistent with the semantic meaning of the
word, but have also made it less precise.

The need for more precise concepts has lead to different prefixes and suffixes to CASE,
upper, middle, lower, toolkit, workbench and integrated being the most commonly used.
Some refer to upper CASE as tools supporting systems analysis, while lower CASE
support all activities from systems design through systems construction and even systems
installation. Others restrict upper CASE to the phases before systems analysis, i.e.
corporate planning, strategy study, breakdown of goals, objectives, etc., and use middle
CASE to denote tools supporting analysis and design, while lower CASE is tools
supporting systems construction. A third usage, is to make the distinction between
graphical (or diagrammatic) tools and code generators, 4. gen. systems, and other
non-graphical tools. In this case, upper CASE is the diagrammatic tools, and lower CASE
is the non-diagrammatic tools. Dividing it this way, puts the border between upper and
lower CASE somewhere in the systems design phase. In this paper, we use this last
definition of upper and lower CASE (we do not use middle CASE).

43

Some people make a distinction between CASE toolkits, supporting one phase of software
development, and CASE workbenches, giving support across the software development
process. This distinction is often quite fuzzy, and we do not use it in this paper.

Integrated CASE, or I-CASE is also used differently by different people. Some use it to
refer to tools supporting all activities in software engineering in an integrated manner.
Others use it to denote the integration mechanism, i.e. either a common data base
(repository, data dictionary, encyclopedia) or a tool (e.g. a software backplane). A
third usage is tools that support a specific software development methodology (or
life-cycle model). The term I-CASE is sometimes used synonymously with IPSE -
Integrated Project Support Environment (by some people also used to denote Integrated
Programming and Software Engineering). We will not use the term I-CASE, but rather
use the term IPSE, Software Factory or Integrated Software Development Environment
(ISDE), which we find more precise.

With this definition, upper CASE tools covers tools that support techniques like conceptual
data modelling (e.g. Entity Relationship (ER) models, entity life-cycle history), structured
analysis (e.g. data-flow diagrams, control flow diagrams, activity decomposition
diagrams, activity dependency diagrams, state transition diagrams and flow-charts), and
techniques like action diagrams, minispecs, pseudo code specification, prototyping, etc.
Lower CASE include traditional 4. generation tools (i.e. application generators with tools
for dialog design, screen painting, report layout specification, automatic data base design,
code generation, etc.). Most CASE tools have a built-in data dictionary (or repository).
While most CASE tools are specialized for business application (commercial data
processing), some CASE tools for other application areas (like real time systems) have
emerged the last years.

In this section we consider both upper and lower CASE tools, but we have the emphasis on
upper CASE.

What is good about CASE tools?

Present CASE tools have many strong sides. The main benefit in upper CASE tools is the
ability to support the human activities in specifying requirement, i.e. they give aids for
documenting results from the requirement specification process. The people performing
the specification work no longer need to use pen and paper in drawing their diagrams (and
edit them), nor to develop their own data dictionaries. In that way they can use more time
on creative work, not on tedious drawing work. Even more important, as a result of using
these tools, the diagrams and the data dictionary are integrated. Many such tools have
modules for automatic generation of documentation of the system being developed. In
some tools there are also an integration with word processors, which makes documentation
even more convenient.

Some tools also support a simple consistency check between different parts of the
specification (different diagrams, information in the data dictionaries, etc.), e.g. between a
data flow diagram and an ER diagram and their connected data dictionary specifications.
Such a consistency check is f.ex. controlling that the content of data flows and data stores in
the data flow diagram are specified in the ER diagram.

44

In addition, most upper CASE tools have facilities for code generation. These are often
restricted to the ability of automatic generation of data base schemas (usually expressed in
SQL), but some also support limited program code generation. Some upper CASE tools
also offers prototyping tools, but it is seldom possible to use (parts of) the prototype (e.g.
screen layouts) outside the CASE tool.

An organizational benefit from the use of CASE tools is a standardization of methodologies
and techniques used in the organization.

Another feature supported by some upper CASE tools is the ability to do automatic
normalization, but we do not consider this facility as being very important. We feel that
doing a good job specifying the conceptual data model makes normalization unnecessary.
Normalization is in fact only a control. It can never produce good data models or data
bases.

