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Abstract 

A new interpretation of relational normalforms is discussed. The goal is 
to present such a normalization algorithm that aids process-design, too. 
Practical experiences of applying normalform synthesis and decomposition 
are highlighted. NF problems are recited and reinterpreted. Normalforms 
are revised for completeness. The notion of semantical normalization is 
explained. The concept of 'thread' versus 'cover' is suggested. The use 
of threads in a coupled data- and process-design is recommended. 

i. Background 

Based on a long (1976-1987) theoretical and practical experimentation, 

our research group has prepared a CASE-tool, named SYDES. This acronym 

stands for SYstems DEsigner System. The name covers an information 

systems design method, a software supporting the method and a systems 

theory, which is the frame of both. 

SYDES is a lanus-faced product. It is a CASE-shell, by the aid of which 

arbitrary categories (object-types) can be defined. Analysts may specify 

design attributes of categories, conventional values of attributes and 

informal descriptions of the enlisted factors. Categories may belong to 

the data, event/process or environment aspect of the system. They are 

classified according to conceptual, logical and physical levels. In 

short: analysts are able to design their own designer system by SYDES. 

On the other hand, some categories, properties and conventional values 

are predefined in SYDES. E.g. entity, attribute, relationship, process 

and event are prespecifled SYDES-categories. This means that analysts 

do not have to prepare their own designer system, if deslgn-factors 

provided by SYDES were sufficient. 

D e s i g n - q u a l i t y  c o n t r o l  i s  t h e  m o s t  v a l u a b l e  f u n c t i o n  o f  SYDES. M a n y  

design criteria are built into the system. These are validated at entry 

of design information and by separately run analysis programs. We apply 
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mathematical and semantical evaluation methods. Normalform analysis is 

one of these. It is employed in a much revised form. The objective of 

this paper is to present our normalization process, which is closely 

coupled to the tasks of process-design. 

We had a good reason to revise normalforms and normalization. Our first 

deslgn-aid, SZIAM generated 3NF relations from attribute functional 

dependencies (FDs). We have used a normalform-synthesis method. (SZIAM 

has been licensed by IBM). The tool was applied for several large data- 

modelling tasks (including over 2000 attributes). We had some acceptable 

results. However, the method of synthesis proved to be very inefficient 

at such sca]es. We also had to conclude that data-design is an half-eyed 

giant, a Cyclops without a parallel process-modelling. The latter is 

required to capture more semantic meaning of data. 

For the above reasons, the synthesis line was dropped. We have prepared 

a new product, ADAM & EVA. ADAM stands for analytic data modelling. This 

part of the tool supported normalform-deoomposition (4NF). The other 

subsystem, EVA helped designers to define event-activity networks. The 

two functions were closely coupled. The product was double-slded in the 

sense that both a specially extended relationa! model and a similarly 

extended entity-relationship model could be prepared by its aid. (For 

some of virtues, the product has been licensed by BMW AG., FRG. ) 

We applied a particular decomposition method, which preserved some of 

the virtues of data-synthesis. Theory was again fo] lowed by practice. 

ADAM & EVA was used in several large applications. The conventional NF- 

decomposition have failed in many cases. It produced imcomplete, i.e. 

not connective data-designs. This fact was mostly due to incorrect 

semantic interpretation of data. We had to realize that data-modelling 

is rather a semantical than a mathematical endeavour. The next section 

shows, how our thoughts of norma]forms/normallzation had been changed. 

2. The Nature of Normalforms and Normalization 

Information system design-aids may help us to draw nice pictures, like 

entity-relationship diagrams. They can support management of design- 

information by 'meta-databases' or 'information resource dictionaries.' 

Nice tools guide the analysts through the complex deslgn-process. A] l 

these tasks are inherent to a design-aid. Nevertheless, we intend to 

think that quallty-assurance must be the most important function of 

CASE-tools. 
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Design-products must represent reality correctly. They have to be non- 

redundant, complete and unambigouos. CASE-tools should include quality- 

control processes as to ensure specification of optimum designs. We have 

found that normalforms were powerful means for design quality checking. 

