
The Conceptual Task Model: a Specification Technique be tween
Requ i rements Eng inee r ing a n d P r o g r a m Development

(Extended abstract)

S. Br inkkemper *° and A.H.M. ter Hofstede *°

* Software Engineering Research Centre, P.O. Box 424,
3500 AK Utrecht, the Netherlands;

o Department of Information Systems, University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, the Netherlands

ABSTRACT

In current practice of information system development, as well as in

its support tools, there exists a gap between the informal

requirements engineering activities and the more formal program

development stage. To overcome this, a specification technique,

called the Conceptual Task Model (CTM), is introduced, that is

related explicitly to the results of the global requirements

specification, i.e. process models and data models, and that can be
input to code generation. The CTM technique is based on and

defined in terms of Predicate\transition nets. CTM integrates the

specification of the data manipulation function with control structures

and local and global data models. The possibilities for the

automated support of CTM are discussed. Finally, the precise
relation with the process model and some other theoretical issues

are presented.

}(3~YWORDS:

Process model, data model, conceptual task model, predicate\transition nets,

CASE-tool.

228

1. INTRODUCTION

The requi rements engineering phase and the program development phase, as

they are commonly dis t inguished in the information system development life

cycle, do not fit to each other proper ly wi th respect to the in t e rmed ia t e

specification of the process view of the system. O u t p u t of r equ i r emen t s

e n g i n e e r i n g should be a formal , complete , prec ise ly def ined p rob lem

specification, from which du r ing p rog ram deve lopmen t code is der ived

manual ly or generated automatically.

The r e q u i r e m e n t s eng ineer ing techniques used are u n f o r t u n a t e l y of an

informal and global na tu re in order to capture the sys tem in a concise and

comprehensible way. Data flow diagrams and Enti ty-Relat ionship diagrams in

some or other nota t ion describe the process view and the data view of the

system respectively. The data models are used to generate the data definition

par t (DDL) of the application software. Regarding the data manipula t ion par t

(DML), the processes at the bottom level of the data flow hierarchy, the so-called

tasks [Br inkkemper 89a], are detailed by means of pseudo coding techniques,

such as mini-specs [Yourdon 79] or action diagrams [Martin 85]. Since these

con ta in i n fo rma l s t a t e m e n t s , p r o g r a m m e r s u s u a l l y need add i t i ona l

specifications and of course, pseudo code can never be input to code generation.

In practice this leads to requi rements engineer ing specifications only being

helpful to define the scope and subject m a t t e r of the project , bu t a

t ransformat ion of the process specification to programs is not made.

The crucial problem is therefore in the specification of the tasks, the processes

at the bot tom level of the process model. The tasks are processing data, tha t in

its t u rn is specified in the data model. The tasks are ref inements of the system

processes and so their decomposition and contents will resul t in the modules
and logic of the ul t imate code.

We here want to introduce a new specification technique in which par ts of the

r equ i remen t s engineer ing can be specified and t ha t can be inpu t to code

genera t ion . We impose on such a specification t echn ique the following
requi rements :

1. The technique should enable fluent t ransfer between the phases and steps.
Cross-references between models should be explicit.

229

2. The technique should be complete with respect to control flow, i.e. triggers,

decisions, dynamic constraints and iteration.

3. The t e c h n i q u e shou ld p roduce u n a m b i g u o u s mode l s t h a t can

straightforwardly be input to code generat ion or programming.

4. The technique should have a sound formal theoretical basis to enable the

verification of theoretical s ta tements and the formulat ion of properties on

models tha t underlie all sorts of validation analysis.

5. The t e c h n i q ue shou ld be d i a g r a m m a t i c in o rder to ensu re fas t

comprehens ion of the models dur ing all k inds of wr i t t en and verbal

communica t ion .

6. The technique should be complete with respect to da ta manipula t ion:

retrieval of (derived) data as well as updates of the data.

There are a lot of methods proposed for the specification of processes, a l though

not especial ly i n t ended to be used for t a sk modell ing. We men t ion here

ACM/PCM [Brodie 82], REMORA [Rolland 82], IML [Richter 82], S t ruc ture

Char t s [Yourdon 79], Process a lgebra [Bergstra 86], JSD [Jackson 83],

EXSPECT [van Hee 88] and Petri-nets [Reisig 85]. We have reviewed most of

t h e m on the i r applicability for task modell ing by assessing the requi rements

above. Those exist ing techniques do to a large extent not satisfy all the

requirements (see [Ter Hofstede 89]).

