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ABSTRACT 

In current practice of information system development, as well as in 

its support tools, there exists a gap between the informal 

requirements engineering activities and the more formal program 

development stage. To overcome this, a specification technique, 

called the Conceptual Task Model (CTM), is introduced, that is 

related explicitly to the results of the global requirements 

specification, i.e. process models and data models, and that can be 
input to code generation. The CTM technique is based on and 

defined in terms of Predicate\transition nets. CTM integrates the 

specification of the data manipulation function with control structures 

and local and global data models. The possibilities for the 

automated support of CTM are discussed. Finally, the precise 
relation with the process model and some other theoretical issues 

are presented. 
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1. INTRODUCTION 

The requi rements  engineering phase and the program development  phase,  as 

they are commonly dis t inguished in the  information system development  life 

cycle, do not  fit to each other  proper ly  wi th  respect  to the  in t e rmed ia t e  

specification of the  process view of the  system. O u t p u t  of r equ i r emen t s  

e n g i n e e r i n g  should  be a formal ,  complete ,  prec ise ly  def ined  p rob lem 

specification,  from which du r ing  p rog ram deve lopmen t  code is der ived 

manual ly  or generated automatically. 

The r e q u i r e m e n t s  eng ineer ing  techniques  used  are u n f o r t u n a t e l y  of an 

informal and global na tu re  in order to capture the sys tem in a concise and 

comprehensible way. Data flow diagrams and Enti ty-Relat ionship diagrams in 

some or other  nota t ion  describe the  process view and the data  view of the 

system respectively. The data  models are used to generate  the data  definition 

par t  (DDL) of the application software. Regarding the data  manipula t ion  par t  

(DML), the processes at  the bottom level of the data flow hierarchy, the  so-called 

tasks [Br inkkemper  89a], are detailed by means  of pseudo coding techniques,  

such as mini-specs [Yourdon 79] or action diagrams [Martin 85]. Since these 

con ta in  i n fo rma l  s t a t e m e n t s ,  p r o g r a m m e r s  u s u a l l y  need  add i t i ona l  

specifications and of course, pseudo code can never be input  to code generation. 

In practice this  leads to requi rements  engineer ing specifications only being 

helpful  to define the  scope and  subject  m a t t e r  of the  project ,  bu t  a 

t ransformat ion of the process specification to programs is not  made. 

The crucial problem is therefore in the specification of the tasks, the processes 

at the bot tom level of the process model. The tasks are processing data,  tha t  in 

its t u rn  is specified in the  data model. The tasks are ref inements  of the system 

processes and so their  decomposition and contents  will resul t  in the  modules  
and logic of the  ul t imate  code. 

We here want  to introduce a new specification technique in which par ts  of the 

r equ i remen t s  engineer ing  can be specified and t ha t  can be inpu t  to code 

genera t ion .  We impose  on such a specification t echn ique  the  following 
requi rements :  

1. The technique should enable fluent t ransfer  between the phases and steps. 
Cross-references between models should be explicit. 
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2. The technique should be complete with respect to control flow, i.e. triggers, 

decisions, dynamic constraints  and iteration. 

3. The  t e c h n i q u e  shou ld  p roduce  u n a m b i g u o u s  mode l s  t h a t  can 

straightforwardly be input  to code generat ion or programming.  

4. The technique should have a sound formal theoretical basis to enable the  

verification of theoretical s ta tements  and the  formulat ion of properties on 

models tha t  underlie all sorts of validation analysis. 

5. The  t e c h n i q ue  shou ld  be d i a g r a m m a t i c  in  o rder  to ensu re  fas t  

comprehens ion  of the  models  dur ing  all k inds  of wr i t t en  and verbal  

communica t ion .  

6. The technique should be complete with respect  to da ta  manipula t ion:  

retrieval of (derived) data as well as updates of the data. 

There are a lot of methods proposed for the specification of processes, a l though 

not  especial ly i n t ended  to be used for t a sk  modell ing.  We men t ion  here  

ACM/PCM [Brodie 82], REMORA [Rolland 82], IML [Richter 82], S t ruc ture  

Char t s  [Yourdon 79], Process a lgebra  [Bergstra  86], JSD [Jackson 83], 

EXSPECT [van Hee 88] and Petri-nets [Reisig 85]. We have reviewed most  of 

t h e m  on the i r  applicability for task  modell ing by assessing the  requi rements  

above. Those exist ing techniques  do to a large extent  not  satisfy all the  

requirements  (see [Ter Hofstede 89]). 