An appropriate normalization process leads to a proper data-design. At 

the same time, it may improve the efficiency of process-design as well. 

The nature of normalforms and that of normalization should be revised, 

before these concepts are used for quality-assurance of design-products. 

A very simple, but tricky example highlights the present problems of 

normalization. 

In 1984, we had to face a design-tool applying the user-view integration 

approach. This data-design method assumes that the 'global' structure of 

a database can be deduced from 'private' data requirements of end-users. 

We have presented two simple views to that tool. (Please, observe our 

notation. Entity-types or relations, are shown in capital. Primary keys 

of data units are underlined. Parts of composite keys are connected by 

'+'. Attributes of entities are enlisted in paranthesis.) 

(2.1) a/ ORDER (Order-no, Product-no, Quantity-ordered) 
b/ ORDER (Order-no+Product-no, Quantlty-ordered) 

Five analysts have worked on this simple case, envolving not more than 

four presented concepts, for two hours - without success. The design-aid 

has failed. Why? 

Two basic approaches are applied for normalization: decomposition and 

synthesis. Let us see, how far we get with any of those. 

Both views are in correct normalforms (they are 9 as we shall see), so 

they cannot be normalized by decomposition. One may want to unite these 

two relations into one. The effort is useless: the keys are different. 

So, let us rename ORDER of b/ to ORDER-l! That would not help, either. 

The design of (2.1) suggests, that its relations are connectable by 

Order-no as a forelgn-key (cp. 'referential integrity'). They are not. 

Normalform synthesis leads to an even greater disgrace. It is based on 

mechanical normalform-rules. Quantity-ordered is defined by Order-no 

(View a/). It depends on Order-no+Product-no (View b/), as well. These 

two statements suggest the partial dependency of Quantity-ordered. Thus 

View a/ wil I be the only relation resulted from synthesis. 

Let us have a different look at the case of (2.1). We ask the end-user 

about the meaning of those four concepts. In other words, a semantical 
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analysis is executed. After a few simple questions, we shall understand 

that there are two kinds of orders: customer- and purchase-orders. The 

concepts in View a/ and View b/ are homonyms. Customer-orders (View a/) 

are always related to a single product, while purchase-orders (View b/) 

may have several items. 

Conclusion: in terms of normalforms both views are perfect. None of them 

has to be or can be normalized. However, homonyms must be eliminated. An 

unambigouos capturing of the two views would result in the next design: 

(2.2) CUSTOMER-ORDER (C-Order-no, Product-no, Quantity-ordered) 
PURCHASE-ORDER (P-Order-no+Product-no, Quantity-ordered) 

Nicely-cut examples are presented in publications. Life is more complex• 

Design-tasks may envolve hundreds or even thousands of concepts. An army 

of designers and a great bunch of end-users are working at the design. 

Communications falter. End-users do not immediately capture the meaning 

of 'dependencies', and they may make erroneous statements. Analysts are 

working in separate groups, so synonyms and homonyms are hard to avoid 

in the overall design. Contradictions, misunderstandings and even lies 

are parts of the game... 

Design-tools have to help analysts in discovering all discrepancies. It 

took only a few seconds with our ADAM & EVA tool to solve the problem of 

(2.2). Please, observe, that this was not a fancy-case. We have faced 

this very situation at the information modelling of a suit-factory. 

Having applied data-modelling techniques at several dozens of companies 

and institutions, we came to the following conclusions: 

Normalization and normalforms are mathematical notions; quantitative 

measures to improve a data-design. They are of no use, if the basis 

of normalization was not free of homonym and synonym concepts. The use 

of normalform decomposition or synthesis must be preceeded by a very 

careful semantical analysis, i.e. clarification of concepts. 