Task specification, as we propose it here us ing the Conceptual Task Model

(CTM), cont inues wi th the resul t s of the global process specification, for

ins tance denoted in data flow diagrams, and the completed data models. The

manipula t ion of the data is defined in terms of small par ts of the data model,

for which we use here NIAM [Nijssen 89] and RIDL [Meersman 82], but any

combinat ion of data modell ing technique and da ta modell ing language, such

as for instance relational tables and SQL, could be used. The work here can be

seen as an elaboration of ideas in of the work of Genrich [Genrich 87], Kung

and S~lvberg [Kung 86] and Richter and Durchholz [Richter 82].

In the following chapter we will introduce the CTM formally, formulate some

propert ies and give an example of a CTM-net. The implementa t ion of a CTM

suppor t tool for i ts use in sys tem development is discussed in chapter 3.

Chapter 4 contains some theoretical issues, such as the formal correspondence

of the t a s k model wi th the process model . We conclude wi th some

s u m m a r i s i n g r emarks and options for fu r the r research. This work is an

230

extended abstract of [Ter Hofstede 89], which in its turn is an extension of the

research reported in [Brinkkemper 89a].

2. THE C O N C E A L TASK MODEL

In this section first the Conceptual Task Model (CTM) will be defined in terms

of Predicate \ t ransi t ion nets and an example of a CTM-net will be presented.

Then the CTM will be defined formally and the example will be related to the

formal definition. Based on the formal definition we can formulate some

properties a correct CTM-net must have.

2.1 PrT-net basis of the CTM

One way to introduce the CTM is to base it upon the formal ism of

Predicate/transition nets (PrT-nets). The advantage of this proceeding is that

the semantics of the CTM is then (partly) defined through the semantics of PrT-

nets.

PrT-nets are introduced by Genrich and others in a series of articles, starting

with [Genrich 79], and at the moment concluded by [Genrich 87]. In short, PrT-

nets are interpreted, inscribed high-level Petri nets, where inscriptions consist

of variables for individuals (as opposed to the non-individual token of Petri nets)

and truth-valued expressions, preferably in first-order predicate logic. For a

detailed t reatment of PrT-nets we refer to [Genrich 87].

A CTM-net is a PrT-net where

Ins tead of the formalism of f i rs t-order logical formulas and the i r

structures, the conceptual data modelling language NIAM in combination

with the corresponding data manipulat ion language RIDL is used as

supporting structure. Functions and expressions, which can be seen as

special kinds of RIDL functions, are interpreted in this structure.

A distinction is made between task places and information places. A

conceptual schema in NIAM is related to both kinds of places. Each place

of the PrT-net is e i ther a task place or an information place. The

conceptual schema of an information place determines the information

231

structure of the tuples that can enter that place. The conceptual schema of

a task place describes that part of the Universe of Discourse consisting of

all the individuals of the tuples that can enter that place.

An additional typing is related to each task place. When the arity of a task

place P is n, a typing <T1,T2 Tn> is associated with P such that for every

tuple <P1,P2 Pn> that can enter P we have that Pi is of type Ti (for all

lg_i~). The typing of a task place is a l inear representat ion of the two-

dimensional conceptual schema associated with that task place.

Arrows may not be labeled with linear combinations of tuples, but only

with single tuples.

We adopt three simplifying notational conventions. The first convention is that

if we have n (n > 1) disjoint conditions (C1,C2 Cn), possibly combined with m

(m > 0) other conditions (Q1,Q2 Qm), then instead of having n separate

t rans i t ions for each condition, we int roduce one combined t rans i t ion

containing all conditions, as shown in fig. 2.1. Output arrows coming from a

transition containing condition Ci are now attached to the little box containing

Ci inside the combined transition.

Figure 2.1 Combined transition for C1,C2,...,Cn

The second and third notational conventions are shown in fig. 2.2. These

concern database I/O, which is bi-directional in the P red ica te \ t r ans i t ion

formal ism.

2.2 ~x~mple

In fig. 2.3, an example of a CTM-net is shown. This CTM-net calculates the

rental proceeds of a film, which is defined as zero for new films and for

rentable films as the number of tapes that contain that film times the rental

price for that film.

232

<d>

is a notational shorthand for

-!
is a notational shorthand for

Figure 2.2 Double arrow convent ion for the CTM

In t ransi t ion T1 it is checked whether the film is new or not. Information of the

in format ion place Information concerning films and tapes is necessary to

check this. If the film is new, a token consisting of tha t film is placed in the

inpu t place P2 of t ransi t ion T2. Transi t ion T2 t hen adds the current default

value for new films (zero) to the tuple. If the film is not new, which is

equivalent to the film being rentable, t ransi t ion T3 is enabled. Transi t ion T3

calculates the number of tapes t ha t contain the processed film. Transi t ion T4

then searches for the rental price of the film and performs the multiplication of

the number of tapes n and tha t rental price. Transit ion T3 as well as t ransi t ion

T4 need informat ion from the information place Information concerning films
and tapes. At the end of the calculation, task place P5 will contain the film and

its rental proceeds.