Task specification, as we propose it  here us ing the  Conceptual  Task Model 

(CTM), cont inues  wi th  the  resul t s  of the  global process specification, for 

ins tance denoted in data  flow diagrams, and  the completed data  models. The 

manipula t ion  of the data  is defined in terms of small par ts  of the data  model, 

for which we use here NIAM [Nijssen 89] and RIDL [Meersman 82], but  any 

combinat ion of data  modell ing technique and da ta  modell ing language,  such 

as for instance relational tables and SQL, could be used. The work here can be 

seen as an  elaboration of ideas in of the work of Genrich [Genrich 87], Kung 

and S~lvberg [Kung 86] and Richter and Durchholz [Richter 82]. 

In  the following chapter  we will introduce the CTM formally, formulate  some 

propert ies and give an example of a CTM-net. The implementa t ion  of a CTM 

suppor t  tool for i ts  use in sys tem development  is discussed in chapter  3. 

Chapter  4 contains some theoretical issues, such as the formal correspondence 

of the  t a s k  model  wi th  the  process model .  We conclude wi th  some 

s u m m a r i s i n g  r emarks  and  options for fu r the r  research.  This work is an 
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extended abstract of [Ter Hofstede 89], which in its turn  is an extension of the 

research reported in [Brinkkemper 89a]. 

2. THE C O N C E A L  TASK MODEL 

In this section first the Conceptual Task Model (CTM) will be defined in terms 

of Predicate \ t ransi t ion nets and an example of a CTM-net will be presented. 

Then the CTM will be defined formally and the example will be related to the 

formal definition. Based on the formal definition we can formulate  some 

properties a correct CTM-net must  have. 

2.1 PrT-net  basis of  the CTM 

One way to introduce the CTM is to base it  upon the formal ism of 

Predicate/transition nets (PrT-nets). The advantage of this proceeding is that  

the semantics of the CTM is then (partly) defined through the semantics of PrT- 

nets. 

PrT-nets are introduced by Genrich and others in a series of articles, starting 

with [Genrich 79], and at the moment concluded by [Genrich 87]. In short, PrT- 

nets are interpreted, inscribed high-level Petri nets, where inscriptions consist 

of variables for individuals (as opposed to the non-individual token of Petri nets) 

and truth-valued expressions, preferably in first-order predicate logic. For a 

detailed t reatment  of PrT-nets we refer to [Genrich 87]. 

A CTM-net is a PrT-net where 

Ins tead  of the formalism of f i rs t-order  logical formulas and the i r  

structures, the conceptual data modelling language NIAM in combination 

with the corresponding data  manipulat ion language RIDL is used as 

supporting structure.  Functions and expressions, which can be seen as 

special kinds of RIDL functions, are interpreted in this structure. 

A distinction is made between task places and information places. A 

conceptual schema in NIAM is related to both kinds of places. Each place 

of the PrT-net  is e i ther  a task place or an information place. The 

conceptual schema of an information place determines the information 
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structure of the tuples that  can enter that  place. The conceptual schema of 

a task place describes that  part  of the Universe of Discourse consisting of 

all the individuals of the tuples that  can enter that  place. 

An additional typing is related to each task place. When the arity of a task 

place P is n, a typing <T1,T2 ..... Tn> is associated with P such that  for every 

tuple <P1,P2 ..... Pn> that  can enter  P we have that  Pi is of type Ti (for all 

lg_i~). The typing of a task place is a l inear representat ion of the two- 

dimensional conceptual schema associated with that  task place. 

Arrows may not be labeled with linear combinations of tuples, but  only 

with single tuples. 

We adopt three simplifying notational conventions. The first convention is that  

if  we have n (n > 1) disjoint conditions (C1,C2 ..... Cn), possibly combined with m 

(m > 0) other conditions (Q1,Q2 ..... Qm), then instead of having n separate  

t rans i t ions  for each condition, we int roduce one combined t rans i t ion  

containing all conditions, as shown in fig. 2.1. Output arrows coming from a 

transition containing condition Ci are now attached to the little box containing 

Ci inside the combined transition. 

Figure 2.1 Combined transition for C1,C2,...,Cn 

The second and third notational conventions are shown in fig. 2.2. These 

concern database I/O, which is bi-directional in the P red ica te \ t r ans i t ion  

formal ism.  

2.2 ~x~mple 

In fig. 2.3, an example of a CTM-net is shown. This CTM-net calculates the 

rental  proceeds of a film, which is defined as zero for new films and for 

rentable films as the number  of tapes that  contain that  film times the rental  

price for that  film. 
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<d> 

is a notational shorthand for 

-! 
is a notational shorthand for 

Figure 2.2 Double arrow convent ion for the CTM 

In t ransi t ion T1 it  is checked whether  the film is new or not. Information of the 

in format ion  place Information concerning films and tapes is necessary to 

check this. If  the film is new, a token consisting of tha t  film is placed in the 

inpu t  place P2 of t ransi t ion T2. Transi t ion T2 t hen  adds the current  default  

value for new films (zero) to the  tuple.  If  the  film is not  new, which is 

equivalent  to the  film being rentable,  t ransi t ion T3 is enabled. Transi t ion T3 

calculates the  number  of tapes t ha t  contain the  processed film. Transi t ion T4 

then  searches for the rental  price of the film and performs the multiplication of 

the number  of tapes n and tha t  rental  price. Transit ion T3 as well as t ransi t ion 

T4 need informat ion from the information place Information concerning films 
and tapes. At the end of the calculation, task place P5 will contain the  film and 

its rental  proceeds. 