• Normalform ana]ysis may show, that preliminary statements of concepts 

were of bad quality. Like in case of (2.1). We have executed a special 

normalization. We came to the conclusion that nothing is wrong with 

normalforms; the concepts themselves had been badly formulated. A 

problem of quantitative nature has called our attention to the real 

qualitative trouble. 

• Data-design is an iterative process, which follows the 'se-ma-for' 

principle. Semantics first, mathematics next, and the former again. 
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Our previous findings may be of no great news to  some experts. However, 

we have met many designers, who had applied normalization principles 

mechanically. We have read many 'classics' of normalization, too. They 

seem to neglect the aspect of semantics completely, as we shall prove 

in the next section. 

5. Incompleteness of Normalforms 

Normalforms are said to be complete in the sense, that 5NF covers the 

most important kinds of dependencies. 5NF is the ultimate normalfcrm. 

That we do not doubt. However, we have discovered that the series of NFs 

had been incompletely defined internally (!). This statement is easily 

proved by the following decision-table. Before its interpretation, we 

hasten to declare that we do not intend to implement new NFs into the 

present cavalcade of dependencies. We just have some semantical remarks. 

( 3 . 1 )  1 2 3 4 5 6 7 8 

A --> B P P P P D D D D 

B --> C P P D D P P D D 

A --> C P D P D P D P D 

Three functional dependencies (-->) of three attributes (ABC) are shown. 

'P' stands for a trivial dependency. In this case a primary-key defines 

its own part. Like A=(X+Y) --> B=(X). 'D' shows a normal dependency. The 

key defines a descriptive, non-key attribute. 

It is easy to see, that Rule 8 stands for transitive dependency (3NF). 

Rule 4 explains partial definition (2NF), and Rule 7 covers key-breaking 

(BCNF). Rule 2 is impossible: if C is part of B, which is contained in 

A than C must be a key-part of A. But how should the other rules be 

interpreted? We have found no reasonable treatment of them in the 

available literature. (Note: This table was composed back in 198@.) 

There are two cases. If it is not important, whether a defined attribute 

i s  p a r t  o f  the key (P) or  no t  (D),  than t h e r e  is  no sense t o  make any 

distinction among 2NF, 3NF and BCNF. In all these rules dependency 

A --> C is transitive (it is not partial or key-breaking). However, if 

this distinction makes sense, than the series of normalforms is, indeed, 

internally incomplete. It does net cover four rules of Table (3.1). We 

believe that these remaining rules must be treated separately, if a 

correct semantic interpretation (semafor-principle) is to be applied. 
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Examination of the remaining dependency-structures (rules) follow. 

Rule I is a set of trivial dependencies. I t  would be a mistake to handle 

this case as transitivity, partial-dependency or key-breaking. (This 

particular rule implies all of these three normalform-problems. A --> C 

is transitive. A=(X+Y+Z) --> B=(X+Y) --> C=(X) is partial. The last part 

of this series is key-breaking.) An example: 

( 3 . 2 )  CITY (Country-code+District-code+City-code) 
City-id=Country-code*District-code+City-code 

Rule 8 may be considered as a 'group-dependency'. A key defines a group 

of attributes, which defines its parts. A --> B=(X+Y) --> C=(X). There 

is no way to resolve this set of dependencies. However, one may ask the 

question: is C=(X) semantically identical to the part of B=(X+Y)? 

(3.3) ACCIDENTS (Accident-no, Date, Month) 
Date=Year+Month+Day 

Note: A relation is supposed to contain elementary attributes only. 

This 'law' is often neglected in data-designs. Thus the question: 'Is 

Month identical to the part of Date?' is a crucial one. 

We have named Rule 5 as 'intersection', since two keys have a common 

part and one defines the other. A=(X+Y) --> B=(X+Z) --> C=(X). An 

incorrect normalization would ban A --> B. (Note, that A --> C is not 

transitive, it is trivial. B --> C cannot be eliminated, either.) 