The lower CASE tools usually have much more powerful code generation facilities than
the upper CASE tools. This is partly due to the kind of information put into the tools,
especially the level of detail. As more details are fed into lower CASE tools, code
generation is more powerful. The lower CASE tools also usually have more powerful tools
for prototyping and application development (e.g. report and screen layout specification),
and the application development tools produce executable code, i.e. are integrated with the
program implementation tools.

What is bad about CASE tools?

Unfortunately, CASE tools also have a number of weak sides. One drawback in most of
todays upper CASE tools is that the users are forced to use the techniques /methodologies
supported by the tools they use. This applies both to the visual appearance of the diagrams
and the rules used in the techniques. This problem is sometimes referred to as tool
imperialism. We do not claim that it is wrong to use one specific technique / methodology
in an organization, but the choice should be done by the organization, not by the tool
vendor.

Another problem is that some upper CASE tools are cleverly implemented tools based on
bad techniques. The people developing the CASE tools sometimes have higher
qualifications in implementing graphical user interfaces than they have in requirement
specification techniques. Therefore, the choice of the underlying techniques are in some
cases rather arbitrary. This is not as big a problem today as it was in the young days of
CASE, but it still does occur.

Although most upper CASE tools have quite good user interfaces, especially if one
compares them with other tools supporting systems development (e.g. most lower CASE
tools), the user interface could be better in many tools. In our opinion, a common weakness
in the user interface is too much use of modes. This is especially the case in MS-DOS and
MS-Windows based tools (which many CASE tools are). One example of unfortunate use
of modes is when you have to perform a special command (putting the tool in a special
mode) for operations like moving objects, re-sizing objects and deleting objects. Such
operations should be performed either by direct manipulation of the objects, or by
selecting the objects and then performing an operation (preferably a keyboard shortcut,
e.g. the rub-out key for deletion).

45

Of course, there is a trade-off when to use modes and not. Usage of modes f.ex. has the
benefit of open end operations. It is also important to have general commands, i.e. dividing
the operation and the operand. This minimizes the number of commands. In some CASE
tools this is not the case, and one may experience long lists of commands like create entity,
create relationship move entity, move relationship etc.

Another aspect of user interface is the choice of how the tools should enforce rules in the
techniques. Many tools let the users do almost anything, and performs a check of the results
afterwards. Other tools restrict the users while using the tools, making such a check -
which may cause a lot of work for the user - superfluous. A good rule when designing user
interfaces is that the user shall not be allowed to perform illegal operations.

Yet another aspect of user interface is the integration between diagrams and textual
information in the upper CASE tools. This integration is often done by having a possibility
to "explode" elements in the diagram, and thereby getting a screen layout for specifying
detailed information. This solution is often due to lack of windowing capabilities in the
CASE tools, and use of small screens on the monitors of the PCs running the tools.
Combining diagrams and detailed information in compound screen layouts often yield a
better user interface.

In addition to the bad user interface (usually terminal and character based with no use of
graphics and direct manipulation), lower CASE tools also requires quite a lot of
information to be supported by the user to be able to generate code successfully. The bad
user interface is often due to the fact that many such tools are mainframe or mini-computer
based. Therefore, they are often quite expensive, especially compared to upper CASE.

Most CASE tools (both upper and lower) are directed at developing new systems. Few
support what most systems engineers spend most of their time doing, namely maintenance.

The major problem, though, is that the CASE tools are "islands", i.e. they fulfill their
purpose in some part of the systems development process. As mentioned earlier, the upper
CASE tools have some code generation facilities, and the lower CASE tools have quite
good code generation capabilities. But unfortunately, that is not enough. As the
development evolves, the information stored in the CASE tools are not changed to reflect
the actual specification and implementation. The reason for this is mainly that the upper
CASE tools have very little connection to the lower CASE tools, and even less to the
program implementation tools, i.e. they can produce results for the lower tools, but they
can not get changed specification in return. There is also a problem that upper and lower
CASE tools sometimes have overlapping domains, so that one may have redundant
specifications. This topic will be discussed in more detail below section Integrat ion
between CASE tools and implementation tools.

How should an ideal CASE tools be?

In our opinion, the ideal CASE tool should have a lot of features. The most important ones
- in addition to those listed above under the heading What is good about CASE tools? - are
listed below:

Upper CASE tools should be independent of techniques, i.e. they should support a number
of techniques, also "dialects" of the same main technique. It should also be possible to tailor

46

the tools, at least in four different areas:

(i) It should be possible to tailor the graphical interface for a technique, i.e. to change
symbols, colors, the appearance of arrows, etc.