Near every place of the CTM-net, the corresponding conceptual schema is

shown. These conceptual schemas contain informat ion about the tuples tha t

233

q

T2

T

Film is new?
-I

Is_new (d,f)

<f>

<Film>

C1

G

Py<.ontaF,,m

has-as-late-
charge-a-day i
is-late-charge~:
a-day*of

C ~ ontainA(~tf ~
is-recorded-
on

has-rental-
price
is-rental-
price-of

~,<f>

Default proceeds

m=o
Number of tar~

Number(d,f,n)

P4 .~<f,n> C4

<d>

Information
concerning

films and
tapes

<f,m>
T4

Film,

<f,n>

/ has is \
number number

of tapes of tapes of

Total price <1:1>

Price(d,f,n,m)

~ , m >

total proceeds of
proceeds

Figure 2.3 CTM-net for rental proceeds calculation

234

can en te r the place to which the conceptual schema belongs. Conceptual

schema C2 for instance, asser ts tha t every film tha t enters task place P2 is

new. The s tar in the conceptual schemas C5 and C6 denotes tha t the role, in

which box the star is placed, is redundant .

The RIDL functions used in the transi t ions of fig. 2.3 are shown in fig. 2.4. In

the function headings, we also showed the database on which these functions

operate. In the function definitions we left this relation implicit.

PREDICATE Is_new (DATABASE d; FILM f);
BEGIN

f IS NOT IN Rentable-film
END;

PREDICATE Number (DATABASE d; RENTABLE FILM f, QUANTITY n);
BEGIN

n -- NUMBER-OF Tape contains Rentable-film f
END;

PREDICATE Price (DATABASE d; RENTABLE FILM f, QUANTITY n, AMOUNT OF MONEY m);
BEGIN

m = n * Amount-of-money is-rental-price-of Rentable-film f
END.

Figure 2.4. RIDL-queries belonging to CTM-net for rental proceeds calculation

Of course the CTM-net of fig. 2.3 is not the only possible solution to model the

rental proceeds calculation. In fact i t is a ra ther elaborate solution since it is

possible to combine all t he RIDL express ions in one t r ans i t ion . The

d i sadvan tage of t h a t proceeding however is, t h a t asser t ions about local

information remain implicit. Another option is e.g. to have t ransi t ion T1 put a

tuple <f,0> directly into task place P5 if the film f i s new. This obscures however

the meaning of the zero. Guide-lines for modelling a task as a CTM-net will be

reported soon.

2~ FormAl definition

After this introduction the definition of the Conceptual Task Model can be given
in a formal way.

D e f i n i t i o n 2.1 A CTM-net is a 12-tuple (l-I, T, P, Z, W, ~ I, O, A, O, X, ~), where

1-I is a non-empty finite set of places,

235

T is a non-empty finite set of transitions (not combined transitions in the

sense of fig. 2.1),

P is a finite set of parameterised RIDL expressions,

Z is a non-empty finite set of conceptual schemas,

is a finite set of l inear typings (a linear typing is a tuple of arbi t rary

length consisting of entity types),

Z is a non-empty finite set of variables,

I C__ H is a set of information places; F = I]/I (by definition) is the set of task

places,

C 12 x T u T x YI is a non-empty set of arrows, denoting tha t a place is

input for or output of a transition,

A • SO~(Z) ¢p is a function from the set of arrows ¢P to the set $o So(Z) of

tuples of arbitrary length of variables chosen from 7~ denoting the labeling

of the arrows with a tuple of variables,

O • pT is a function from the set of transitions T to the set of parameterised

RIDL expressions P, denoting which RIDL query belongs to which

transition,

X • Z 1-I is a function from the set of places H to the set of conceptual

schemas Z, denoting which conceptual schema belongs to which place,

g~ • ~F is a function from the set of task places F to the set of linear typings

~ , denoting which typing belongs to which task place.

Now we relate the CTM-net of fig. 2.3 to this definition of a CTM-net. We will

give examples of elements of each of the constituents of the 12-tuple:

P1,P2,..,P5 are elements of 12;

Tla, Tlb and T2 are elements o f t (Tla and Tlb are transitions that would

become visible if we would unfold transition T1 according to the notational

shorthand of figure 2.1);

Number(d,f,n) is in P;

C1,C2 C6 are the elements of Z;

<Rentable Film, Quantity> is in ~;

f, m and n are elements of Z;

Information concerning films and tapes is the only element of I, P1 is an

element of F;

236

(P1,T1) is an element of ~, denoting the arrow going from task place P1 to

transition T1;

((T3,P4),<f,n>) is an element of A, denoting the labeling of the arrow going

from transition T3 to task place P4 with the tuple <f,n>;

(T4,Price(d,f,n,m)) is contained in ~;

(P5, C5) is an element of X;

(P5,<Rentable Film, Amount of Money>) is an element of D.