43.4) DISPO-ITEM (Dispo-item-id, Order-item-id, Quantity) 
Dispo-item-id=Dispo-id+Product-id 
Order-item-ld=Order-id+Product-id 

The relational model does not recognize attribute-groups. This causes a 

lot of troubles. Order-item-id should be a forcing-key Cop. referential 

integrity), but in the 'orthodox' approach there is no way to define it. 

Thus the question arises: How to connect dispo-items to order-items? 

Rule 3 is called by us as 'hierarchical key', because one part of the 

key defines another part. A=(X+Y) --> B(X) --> C(Y). This is neither the 

'normal' key-breaking dependency, nor a partial one. There is one only 

way to resolve this problem: to change the key. Normalization cannot 

help. A semantical solution is required. 

Observe that this last case is the same as the one provided in ( 2 . 1 ) .  

Our design-aid was able to call our attention to a semantical problem, 

because it had examined hierarchical keys and it have noticed a trouble 

of mathematical nature. Our tool handles the rules of (3.3) and 43.4) in 

a similar, semantically based fashion. 
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In summary: One may face situations, in which normalization-routines 

cannot help. However, they may call the attention to deeper troubles of 

semantical roots. Having eliminated homonyms, synonyms, incorrect keys, 

one may redo normalization according to the 'semafor' principle. This 

idea is explained in the next section. 

4. Semantical Normalization 

One may read several publications about 'linear-time' normalization 

processes, trying to overcome 'quadratic' or 'exponentiona]' routines. 

This is very nice: it is good to have optimal normalization algorithms. 

Unfortunately, they are not up to the issue. 

Some analysts pretend to believe, that one has a nicely defined set of 

relations and attributes, so let us apply a good normalization algorithm 

and then we shall have the appropriate data-design. Some design-tools 

follow this principle. They remove incorrect dependencies automatically 

(decomposition-based tools) or they do not allow speecification of a bad 

dependency (aids of synthesis). Again, they are not up to the issue. 

The two key-points of normalization are interpretation and design time- 

frame. In nice, small, academic examples one has a predefined set of 

concepts. In reality, data-design may take several months, and one part 

of the system must work, before another part is designed. There is 

nothing like a 'universal relation' or 'minimum cover'. The analyst must 

apply a 'co-normalization', trying to add new fractions to an already 

existing database in the best possible fashion. This was stated for the 

time dimension. Now let us examine the interpretation aspect. 

I f  an A --> B --> C dependency occurs and the A --> C dependency is 

entered/discovered, than most of the normalization tools would remove 

the latter definition automatically. Our first design-tools have worked 

according to this logic, too. Then we have found, that well over 80% of 

normalform problems resolved by the design-aid were due to semantical 

misinterpretations. In other words: in terms of mathematics the third 

(A --> C) dependency was incorrect, though actually - in semantical 

terms - either A --> B, or B --> C had been falsely specified. (This is 

plain algebra. There are three dependencies. The chances that the third 

one is incorrect, are at 33%.) 

Data-designs grow because of the time-frame. New attributes and new 

relations are added to a working environment. We do not endeavour here 
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to explain, how and why does the sequence of such additions influence 

the mathematical result of normalization. It is enough to state that 

the present mathematical basis of data-design is incapable to cope with 

this problem of growth. 

In summary: Conventional normalization algorithms are not acceptab]e. 

They are not based on a semantically sound set of concepts, or at least 

they do not seem to care about them• Normalization is a bunch of very 

mechanical routines, with no back-loops for semantical corrections• 

In SYDES, a different method is practiced. Designers may define their 

entities (relations), data-items (domains) and their connections 

(attributes of relations) 'by heart'• Having defined the basic items, 

the analyst may run analysis-routines of SYDES. These will inform her or 

him about possible normalform prob]ems• Not just about the ones, known 

from the literature. SYDES works on the basis of the (3.1) table. The 

designer may follow three routes: 

• Consider NF problems as quantitative troubles. When A --> B --> C, 

attribute C is to be removed from the relation identified by A. This 

is the 'orthodox' approach. 