Near  every place of the  CTM-net,  the corresponding conceptual  schema is 

shown. These conceptual schemas contain informat ion about the  tuples  tha t  
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Figure 2.3 CTM-net for rental proceeds calculation 
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can en te r  the  place to which the  conceptual  schema belongs. Conceptual  

schema C2 for instance,  asser ts  tha t  every film tha t  enters  task  place P2 is 

new. The s tar  in the  conceptual schemas C5 and C6 denotes tha t  the  role, in 

which box the  star  is placed, is redundant .  

The RIDL functions used in the transi t ions of fig. 2.3 are shown in fig. 2.4. In 

the  function headings,  we also showed the  database on which these  functions 

operate. In the function definitions we left this relation implicit. 

PREDICATE Is_new (DATABASE d; FILM f); 
BEGIN 

f IS NOT IN Rentable-film 
END; 

PREDICATE Number (DATABASE d; RENTABLE FILM f, QUANTITY n); 
BEGIN 

n -- NUMBER-OF Tape contains Rentable-film f 
END; 

PREDICATE Price (DATABASE d; RENTABLE FILM f, QUANTITY n, AMOUNT OF MONEY m); 
BEGIN 

m = n * Amount-of-money is-rental-price-of Rentable-film f 
END. 

Figure 2.4. RIDL-queries belonging to CTM-net for rental proceeds calculation 

Of course the  CTM-net of fig. 2.3 is not  the  only possible solution to model the 

rental  proceeds calculation. In fact i t  is a ra ther  elaborate solution since it  is 

possible  to combine all t he  RIDL express ions  in  one t r ans i t ion .  The 

d i sadvan tage  of t h a t  proceeding however  is, t h a t  asser t ions  about  local 

information remain  implicit. Another  option is e.g. to have t ransi t ion T1 put  a 

tuple <f,0> directly into task place P5 if  the film f i s  new. This obscures however 

the meaning  of the zero. Guide-lines for modelling a task  as a CTM-net will be 

reported soon. 

2~  FormAl definition 

After this introduction the definition of the Conceptual Task Model can be given 
in a formal way. 

D e f i n i t i o n  2.1 A CTM-net is a 12-tuple (l-I, T, P, Z, W, ~ I, O, A, O, X, ~), where 

1-I is a non-empty finite set of places, 
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T is a non-empty finite set of transitions (not combined transitions in the 

sense of fig. 2.1), 

P is a finite set of parameterised RIDL expressions, 

Z is a non-empty finite set of conceptual schemas, 

is a finite set of l inear typings (a linear typing is a tuple of arbi t rary 

length consisting of entity types), 

Z is a non-empty finite set of variables, 

I C__ H is a set of information places; F = I]/I (by definition) is the set of task 

places, 

C 12 x T u T x YI is a non-empty set of arrows, denoting tha t  a place is 

input for or output of a transition, 

A • SO~(Z) ¢p is a function from the set of arrows ¢P to the set $o So(Z) of 

tuples of arbitrary length of variables chosen from 7~ denoting the labeling 

of the arrows with a tuple of variables, 

O • pT is a function from the set of transitions T to the set of parameterised 

RIDL expressions P, denoting which RIDL query belongs to which 

transition, 

X • Z 1-I is a function from the set of places H to the set of conceptual 

schemas Z, denoting which conceptual schema belongs to which place, 

g~ • ~F  is a function from the set of task places F to the set of linear typings 

~ ,  denoting which typing belongs to which task place. 

Now we relate the CTM-net of fig. 2.3 to this definition of a CTM-net. We will 

give examples of elements of each of the constituents of the 12-tuple: 

P1,P2,..,P5 are elements of 12; 

Tla, Tlb and T2 are elements o f t  (Tla and Tlb are transitions that  would 

become visible if we would unfold transition T1 according to the notational 

shorthand of figure 2.1); 

Number(d,f,n) is in P; 

C1,C2 ..... C6 are the elements of Z; 

<Rentable Film, Quantity> is in ~;  

f, m and n are elements of Z; 

Information concerning films and tapes is the only element of I, P1 is an 

element of F; 
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(P1,T1) is an element of ~,  denoting the arrow going from task place P1 to 

transition T1; 

((T3,P4),<f,n>) is an element of A, denoting the labeling of the arrow going 

from transition T3 to task place P4 with the tuple <f,n>; 

(T4,Price(d,f,n,m)) is contained in ~; 

(P5, C5) is an element of X; 

(P5,<Rentable Film, Amount of Money>) is an element of D. 