2.4 Properties

To formulate the properties a CTM-net must have, we introduce some auxiliary

functions and predicates in an informal way. Most of these functions and

predicates cannot be given here in a formal way, since we do not have a formal

definition of RIDL and NIAM at hand.

The function entity operates on a conceptual schema and yields the set of

entity types occurring in that conceptual schema,

Type_in_expression (r, v, e) is t rue if and only if the formal parameter v is

supposed to be of type e in expression r,

The function merge operates on a set of conceptual schemas and yields the

integration of these schemas,

The predicate part_of defines a binary relat ion between conceptual

schemas and is true if and only if the first conceptual schema is part of the

second conceptual schema,

The function domain operates on a RIDL expression and yields the domain

(this is a conceptual schema) of that expression.

Among others, the following properties must hold for the 12-tuple:

Property ~1

Vp• I Vt• T [(p,t) • • ¢~ (t,p) • •]

This property states that an information place is never only input for nor only

output of a transition.

Property2~

Vpe FI Bte T [(p,t) • @ v (t,p) • ~]

237

Every place is input for or output of a t ransi t ion. F rom this proper ty and the

f irst proper ty one can derive tha t every informat ion place is input for a t leas t

one t rans i t ion and also tha t every informat ion place is output of at least one

transi t ion. It mus t not be forgotten however, t ha t the set of informat ion places

m a y be empty.

Property

Vpe l-I/I [u ~(p) = enti ty (X(p))]

This proper ty s ta tes tha t the set (not multi-set!) of ent i ty types occurring in the

typing of a t ask place equals the set of ent i ty types occurring in the conceptual

schema of t ha t task place.

 operty 4

Vte T Vve Z Ve [type_in_expression (O (t), v, e)

Vpe I]/I Vi [(((p,t) e • A (A(p,t))i = v) ~ (~(P))i = e) A

(((t,p) e • A (A(t,p))i = v) ~ (g~(P))i = e)]]

This complex looking property simply states tha t the type of a formal pa rame te r

as can be derived from the typing of the task place to which it belongs should

agree wi th the w a y this formal p a r a m e t e r is used (i.e. of which type it is

supposed to be) in the expression of the t ransi t ion to which it is a local variable.

Property9 5

Vt e T [part_of(domain(O(t)), merge({c I c e Z]3 p e I

[(p,t) e • A X(p) = C]}))]

A RIDL expression in a t ransi t ion should operate on the conceptual schemas of

the informat ion places connected to tha t transit ion, i.e. the domain of the RIDL

expression ~(t) of the t ransi t ion t is pa r t of the union of the conceptual schemas

c of the informat ion places p connected to t. This is a simple formulat ion of the

type checking of quer ies and is der ived f rom the more impor t an t rule t h a t

quer ies a re fo rmu la t ed in t e r m s of the da t a model. Of course more t h a n

property 2.5 can be stated about the relation of the query and the da ta model, bu t

t ha t is beyond the scope of this work. We only formulate the following simple

corollary.

C o r o l l a r y 2.6. The ent i ty types in a RIDL expression are a subset of the ent i ty

types of the information places:

238

Vte T [entity(domain(O(t))) _C entity(merge({c e Z I 3 p • I [(p,t)• • ^

X(p) = c]}))]

Take the RIDL expression Price in fig. 2.4 as an example. This query has the

types Rentable Film and Amount of money as entity types, which occur both in

the conceptual schemas C6 of fig. 2.3.

There are more properties a correct CTM-net mus t have. We will defer

discussion of one of those properties to section 4. For a discussion of other

properties of correct CTM-nets, we refer to [Ter Hofstede 89]. Worth stating

here is that a CTM-net should contain the complete specification of a task. This

requirement however, is not verifiable, since the completeness of a specification

depends on the completeness of the informants' specification.

3. CASE TOOL IMPI,EMENTATION

The CTM technique is hardly applicable in a manual way for the modelling of

tasks of a realistic sized IS, due to the complexity of the resulting diagrams.

Automated support of the technique in a tool, possibly combined with modelling

techniques for activities, data and user interaction, is required. Properties are

formulated, on which all sorts of analysis of application models can be based.

In fig. 3.1 we show a proposal for a screen layout of a tool supporting the

modelling of tasks using the CTM. The data models of the places and the RIDL-

queries of the transit ion are shown in separate pop-up windows. When these

windows are left out, a plain PrT-net remains.

The tool may provide additional support for a modelling procedure in the sense

as described in [Brinkkemper 88]. To be distinguished are the preliminary task

modelling, identification of individual transitions, modelling of data at the

places, formulation of the RIDL-queries and the checks on the components.