Ignore NF problems. One should recognize that while a 2NF data-unit is 

worse than a 3NF relation in terms of joins, it may have many virtues 

in other design aspects. This is the practical approach. 

• Consider NF problems as qualitative troubles. When A --> B --> C, 

any of the functional definitions (including A --> C) may be resulted 

from incorrect interpretations. This is the semantical approach. 

This is the essence of SYDES-]ogic. Tools cannot examine the qualities 

of concepts defined by human beings. Nevertheless, when constructed for 

this purpose, they can call our attention to semantical problems by 

evaluating quantities. This is the essence of semantical normalization. 

The basis of such a normalization process is described below• 

5. The Concept of 'Threads' 

Conventional NF-decomposition methods cannot be used for database 

design. The unit of normalization is a suggested relation, without 

any structural reference to similar such units. The problem in (2•I) 

cannot be solved by this procedure. The notion of referential integrity 

will not help either. One question ~s, whether individual relations are 
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well-defined or not. A second matter of investigation is, if the whole 

set of defined relations were optima| ]y designed. A very simple example 

highlights this problem: 

(5.1) CUSTOMER (CustomerTid, Customer-address) 
ORDER (Order-no, Customer-name) 

Both relations of (5.1) are in 'perfect' normalform. However, the design 

as a whole is a complete mess. 

Having recognized the shortcomings of decomposition, new ideas arised, 

like covers and universal-relations. They are not really useful. Let 

us suppose, that one has 1000 attributes (only). Stating dependencies 

among them would require about 500 thousand investigations, if one 

wanted to find all possible dependencies. This work cannot be done. 

The unit of decomposition (single relations) and that of synthesis 

(universal relation, cover) are not acceptable. We seem to be stuck. 

A foreign-key in a relation is an attribute of that relation, which 

refers to the key of another relation. The key of the first relation 

functionally defines all of the attributes of the second one. Like 

Order-no defines a]] customer attributes through Customer-id in (5.2). 

(5.2) CUSTOMER (Customer-id, Customer-name, Customer-address) 
ORDER (Order-no, Customer-id) 

Please, observe, that a foreign-key gives rise to a hierarchy. The tea]- 

world phenomena to be represented by information are referred to as 

entities. They are classified to entity types. ORDER and CUSTOMER in 

(5.2) are entity-types represented by relations. By nature, they are 

in hierarchical connection: a customer may have many orders, but each 

order belongs to a single customer. This fact is reflected in the design 

by Customer-id of ORDER pointing to CUSTOMER. 

( 5 . 3 )  CUSTOMERS 

CONTRACTS 

I 
SIIES 

ORDERS I PRODUCTS 

l ,TEMS 

Two entity-types may be connected directly. They may have an indirect 

hierarchical relationship, or they may be independent of one another. 

In (5.3), ORDERS is directly related to CONTRACTS and indirectly to 

CUSTOMERS, while it is independent from PRODUCTS. This means that ORDERS 
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has a direct reference to CONTRACTS (Contract-no)~ an indirect coupIlng 

to CUSTOMERS (CONTRACTS contains Customer-no) and no connection is made 

to PRODUCTS (none of the superordinates of ORDERS has Product-no). 

In SYDES, we use the 'thread' term. A thread is a bottom-up directed 

line of entities leading from the lowest entity to the highest one. In 

case of (5.3), we have three threads. Items/orders/contracts/customers; 

items/orders/sites/customers and items/products. Threads are represented 

by keys of entities. They are nothing but chains of dependencies. 