(ii) It should be possible to tailor the meta model, i.e. the schema of the data dictionary. If
the user wants to document an additional aspect for every entity type, he should be able to
add an attribute in the data dictionary to handle that aspect.

(iii) It should be possible to tailor the rules used in the techniques, e.g. to specify whether a
relationship could have connected attributes, or whether n-ary relationships are allowed.

(iv) It should be possible to tailor the connection between different models, e.g. to specify
which connections that should exist between data flows and data stores on a data flow
diagram and entities and attributes in an ER diagram.

All these tailoring facilities should be easy to use, i.e. the upper CASE tools should have
special modules for tailoring. These tailoring features (at least (i), (ii) and (iii)) are
available in some existing CASE tools.

Lower CASE tools should have more graphical user interfaces, and should be based more
on manipulation of objects in the systems to be developed. Usage of direct manipulation
when f.ex. specifying screen layouts, would make such tools easier to use. This indicates
that such tools should run on PCs or work stations, or at least have an interface from such
machines. More general, lower CASE tools should nm on the same hardware platform as
the upper CASE tools, or even more preferable, the CASE tools should be portable.

Both upper and lower CASE tools should support reuse. Not only reuse of code, but also
reuse of specifications and design.

All CASE tools should be integrated with implementation tools. (By implementation tools
we mean tools for either writing code (editors etc.), or manipulation code (compilers,
debuggers, test tools, etc.).) It is also important that the integration is done in such a
manner that changes in the implementation more or less automatically are reflected in the
CASE tool. In an environment with a 4. gen. tool that operates on the "model level", e.g.
with concepts from the ER approach and abilities to produce all code automatically (such
tools exist), this integration is achievable.

The ultimate goal would be that the distinction between upper CASE, lower CASE and
program implementation tools become transparent. The user should operate in an
integrated environment, which support all tasks in the software engineering process (also
administrative tasks like project management), and the facilities offered by the
environment reflect different tasks for the software engineer, not different underlying
tools. Such environments are often referred to as IPSEs (Integrated Project Support
Environment) or Software Factories. We denote such environment Integrated Software
Development Environments. But before we take a closer look at such environments, we
investigate different models for integrating different CASE tools and implementation
tools.

47

Integration Between Specification Tools and Construction Tools

In this section we take a closer look at four different models for integration between
specification tools (mainly upper CASE) and program construction tools (lower CASE and
implementation tools). Looking at these four models, it is important to bear in mind the
goal of the integration, namely that the user (i.e. the systems developer) should have a
work environment where the distinction between the different tools is transparent, that the
tools should support the different tasks the systems developer performs, and of course that
there should be some sort for integration also on the data level [NILS90].

General remarks

One may claim that because specification tools and construction tools cover different
phases and activities in a software development effort, there is no need for an integration
on the user level. We claim that although there are separate phases, an integration on the
user level is necessary. The reason for this is that the specification changes in the
construction phase, often as a result of trade-offs done to make the implementation effort
obtainable. Such changes in the specification should also be reflected in the documentation
of the specification, i.e. in the different CASE tools.

The integration between CASE tools and implementation tools must be handled in a special
manner in tools for automatic code generation based on specifications on "model level". As
long as the "executable" specifications are expressed in terms of the models in the CASE
tools, the integration with implementation tools become both a necessity and much easier.
A necessity because it is the specifications that are altered when a change is issued (not the
generated code), and much easier because one only operates on the specification level, and
therefore do not need to bother much about the implementation tools.

Independent of which of the models below that are chosen, there is a need for semantic
integration when different tools support the same problem domain. By semantic
integration we mean that the different tools that are integrated have a conformal use of
concepts. This is of extreme importance if different tools use the same data store, and is
also important if they have different data stores, but common user interface. In the latter
case, semantic inconsistencies could be handled by the integration mechanism in the user
interface.

Model I: Integration using import and export

Integrating specification tools and construction tools by using import and export is the
most common solution today. Most upper CASE tools have some code generation facilities,
usually restricted to generation of data base schemas. I.e. this integration is usually a
one-way data transfer from the CASE tool to the implementation tool. (The integration
between lower CASE tools and implementation tools is often tighter). In addition to import
and export facilities connected to the tools, various users have developed their own import
and export program ("bridges"). Some of these have been distributed as freeware or
shareware.