When the transitions in a task are known, they can be put in a preliminary

schema, wi th some in te rmed ia te task places connect ing them. Those

transitions can be modelled and analysed separately. After tha t they can be

integrated for global analysis of consistency, connectivity or for other purposes.

239

Conceptual schema of P1 Input to T2

is available

Conceptual schema of View V1 Input to T2

Typing: <Rentable Film, Person~

T2
Searching price

Rental price
(a,f,pr) (a,f,pr)

, pr>

2

price price of

Typing: <Rentable Film, Amount of Money>
Datastore: Information concerning films and ...

V l
Information
concerning
films and
tapes

Conceptual schema of P2 output from T2

Typing: <Rentable Film, Person,
Amount of money>

RIDL-query of transition T2

FUNCTION Rental price (DATABASE a; RENTABLE FILM f,
AMOUNT OF MONEY pr) BOOL;

BEGIN
pr = Amount-of-money is-rental-price-of Rentable film f

END;

Fig. 3.1 Screen layout of CTM tool

240

However, we propose in this section a practical d iagramming convention, tha t

deviates in two ways from the theoret ical technique. This is necessary to

improve the practical applicability. The discrepancies between the practical

and the theoretical technique can be overcome by s tandard t ransformat ions ,

t ha t can be derived from the descript ions below. The adapta t ions are the

following.

First, we use data base views instead of database tuples. Since tasks need only a

certain par t of the data present in the data base, we define a view tha t models

this part. This view is positioned on the arrow from the information place to the

t rans i t ion . An in fo rma t ion place gets s u r r o u n d e d by such views. The

conceptual schema of a view is a derivable par t of the conceptual schema of the

information place. Recall t ha t the information places correspond with the data

for which retrieval queries or update queries are formulated, whereas the data

model at the task places s tand for the parameters of the transit ion. Syntactical

and semant ical cross-checks of queries and pa ramete r s versus da ta models

can be performed automatically.

All inpu ts and outputs of a t ransi t ion are now specified by small conceptual

schemas. An example of a view is shown in fig. 3.1 for the information place

Information concerning films and tapes. The conceptual schema of view V1 is

par t of the conceptual schema C6 in fig. 2.3. In the PrT formalism such views

are not prohibited, but the strong relation of the data in the data store with tha t

in the da ta view m u s t be described completely. This is not practical, since

database managemen t systems implement views very effectively.

Secondly, we propose for the tool implementat ion to support the decomposition

of tasks . This decompos i t ion obeys ana logous ru les as those for the

decomposition of activities in data flow diagrams. The conceptual schemas at

the places may also be decomposed, but the decomposition mus t always satisfy

the r equ i r emen t tha t tasks process da ta e lements (see the defini t ions in
[Brinkkemper 89a]).

In PrT-nets this is again not possible due to the unclear firing semantics of the

decomposition, when data elements corresponding to more t han one inpu t or
output place are optional.

Next to this and next to the discussions in the previous sections, we suggest
three additional functionalities in a CTM-tool.

241

1. Suppor t of modell ing t ransparency. Because of the dependencies between

the t ask models and the models of other types, like activity models and

global conceptual schemas, developers working wi th the tool wish to be

able to t r ans fe r directly from one type of model to the o ther via a

dependency between the models. For example the t ransfer from a task

model to the activity it belongs to. See [Brinkkemper 89b] for a discussion of

the modell ing t ransparency functionali ty of workbenches and the various

degrees of it.

2. Syntactic and semant ic analysis of data models and queries. As already

suggested above, the presence and the type of the data tha t are processed or

created in a t rans i t ion can be analysed and compared wi th the queries

specified. Fur thermore, the violation of the constraints can be pointed out.

3. Suppor t of re-use. A support tool can compare the pa t t e rns of the data

models or of the t ransi t ions with existing models and suggest to make use

of them.

For a discussion of system generation, reverse engineer ing and s imulat ion in

the CTM, we refer to [Ter Hofstede 89].

4. TIIEORETICAL I S S U I ~

In this section we will address some theoretical issues concerning the CTM.

Firs t the relat ion between the CTM and data flow diagrams is invest igated.

Then the computat ional power of the CTM is considered briefly. Finally some

remarks about correctness of conceptual schemas at task places are made.

4.1 The relation between activities and tasks

Data flow diagrams generally consist of activators and flows. Flows represent

in format ion in motion, act ivators can be considered as funct ions on these

flows. A well-known representat ive of data flow diagrams are the ISAC activity

graphs or A-graphs [Lundeberg 80]. We will use an adapted version of these

activity graphs here.