A thread is an intermediate unit. It is neither a single relation, as 

used in normalform-decomposition, nor a universal one, applied in the 

logic of normalform-synthesis. As we had seen, none of these methods can 

be used in a real practical data-design. The question is, what is the 

trade-off of implementing the thread-concept. 

All kinds of incorrect (e.g. transitive, partial etc.) dependencies are 

easy to discover along the threads. Before such a normalization, cycles 

must be eliminated. The following set of dependencies is circular, so it 

is a cycle: A --> B --> C --> A. (Note, that some designers would see a 

cycle in (5.3), too. That example does not have a cycle.) The nature of 

entity-relationships are also entered to threads. Mandatory and optional 

connections (strong and weak FDs), partial and total as well as subtype 

relationships may be specified. This helps us to examine connectivity of 

the data-model. (Whether all entities are accessible from the others.) 

Normalization of keys is the first task to be executed, because of 

possible cycles. Any of the dependencies may be incorrect in a cycle. 

Not necessarily the one, at which the cycle had been closed. Human 

reinterpretation is required. Dependencies must not be removed by a tool 

automatically. Having eliminated occasional cycles, transitive, partial 

and other problems are searched for. SYDES manages composite keys both 

as singular units ('A') and as collections ('A=X+..+Z'). A composite key 

may define another one, unlike in other normalization algorithms. Thus 

key-breaking and group dependencies, intersections and hierarchlcal-keys 

can be discovered. 

Normalization of keys is followed by normalization of other attributes. 

Threads cannot be used directly to examine occasional FDs between items 

on parallel branches, such as ORDERS and PRODUCTS in (5.3). This may 

seem to be a major shortcoming. It is in theory, but not in practice. 

We have experimented with threads for quite a long time. We have found 

that at most 13% of *hidden' dependencies had been undetectable by our 

process at very large data-models. These dependencies, and many more, 
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could not have been detected by conventional normalization either. 

One may argue, that such a normalization process is not linear. It is 

not. However, normalization is not a one-time effort. The time required 

for normalization is T * E. 'T' stands for the time of one execution of 

the analysis and 'E' shows the number of iterations. Normalform problems 

are mostly due to human failures, like semantic misinterpretations. If 

an incorrect dependency occurs, a semantical analysis is required. The 

really bad dependency must be removed, not the one suggested by a tool. 

Removal of a dependency or migration of an attribute from one relation 

to another has the consequence that normalization must be repeated. 

Threads are very nice means to find the proper place of attributes in 

one only analysis run. Thus 'T' may be higher as in linear-processes, 

but 'E' is definitely lower. This is explained by an example: 

(5.4) A --> B --> C --> D --> e and A --> e 

Key-attributes are shown in upper-case. We have a single descriptor 

attribute 'e'. When having 30ZZ attributes, a universal relation is out 

of question. When applying decomposition, 'e' would migrate from A to B, 

then from B to C, then from C to D. This is the point, at which its 

transitivity can be detected. Four iterations ('E'=4) were required. 

This transitivity is easy to discover at once when using threads. 

Threads are redundant. They are overlapping. This is a storage problem 

only. It has nothing to do with time required for normalization. Common 

subthreads are analyzed by SYDES only once in one walk-through. 

Conclusion: Threads may not be the most efficient means for a single 

execution of a normalization algorithm. Howewer, they are very useful 

for semantic normalization to reduce number of runs. In addition, our 

heuristic process increases the overall efficiency of the desig-effort 

and the overall optimality of the design-product. This idea is developed 

in the last section. 

6. T h r e a d s  in P r o c e s s - M o d e l l i n g  

We cannot agree to the ' d a t a - d e s i g n  f i r s t '  p r i n c i p l e .  In nice,  small 

a p p l i c a t i o n s  t ha t  route may be followed. It is  unusable in large 

p r o j e c t s .  Data- and processmmodel]ing are p a r a l l e l  e f f o r t s ,  which are 

coupled at a particular phase of the development. 
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One of the design subtasks of this coupling is definition of so called 

navigation pathes. A navigation path is a set of entities managed by a 

particular process-unit• The set is ordered in the sequence of accesses. 