Very few (but some) upper CASE tools have the ability to transfer data the other way. (See
figure 1 (next page)). The integration the other way could either be done by letting the
implementation tool have a facility for producing input to the specification tools (on a

48

special format) or by letting the specification tool have a feature for importing some data
format that is easy to produce from the implementation tool. In the latter case, changes is
the data base structure could be expressed in SQL, which the specification tool translated
back to a conceptual data model, and merged with its existing conceptual data model. A few
existing CASE tools have the possibility to import data from implementation tools (usually
from the same vendor).

J

Specification tool

Import/export

Construction tool

Figure 1 - How integration between specification tools and construction tools usually is
done today

The process of translating from implementation level to specification level is sometimes
referred to as reverse engineering [CASE88, NILS85], and is a more general way of
transferring information from implementation tools to CASE tools (both upper and
lower).

The advantage of this way of integrating specification tools and implementation tools is that
it can be implemented without issuing big changes in the tools. The data transfer and data
conversion can be handled by a separate tool (an "agent").

The disadvantages are many. It is often difficult to transfer data to the specification tools.
This feature is essential if the integration is to be successful. The integration is in many
extents "manual", i.e. one has to do special tasks and to run special programs to integrate.
Integration should not be a special task that has to be performed every time something
changes, integration should be done automatically. And as the integration task has to be
manually triggered, there is a fair chance that one forgets to do it, or omit to do it because
it is time consuming. The last disadvantage is that there is no user integration.

Model H: Integration using common data base

One way of making the integration between specification tools and implementation tools
tighter is by using a common data base where the information is stored. In that way, data
from the specification tool can be used by the implementation tool and vice versa (see
figure 2 (next page)). This model requires either that one tool is able to read data stored by
an other tool, or that one tools is able to write in the data store of an other tool. This kind of

49

integration can also be used to interchange information between different CASE tools
(upper and lower).

J

Specification tool Construction tool

Figure 2 - Integration between specification tools and construction tools using a common
data base

This kind of integration is often referred to as the future integration between different
CASE tools, and between CASE tools and implementation tools. The emergence of
different standard repositories (from different vendors and standardization bodies) and
interchange formats (like EDIF - Electronic Design Interchange Format) give high
expectations to a storage standard.

One advantage of this way of integrating specification tools and construction tools is that
the tools are independent of each other as long as they are able to read and write in the
agreed formats in the data base. This makes the total system modular and thereby flexible.
An other advantage is that the integration could be instant, i.e. it is possible to implement
the integration so that there is no need to manually trigger the integration.

One disadvantage is that a common data base requires much agreement between the
vendors of the different tools and thereby also re-implementation of existing tools. To
access a common data base, one has to use a general data base management system having a
special subroutine interface. To adapt existing tools to such an interface (not all existing
tools uses general data base management systems today) requires a lot of
re-implementation. The vendors also have to agree on the data formats that shah be read
and written in the data base. There will also be a problem when some tool support more or
less information than what is possible to store in the standard repository (semantic
integration). One important question is: should the common data base store the union or
intersection of all information in all tools that should be integrated?

The key issue to the success of this type of integration is that one standard is commonly
accepted by the different vendors (and users), and that the vendors conform to it. There are

50

a number of commercial benefits for the vendors by doing so, but there are also a number
of commercial drawbacks.

This solution may also cause integrity problems, especially if one tool is permitted to write
in the data store of an other tool. The last disadvantage is that there is still no user
integration.

Model 3: Integration using communication mechanisms

In this model, the tools are considered as processes connected to and communicating
through a data network. The integration can be performed issuing some network service,
e.g. file transfer (FTP) or remote procedure calls (RPC). To achieve a higher level of
integration than in the models above, RPC is required. In that case, the integration is
implemented by one tool requesting or supporting information from / to an other tool (see
figure 3). This is done by initiation actions in the other tool. The tools may use their own
data stores or a common one.

J
Specification tool

f

Construction tool

f
I

Figure 3 - Integration between specification tools and construction tools using
communication mechanisms

This model requires a well defined interface and interaction protocols that the tools agree
upon. The proposed EDIF-standard could be one such interface.