242

D e f i n i t i o n 4.1 A da ta flow d iagram is a 9-tuple (S, A, D, F, R, Q, U, G, H),

w h e r e

S is a non-empty finite set of states,

A is a non-empty finite set of activities,

D C_C_ S is a set of data stores; E = S \ D (by definition) is a set of flows,

F C_C_ S x A u A x S is a non-empty set of arrows,

R C E x E is the subflow relation,

Q C A x A is the subactivity relation,

U C__ S × A is the substate-activity relation,

G is a non-empty finite set of conceptual schemas,

H • G S is a function from the set of s tates to the set of conceptual schemas.

In [Fa lkenberg 89] some of the rules are s ta ted this 9-tuple m u s t fulfil. An

example of such a rule would be t h a t every s ta te has a source, which could

formally be expressed as:

V s • S 3 a • A [(a , s) • F]

D e f i n i t i o n 4.2 The set of tasks Y d o f a data flow diagram D = (S t AE, DE FE, RE,

QE, Ud; GE, H ~ is given by:

Yd = { t I t • Ad1-3 v• Ad[(v,t) • Qd] }

Informal ly , a t a sk is an act ivi ty a t the bot tom level of the decomposi t ion

hierarchy, i.e. an activity t ha t is not decomposed into o ther activities.

D e f i n i t i o n 4.3 Let a be a task of a diagram D, a • YE, then

Wd(a) = {sl s • Sdl ((a,s) • F d v (s,a) • Fd) ^ (s e E d ~ -,3 t • E d [(t,s) • Rd]) }

Wd(a) is the set of s tates which are input for or output of the task a and do not

have any subflows.

These def ini t ions enable us to fo rmula te the re la t ions be tween da t a flow

d iagrams and CTM-nets formally.

Suppose a is a task of da ta flow diagram

D = (SE, Ad, DE, FE, Rd; QE, UE, GE, H ~

So a e Yd. Let

Ca = (Ha, Ta, Pa, Za, ~ a , Za, Ia, Ca, Aa, Oa, Xa, ~ a)

243

represent the CTM-net for task a.

The relation between the data flow diagram D and the CTM-net Ca is then

expressed via an iniective function fa from the set of input and output states of

task a in the data flow diagram Wd(a) and the set of places of task a in the

CTM-net Ha:

fa: Wd(a) -~ Ha.

For this function fa the following properties must hold:

Proper ty 4.4 Bijecfive data store mapping

fa I nd--> Ia is bijective

This property states that the restriction of fa to Dd is a bijective mapping on Ia,

i.e. every information place of the CTM-net Ca is the unique image of a data

store in the data flow diagram D which is input or output of the task a.

Proper ty 4.5 Consistent input property

V s e Wd(a) [(s,a) e F d ¢ ~ 3 u e Ta [(fa(s),u) e Ca ^ (fa(s) e Ia

Aa((fa(s),u)) = ha((u,fa(s))))]]

If a flow s, which is not decomposed, is input for task a in the data flow

diagram D, then there exists a transit ion in the CTM-net Ca which has the

corresponding place fa(s) as input. If a data store s is input for task a in the

data flow diagram D, then there exists a transition in the CTM-net Ca which is

connected to the corresponding place fa(s) by two arrows, one input arrow and

one output arrow, with the same labeling. Conversely, if a place tha t is the

image of a flow s, is input for a transition of the CTM-net Ca, then flow s must

be input for task a in the data flow diagram D. If a place, that is the image of a

data store s, is input as well as output of a certain transition of the CTM-net Ca

with both arrows having the same labeling, then data store s must be input for

task a in the data flow diagram D.

Note that when in a CTM-net a place is input as well as output of a certain

transition and the arrow going from that place to the transition has the same

labeling as t he arrow going from the transition to that place, this means tha t

the contents of that place is only used, not changed, by the transition.

244

Proper ty 4.6 Consistent output property

V s e Wd(a) [(a,s) e F d ¢ * 3 u e Ta [(u,fa(s)) e Ca ^ (fa(s) e Ia

Aa((fa(s),u)) ¢ Aa((u,fa(s))))]]

The explanation of this property is analogous to the explanation of the previous

property.

Proper ty 4.7 Identical conoepta~al schemas proper ty

V s e WE(a) [Hd(s) = Xa(fa(s))]

A state s in the data flow diagram of task a must be associated to the same

conceptual schema as its corresponding place fa(s) in the CTM-net.

Normally activities, flows, places and transitions can be named. In this case s

and fa(s) should also have the same name.

Based on the properties of the CTM and the ones specified above, some

theorems can be formulated of which we present one.

T h e o r e m 4.8 The domain of all queries of a task is specified in the conceptual

schemas related to the data stores of the task.

Proof: Let a be an arbitrary task and let Ta be the set of all transitions ofa.

Define Q = {qe Pa 13te Ta [q = O(t)]}. Q is then the set of all queries of the task a.