At a more detailed level of design, specification of such navigations 

include access-mode, type of operation executed on the entities, set of 

attributes taken from given entities and their usage-mode. Navigation 

pathes can be supplemented with access- and hit-ratio information. These 

information can give rise to automatic prototyping of programs• At the 

same time, definition of pathes is a good control for data-modelling. 

Let us see a simple example related to (5•3). The task of the process is 

as follows: 

"Find all those customers, who have ordered product 'x' for their sites 

located at 'y'." A possible navigation path for this query is in (6.1): 

(6.1) CUSTOMERS < 

CONTIACTS SIIES ('y') 

I ^ ~ ORDERS I PRODUCTS ('x') 
^ I 
• ITEMS < I 

Such pathes are inherent parts of a process-design, so they have to be 

stored in the design-dictionary. As to define them, one must have the 

network of entities at hand. This is required for analysis reasons. One 

must investigate the next questions: 

• Are entities managed by the process specified at all? 
• Are they internally connectable, or external control is required? 
• What is the reasonable sequence of entity management? 
• Are there any possible alternate routes? 
• What is the direction of access? 

Navigation may be directed upwards and downwards. The entity, at which 

this direction changes, is referred to as an inflexion point. In case of 

(6.1) ITEMS is such. 

How to manage the required entity-relationship 'diagram'? Storing all 

possible pathes would be nonsense in case of several dozens or hundreds 

of entities. However, such pathes are very easy to project from threads• 

One can specify starting (PRODUCTS), inflection (ITEMS), intermediary 

(ORDERS, SITES) and closing (CUSTOMERS) points of navigation pathes. 

We have a Hungarian saying: "Two flies for one flap"• Threads are very 

useful in process-design. Covers and universal relations are not. Thus 

data-normalization and 'process-normalization' can be coupled in SYDES. 
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Processes themselves can and must be 'normalized'. Proces~ structures 

may also be ambigouos, incomplete or redundant. Some of the entity 

operations (addition, deletion, modification) may be missing. Some could 

have been defined duplicately. Paral lolled by statements of operation- 

type, thread-manipulation may give us a convenient basis for analysis of 

entity life-cycles. When two processes are mapped to threads in the same 

way, i.e. they manage the same entity-types in the same sequence, the 

analyst may consider to design of one process instead of two. 

Constraints are very important notions in modelling information systems. 

Normalforms themselves are particular kinds of them, but other types of 

constraints should also be implemented. Conditional process-branches, 

entity-association (not just referential) rules, subtyping of entities, 

appropriate usage of role-names are just a few of them to mention. These 

constraints pertain to a pair, a chain or a special subset of entities, 

and not just to one of them. These constraints are easy to define and 

validate by the aid of threads. 

SYDES a l l ows  f o r  d e f i n i t i o n  o f  e x t e r n a l  i npu t  and ou tpu t  of  a process 

as virtual relations. These are implicit starting and ending leaves of a 

navigation path. Data-flows can be represented in this way. Coupled to 

entities of threads, a most important constraint can be validated. A 

process must be able to provide its output from its input and the items 

of the navigation path. SYDES supports an HIPO-llke process-analysis. 

7. Conc lus ions  

CASE-tools should envolve relational normalforms for analysis of data- 

structures. Conventional normalization algorithms are better to avoid. 

Completeness of NF-concepts must be revised and groups have to be used 

at  l e a s t  in the a n a l y s i s  and d e s i g n  p h a s e s .  N o r m a l i z a t i o n  i s  to  f o l l o w  

the 'semafor' principle. Threads are very powerful constructs to reduce 

the number of iterations during the design process. They lend themselves 

for an easy navigation definition as well as for stating constraints. 

They proved to raise the overall efficiency of the development effort. 
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