The advantage of this way of integrating specification tools and construction tools is that it
enables integration in a very flexible manner. One tool may ask for some specific data, or it
may start a function in an other tool. One may also use an "agent" to handle the
communication. The integration may also be implemented so that it is "instant".

This model gives a form of "loose coupling" between the tools. Ideally, one tool can be
exchanged with a new one as long as it offers functions that are equal to or a superset of the
functions in the old one. An other advantage is that the responsibility for the data lay on

51

each tool. To access or alter data in an other tool, a function must be activated, an thus
integrity constraints may easier be fulfilled. It is also possible to access derived data that is
not stored by the tools, but that can be accessed using a function.

One disadvantage is that the vendors of the different tools still have to agree upon quite a
number of things (but not necessarily on a common storage format), and this may cause
re-implementations in existing tools. An other disadvantage is that there still is no user
integration. The CASE tools and implementation tools are still separate user tools.

Model 117: Integration using software factory architecture

This model [OFTE87] is to some extent quite equal to the previous one, but to some extent
also quite different. The tools are still processes communicating through a network, but the
different tools are now services issuing special functions. The user interface is handled by a
special user interaction component, a tool that support the different tasks in a systems
development process (see figure 4).

Work environment for
software development

J I
I

Construction tool
I I

CASE tool I] Implementation
tool

Figure 4 - Integration between specification tools and construction tools using a software
factory architecture

The advantages in the previous model also apply on this model, but all the disadvantages do
not. The vendors still have to agree on standards and protocols, but on an other level. The
tools are now functional components issuing services to other tools, and much of the
integration efforts are handled by the user interaction component, q-herefore the different
tools mainly have to be able to respond to certain functions, and only to a small extent
themselves issue actions in other tools. The integration is no longer done on a tool to tool
basis, but more on "global" level in the software factory.

52

The main advantage, though, is that there in this model is user integration. The distinction
between the CASE tools and implementation tools (and other tools) are transparent. The
user gets tools supporting his work, and the user interaction component handling his work
environment issues the necessary functions in the service components. So that when the
user perform some changes in the implementation phase, the changes in the CASE tool is
performed automatically, i.e. the user has to perform all the changes required by the
system, but he does not (and need not) know which changes apply to the implementation
tool and which apply to the CASE tool.

The disadvantage of this model is that building the user interaction component is difficult.
This kind of architecture requires that a lot of vendors agree on it, and offer their tools as
functional components, with a well defined functional interface.

Other aspects of integration

There are a number of other aspects concerning integration between different CASE tools,
and between CASE tools and other tools. We mention some of them briefly.

CASE tools should be integrated with tools covering tasks in the whole software
engineering process, most important are project management tools and quality assurance.
CASE tools may support those tools with valuable information in a more or less automatic
manner, e.g. information on the degree of completion of different parts of the system that
is developed.

An other aspect that covers the whole software engineering phase is the methodology, or
life-cycle model that is used. The software engineering work may be much more
structured if the tools support the life-cycle model. Such support is given in some existing
CASE tools, i.e. tools from one vendor that support most software engineering activities.
This kind of methodology support is sometimes referred to as process control. Related
aspects are requirement traceability and change control.

A recent development trend is an integration between tools for software development and
tools for hardware development.

An other resent trend is integration of artificial intelligence techniques and tools into the
CASE tools. Such techniques and tools can be used both to check rules in the supported
techniques, and to help the user in the creative part of the development work.

CASE tools (and other software engineering tools) should also cover a quite different
aspect of integration, namely integration between different people. This covers both
multi-user tools, and support for cooperation between different people cooperating in
developing a system. This is sometimes referred to as groupware.

Integrated Software Development Environments

In the above section describing CASE tools, we pointed out some characteristics of an ideal
CASE tool, which we denoted an Integrated Software Development Environment (ISDE).
In this section we investigate ISDEs in more detail. We give a definition showing the main
characteristics of ISDEs, we look at who makes such environments, and we point out what

53

is achieved by using such environments. We use the term ISDE, because we feel that it
covers the functionality of such an environment. The term Integrated Project Support
Environment (IPSE) and Software Factory are sometimes used to denote the same type of
environments.