According to property 2.5 the domain of an arbitrary query qe Q is specified in

conceptual schemas corresponding to information places p, tha t are input for
the transition t: (p,t)e Ca.

From property 4.4 we deduce that this p is the image of a data store s: p = fa(s),

and according to property 4.7 the conceptual schema Ha(s) of s is the same as

the conceptual schema Xa(p) of p. QED

In the same style it can be proven that all data stores of the data flow diagram

are used by queries in the tasks and that the images of any two states related to

the task a in the data flow diagram are connected via a path in the CTM-net.

4.2 Computational power of the CTM

There are various approaches to capture the idea of computation. The class of

the Turing computable functions is an example of such an approach. The

principle tha t Turing machines are formal versions of algorithms and that no

computational procedure will be considered an algori thm unless it can be

245

presented as a Turing machine is known as Church's Thesis or the Church-

Turing Thesis [Lewis 81]. If we can prove that in the CTM one can simulate

any arbitrary Turing machine, we prove in fact that the CTM can compute any

computable function. In [Ter Hofstede 89] a CTM-net is presented tha t

simulates an arbi t rary Turing machine.

4~ Correctness of concept~ml schem_~s at task places

A conceptual schema of a task place describes tha t part of the Universe of

Discourse of those individuals that can enter that part icular task place. The

conceptual schemas output of a certain transition must be derivable from the

conceptual schemas at the places input for tha t t ransi t ion and the RIDL

expression belonging to that transition.

As an example consider fig. 4.1. In the simple CTM-net shown there, either the

conceptual schema in task place P2 or the conceptual schema in task place P1

is incorrect. In the conceptual schema of P1 we see that a manager never is a

coworker and vice versa, while in the conceptual schema of P2 we see that it is

forbidden to be manager and coworker of the same project. Tuple <e,m,p>

comes in and goes out of transition T, so every tuple <e,m,p> that enters P2 was

previously contained in P1. Hence the population of P2 satisfies the constraints

belonging to P1. The conclusion must be that one of the schemas is incorrect.

The example shown was extremely simple, in general the situation is much

more complex. Places can be output of more transitions, transitions can have

more input places and schemas can change due to the RIDL expressions in the

transit ions and the schemas in the information places. For a more detailed

discussion on correctness aspects of conceptual schemas at task places we

refer to [Ter Hofstede 89].

5. CONCLUSIONS

In this paper the Conceptual Task Model was introduced, which was intended

to fill the gap between informal requi rements engineering and program

development. CTM-nets were defined as special kinds of PrT-nets and the CTM

was defined formally accompanied with some of the properties of a correct

246

CTM-net. A CASE tool implementation of the CTM was discussed briefly and

the relation between activities and tasks investigated. Final ly the issues of

computational power of the CTM and correctness of conceptual schemas at

task places, were addressed.

is-manager-
of

<Employee, Employee, ~ , ~
P1 Project> ~ .f,~'/"

i:f-coworker-

is-manager-

P2 (

has-as-
manager

I
has-as-
coworker

has-as-
of

<e,m,p>

Employee, --,

manager

®

?
Project> Js-coworker- has-as-

of coworker

Figure 4.1 Incorrect CTM-net with respect to conceptual
schemas

The CTM has several strong points. It was developed to fulfil the requirements

on task model l ing techniques as formulated in section 1. F luent transfer

between intermediate design results is supported due to the well-defined
relation between activities and tasks and the incorporation of a data modelling

technique. Tasks can be modelled on a conceptual level, thus enabling the
analyst to abstract from particular machines and programming languages

and their limitations. The CTM allows for code generation and the verification

of al! kinds of theoretical s tatements . Common constructs used in the

247

processing of data elements as well as data manipulation and data retreival

can be expressed easily. Finally, in principle every computable function can be

specified in the CTM.

The CTM has however also some weak properties, inherited from its PrT basis.

Update and retrieval form a database cannot be modelled in an elegant way.

Hierarchical decomposition of tasks is not possible, due to the unclear firing

semantics of the decomposition, when data elements corresponding to more

than one input or output place are optional. CTM-nets tend to be

diagrammatically quite complex, which makes the support by a tool an

absolute requirement.

The above mentioned.weak properties of the CTM suggest directions for future

research. Other options for future research are the development of a detailed

modelling procedure for the CTM and the implementation of a tool, that

includes the various consistency and correctness analyses based on the

formulated properties.

6. REFERENCES

[Bergstra86] Bergstra , J.A. and J.W. Klop, "Process Algebra:
specification and verification in bisimulation semantics". In:
Mathematics and Computer Science II, CWI Monograph 4, Eds. M.
Hazewinkel, J.K. Lenstra and L.G.L.T. Meertens, North-Holland,
1986, pp.61-94.