Characteristics of Integrated Software Development Environments

An integrated software development environment is a collection of tools supporting the
different tasks that must be performed while developing software. The tools must be
integrated, also on the user level, i.e. there must be user environments for different user
groups, consisting of user interaction components tailored to support a special task. Each
user interaction component may use different service components (or tools) when
operating.

An ISDE must give support for a wide variety of tasks, not only typical systems
development tasks like requirement specification, analysis, design, implementation, testing
and maintenance, but it must also support related tasks like project management,
methodology support (process control), etc.

Furthermore, an ISDE must support all users or user roles in a software development
team. Not only data processing roles like programmer, systems analyst, etc., but also more
administrative roles like project manager, sales and support people, etc.

Because software development usually is performed in teams, an ISDE must support
cooperation and communication among team members. This requires more powerful tools
than traditional electronic mail.

Such an environment must be easy to change and to supplement when new and powerful
tools emerge. This implies an architecture that supports reuse of old and new components,
that the architecture is flexible and configurable, and that the environment operates in a
distributed, heterogeneous environment. It must be possible to exchange an existing
component with a new one, without having to do major changes in the other components in
the environment. These characteristics point towards usage of object orientation
[MEYE88].

Who makes Integrated Software Development Environments?

There are quite a number of research and developments efforts around, that aim at
building ISDEs.

In the large european research and development programs, like ESPRIT, EUREKA and
ALVEY, there are different projects that develop parts of or complete software
development environments. One example of such a project is the Eureka Software Factory
project. It is one of the largest of the european projects in this area. It will be described in
more detail below.

There are also quite a lot of research and development efforts in this area in the US. These
activities are performed by various universities, research institutes, governmental bodies
(e.g. Department of Defense), and software vendors. Arcadia and CAIS are two examples
of such project.

54

In addition, there are some development efforts conducted by large multi-national
companies (like Alcatel) that develop integrated software development environments, and
some CASE vendors also develop tools that have some ISDE functionality (e.g. Software
BackPlane from Atherton Technology).

What is achieved by using Integrated Software Development Environments?

There are lots of benefits that may be achieved by using ISDEs when developing software.
In this section we point of some of them.

The main benefit is reduced costs and development time in software development projects.
Because the environment is integrated, both on the user level and on the tools level, there
will be increased productivity in projects using ISDEs. Such an environment will also
support reuse of code when developing new software. Furthermore, the integration issues
higher quality in the software developed. All of this elements contribute to reduced costs
and development time.

One will also achieve better cooperation between members of the development team, which
also gives positive impact on quality, productivity and well-being.

The project manager will be offered better tools for estimating the costs of the project, and
for monitoring the progress.

Eureka Software Factory (ESF), an Example of an Integrated Software
Development Environment

Center for Industrial Research (SI) is participating in a project that will produce different
elements of integrated software development environments - the Eureka Software Factory
project (ESF). This project will produce an architecture and a framework for ISDEs, basic
building blocks, general components, and a number of environments for different
application areas (like business applications, real time applications, telecommunication
systems, and embedded systems).

The participants in the project are large european companies, computer manufacturers,
software houses, research institutes and universities. Figure 5 (next page) shows the
different participants i 1989. (The consortium will change during the project).

The project has a 10 years horizon (1987-1996), and imply approximately 2400 man-years
of work. The work is financed 50% by the industry and 50% by national government.

Goals of ESF

The main goals of ESF are to produce an effective production environment for software
and to facilitate the production of flexible and integrated applications for the end user.
These goals shall be achieved through a top-down strategy and focus on different users
needs for functionality and integration.

ESF is meant to be a european answer to american and asian efforts on software
engineering. It shah contribute to making european industry in general, and especially the

55

software industry, more competitive. ESF shall be driven by the industry and oriented
against products in a marketplace. The project shall use results from other research
programs like Race, Esprit, Alvey and ESA.

Figure 5 - The participants in ESF

Status in ESF

The project started in 1987 with a requirement specification phase. In 1988, a technical and
administrative team was founded in Berlin, and a number of subprojects solving special
problems and developing various components, was started. Most of the development work
will be performed in subprojects. Also in 1988, a detailed architecture for ESF was
developed. The first two milestones in the project were/are:

(i) In may 1989 a number of ESF demonstrators were developed to show different aspects
of a software factory. The demonstrators were prototypes showing what can be achieved in
the project. One of the ESF demonstrators is the SI Team Environment (SITE), which is
presented in more detail below.