[Brinkkemper88] Br inkkemper , S. , N. Brand and J. Moormann,
Deterministic Modelling Procedures for Automated Analysis and

Design Tools". In: Proceedings of the CRIS 88 conference on
Computerized Assistance during the Information Systems Life
Cycle, Eds. T.W. Olle, A.A. Verrijn Stuart and L. Bhabuta, Egham,
England, September 1988, North-Holland, Amsterdam, pp. 117 - 160.

[Brinkkemper 89a] Brinkkemper, S. and A.H.M. ter Hofstede, "The
Modelling of Tasks at a Conceptual Level in Information Systems
Development Methods". In: Workshop Proceedings for the CRIS
review workshop, Eds. G.M. Nijssen and S. Twine, IFIP WG 8.1
meeting, Sesimbra, Portugal, June 1989.

[Brinkkemper89b] Brinkkemper, S., "The Essence and Support of
Modelling Transparency", Position paper. In: Advance Working
Papers, Third Internat ional Conference on Computer Aided

248

Software Engineering, Ed. J. Jenkins, Imperial College, London,
UK, July 1989.

[Brodie82] Brodie, M.L. and E. Silva, "Active and Passive Component
Modelling: ACM/PCM". In: [Olle 82], pp.41-92.

[Falkenberg 89] Falkenberg, E.D., R. van der Pols and Th.P. van der Weide,
"Understanding Process Structure Diagrams". In: Workshop
Proceedings for the CRIS review workshop, Eds. G.M. Nijssen and S.
Twine, IFIP WG 8.1 meeting, Sesimbra, Portugal, June 1989.

[Genrich 79] Genrich, H. and K. Lautenbach: "The Analysis of
Distributed Systems by means of Predicate/Transition Nets",
Semantics of Concurrent Computation. Evian 1979, Ed. G. Kahn,
Lecture Notes in Computer Sciences, vol.70, Springer Verlag 1979,
pp.123-146.

[Genrich 87] Genrich, H.: "Predicate/Transition Nets". In Petri Nets:
Central models and their properties, Eds. W. Brauer, W. Reisig and
G. Rozenberg, L.N.C.S. nr 254, Springer Verlag 1987, pp 207-247.

[van Hee88] van Hee, K.M., G.J. Houben, L.J. Somers and M.
Voorhoeve, "Executable Specifications for Information Systems",
Computing Science Notes, nr. 88/05, Department of Computing
Science, Eindhoven University of Technology, March 1988.

[Jackson 83] Jackson, M.A., "System Development", Prentice Hall, 1983.

[Kung 86] Kung, C.H. and A. S61vberg, "Activity Modeling and Behavior
Modeling". In: Information System Design Methodologies
Improving the Practice, Eds. Olle, T.W., H.G. Sol and A.A. Verrijn
Stuart, Proceedings of the CRIS-86 conference, North Holland Publ.
Co., 1986, pp. 145- 171.

[Lewis 81] Lewis, H.R. and C.H. Papadimitriou, "Elements of the theory of
Computation", Prentice Hall, 1981.

[Lundeberg 80] Lundeberg, M., G. Goldkuhl and A. Nilsson, "Information
Systems Development - A Systematic Approach". Prentice Hall,
Englewood Cliffs, 1980.

[Martin 85] Martin, J. and C. McClure, "Action Diagrams", Prentice Hall,
Englewood Cliffs, N.J., 1985.

[Meersman82] Meersman, R., "The RIDL Conceptual Language",
Research Report ICIAS, Brussels, 1982.

[Nijssen 89] Nijssen, G.M. and T.A. Halpin, "Conceptual Schema and
Relational Database Design: a Fact-Based Approach", Prentice Hall,
1989.

[Olle 82] Olle, T.W., H.G. Sol and A.A. Verrijn Stuart (Eds.), "Information
System Design Methodologies - A Comparative Review". North
Holland Publ. Co., 1982.

[Reisig 85] Reisig, W., "Petri Nets", EATCS Monographs on Theoretical
Computer Science Springer Verlag, 1985.

249

[Richter 82] Richter, G. and R. Durchholz, "IML-Inscribed High-Level
Petri Nets". In: [Olle 82], pp.335-368.

[Rolland 82] Rolland, C. and C. Richard, "The REMORA Methodology for
Information System Design and Management". In: [Olle 82], pp. 369-
426.

[TerHofstede 89] Ter Hofstede, A.H.M. and S. Brinkkemper, "Conceptual
Task Modelling", Technical report nr. 89-14, Department of
Information Systems, University of Nijmegen, September 1989.

[Yourdon 79] Yourdon, E. and L. Constantine, "Structured Design",
Yourdon Press, Englewood Cliffs, N.J., 1978.

250