(ii) In september 1990 the ESF mini is scheduled to be finished. The ESF mini is a first
prototype of an integrated software development environment (or software factory), and
will consist of components that are commercial products.

Later on (1991 - 1996) the first commercial software factories will be released.

The technological foundation of ESF

On the technological level, ESF shall produce guidelines, standards and products in various
areas.

ESF has already defined an architecture for building software factories, which acts as a
basic framework. The basic mechanisms and tools in this framework will also be produced.
ESF will also develop methods for software design according to this framework.

56

ESF will develop components and production environments that will be parts of a software
factory, and give standards and guidelines for how to produce software components that
will conform to the ESF architecture [ESF89].

The goal of the ESF architecture is to be able to "compose" user environments tailored to
the tasks that shall be performed by the user, to use common services in different user
environments, to be able to change the user interface of the factory without having to
change the service components, and to have different components on different computers
(e.g. special purpose computers like data base machines).

To facilitate such an architecture, the components must fulfill certain requirements. It must
be possible to access operations and data. There must be a well defined interface to the
components (preferable a subroutine interface). There must be a possibility to track
errors, it is not acceptable that the components present error-messages directly to the
screen. There must be a possibility for the components to report changes, so that other
components can act according to the changes. Last, but not least, there must be a clear
distinction between the user interface and the functionality.

Figure 6 gives an overview of the principles of the ESF architecture.

ll!!iii!iiiiiil!liil!iiiiiii i! !li!iiiliili

i
. env,roo:nt I "ere 'r°°ent 1

~teraclion ~') | |/teraction -'~'~ ~ompone~t y J L~ompo~ent y

iiiilFi!!!iii! iiiiiiiL i!ili i 4Ji fl ii iiiii!fiiill !!!i!ii!ii!ii iiiiiii iii iiii iiiii!!!illiiii iiii i liiiiiiiiiiii!iiiiiiiiii@
software bus

functional functional
component component

Figure 6 - The ESF architecture

Ideally, each component in this architecture is an implementation of an abstract data type
(ADT) [GUTT77]. A data type is a set of values - its domain - and a set of operations by
which its values can be manipulated. An abstract data type is a data type whose domain
contain abstract values, i.e. values having an unspecified representation, and whose
behavior is completely determined by the effects of the operations associated with the
abstract data type. The semantics of each operation may be defined either informally, or by
formal mathematical expressions.

The different components communicate through a software bus, which handles
communication, data conversion, configuration, and a number of other services.

57

SITE - one of the ESF demonstrators

As our contribution to the ESF demonstrators in may 1989, Center for Industrial Research
(SI) developed a prototype, SITE- SI Team Environment, which demonstrates a system
that supports cooperation between a project manager and a programmer [SITE89]. The
prototype covers functions like project planning, job definition, job assignment through
electronic mail (with tools and documents integrated in the mail), personal work
management, programming and documentation, progress reporting, and progress
monitoring.

The prototype is implemented according to the ESF architecture, with different
components on different workstations. The implementation is indeed heterogeneous, with
components implemented in C, Lisp and Smalltalk. A number of existing components were
reused in the implementation. The software bus were implemented using SUN RPC,
extended with a specially developed update mechanism (in C).

The environment consist of five user interaction components (process support, job
management, extended electronic mail, documentation and programming). These
component use functionality in four service components (process model, unix mail, work
context storage and document storage).

Expected results from ESF

ESF will produce results on many levels, some being general guidelines and standards,
some being public domain software, but the largest quantities of results will be
commercially available software.

(i) ESF will produce standards and communication mechanisms which facilitates
composing environments based on components from different vendors.

(ii) ESF will produce basic tools (e. g. for user interface specification and data storage)
which may be integrated with more specialized tools that fulfill ESF standards.

(iii) ESF will produce a number of separate components (like a project management
module tailored for software development projects) that are easily integrated with other
components into complete environments.

(iv) ESF will produce complete production environments for software development in
special application areas. These environments will be adaptable to needs in the organization
using them.

(V) Lastly - but maybe most important - ESF shall become a marketplace, where software
developers may offer their tools and compose new tools, and where user organizations may
buy just those tools or just the environments they need for their software development
activities.

58

Conclusion

In this paper we have shown that CASE tools have a number of strong sides, but that they
must be tighter integrated with each other and with implementation tools to be able to
utilize their potential. We have presented different models for such an integration, and
have shown that this integration is just the start of what is really needed to give support to
the software development work, namely Integrated Software Development Environments
(or Integrated Project Support Environments or Software Factories). I.e. environments
that support all tasks in the software development - also the early phases where upper
CASE tools have their benefits, and related activities like project management - and which
integrate different tools, both on the user level and on the data level. The user interface of
such environments must reflect the tasks the users perform, not the different tools that are
used as service components.

We have pointed out that much work is done to produce such environments, and we have
presented in more detail one of these projects, Eureka Software Factory. Hopefully, this
project - and the other ones - will produce environments that will contribute to making
software development an easier task in the future.

References

[BUBE88]

[BYTE89]
[CASE88]

[CASE89]

[COWO87]

[COWO88a]

[COWO88b]
[DAMA88]

[DAMA89]
[ELEC87]

[ESF89]

[GIBS89]
[GUTF77]

[HEDQ88]

[IEEE88]

Selecting a strategy for computer-aided software engineering (CASE),
SYSLAB, University of Stockholm, June 1988
CASE, In Depth Section (various authors), BYTE, April 1989
CASE Outlook 1988. CASE tools for Reverse Engineering. CASE Outlook
2, 2, p. 1.
Proceedings of The first Nordic Conference on Advanced Systems
Engineering, Bj~m Nilsson (ed.), SISU, Kista, May 1989
Tools of the trade: Is CASE really a cure-all?, Jim Huling, Computerworld,
April 20, 1987
CASE product, Spotlight Section (various authors), Computerworld, June 6,
1988
What CASE can't do yet, Tony Percy, Computerworld, June 20, 1988
A Guide To Selecting CASE Tools, Michael L. Gibson, Datamation, July 1,
1988
Cutting Through the CASE Hype, Kit Grindley, Datamation, April 1, 1989
Integration is crucial to CASE's future, Tom Manuel, Electronics,
September 17, 1987
ESF Technical Reference Guide (version 1.1), Eureka Software Factory,
1989
The CASE Philosophy, Michael Lucas Gibson, BYTE, April 1989
Abstract Data Types and the Development of Data Structures, John Guttag,
Communications of the ACM, Vol. 20, N. 6, June 1977
Datorstrdd programutveckling - CASE - i USA, Torbjrm Hedqvist and
Jonas Persson, Swedish Attach6 for Science and Technology, 1988 (In
Swedish)
Automating software: proceed with caution, John Voelcker, IEEE Spectrum,
July 1988

59

[~rWO88]

[JONE89]
[MCCL89]
[MEYE88]

[NmS85]

[Nn_~SS8]

INn_S90]

[OFTE87]

[ROEV89a]

[ROEV89b]

[SH~E88]
[S1TE89]

Making a Case for CASE Tools in the Application Development Process,
InfoWorld, January 11, 1988
Why Choose CASE?, T. Capers Jones, BYTE, December 1989.
The CASE Experience, Canna McClure, BYTE, April 1989.
Object-Oriented Software Construction, Bertrand Meyer, Prentice Hall
1988, ISBN 0-13-629049
The Translation of a Cobol Data Structure to an Entity-Relationship Type
Conceptual Schema, Erik G. Nilsson, IEEE Proceedings of the 4th
International Conference on Entity-Relationship Approach, Chicago, 1985
CASE Tools are still too young to reach decadence, but we better watch out,
Erik G. Nilsson, Position Statement at the 7th International Conference on
Entity-Relationship Approach, Rome, 1988
Aspects of Systems Integration, Erik G. Nilsson, Else Nordhagen and Gro
Oftedal, Proceedings of the First Intemational Conference, Morristown,
April 1990 (In press)
The Use of Remote Applications from a SmaUtalk Workstation, Gro Oftedal,
Master Thesis, University of Oslo, 1987
Analysis Techniques for CASE: a Detailed Evaluation, Rosemary
Rock-Evans and Brigitte Engelien, Ovum Ltd, 1989
CASE Analyst Workbenches: a Detailed Product Evaluation, Rosemary
Rock-Evans, Ovum Ltd, 1989
Second Chance for Escape?, Gordon Shields, Computerworld,June 6, 1988
SITE- SI Team Environment, How to Support Cooperation in Teams, Center
for Industrial Research, May 1989

60