2.4 Properties 

To formulate the properties a CTM-net must  have, we introduce some auxiliary 

functions and predicates in an informal way. Most of these functions and 

predicates cannot be given here in a formal way, since we do not have a formal 

definition of RIDL and NIAM at hand. 

The function entity operates on a conceptual schema and yields the set of 

entity types occurring in that  conceptual schema, 

Type_in_expression (r, v, e) is t rue if and only if  the formal parameter  v is 

supposed to be of type e in expression r, 

The function merge operates on a set of conceptual schemas and yields the 

integration of these schemas, 

The predicate part_of  defines a binary relat ion between conceptual 

schemas and is true if and only if the first conceptual schema is part  of the 

second conceptual schema, 

The function domain operates on a RIDL expression and yields the domain 

(this is a conceptual schema) of that  expression. 

Among others, the following properties must  hold for the 12-tuple: 

Property ~1 

Vp• I Vt• T [ (p,t) • • ¢~ (t,p) • • ] 

This property states that  an information place is never only input for nor only 

output of a transition. 

Property2~ 

Vpe FI Bte T [ (p,t) • @ v (t,p) • ~ ] 
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Every  place is input  for or output  of a t ransi t ion.  F rom this proper ty  and  the 

f irst  proper ty  one can derive tha t  every informat ion place is input  for a t  leas t  

one t rans i t ion  and  also tha t  every informat ion place is output  of  at  least  one 

transi t ion.  It  mus t  not  be forgotten however,  t ha t  the  set of informat ion places 

m a y  be empty. 

Property 

Vpe l-I/I [ u ~(p) = enti ty (X(p)) ] 

This proper ty  s ta tes  tha t  the set  (not multi-set!) of ent i ty  types occurring in the 

typing of a t ask  place equals the set of ent i ty  types occurring in the  conceptual 

schema of t ha t  task  place. 

 operty 4 

Vte T Vve Z Ve [ type_in_expression (O (t), v, e) 

Vpe I]/I Vi [ (((p,t) e • A (A(p,t))i = v) ~ (~(P))i = e ) A 

(((t,p) e • A (A(t,p))i = v ) ~ (g~(P))i = e )] ] 

This complex looking property  simply states tha t  the type of a formal pa rame te r  

as can be derived from the  typing of the  task  place to which it belongs should 

agree  wi th  the  w a y  this  formal p a r a m e t e r  is used  (i.e. of which  type it  is 

supposed to be) in the  expression of the t ransi t ion to which it  is a local variable. 

Property9 5 

Vt e T [part_of(domain(O(t)),  merge({c I c e Z ]3 p e I 

[(p,t) e • A X(p) = C]}))] 

A RIDL expression in a t ransi t ion should operate on the  conceptual schemas of 

the  informat ion places connected to tha t  transit ion,  i.e. the  domain of the  RIDL 

expression ~(t) of the  t ransi t ion t is pa r t  of the  union of the conceptual schemas 

c of the informat ion places p connected to t. This is a simple formulat ion of the 

type  checking of quer ies  and  is der ived f rom the  more  impor t an t  rule  t h a t  

quer ies  a re  fo rmu la t ed  in t e r m s  of the  da t a  model.  Of course more  t h a n  

property 2.5 can be stated about the  relation of the query  and the da ta  model, bu t  

t ha t  is beyond the  scope of this work. We only formulate  the  following simple 

corollary.  

C o r o l l a r y  2.6. The ent i ty  types in a RIDL expression are  a subset  of the  ent i ty  

types of the  information places: 

238 



Vte T [entity(domain(O(t))) _C entity(merge( {c e Z I 3 p • I [(p,t)• • ^ 

X(p) = c]}))] 

Take the RIDL expression Price in fig. 2.4 as an example. This query has the 

types Rentable Film and Amount  of  money as entity types, which occur both in 

the conceptual schemas C6 of fig. 2.3. 

There are more properties a correct CTM-net mus t  have. We will defer 

discussion of one of those properties to section 4. For a discussion of other 

properties of correct CTM-nets, we refer to [Ter Hofstede 89]. Worth stating 

here is that  a CTM-net should contain the complete specification of a task. This 

requirement however, is not verifiable, since the completeness of a specification 

depends on the completeness of the informants' specification. 

3. CASE TOOL IMPI,EMENTATION 

The CTM technique is hardly applicable in a manual  way for the modelling of 

tasks of a realistic sized IS, due to the complexity of the resulting diagrams. 

Automated support of the technique in a tool, possibly combined with modelling 

techniques for activities, data and user interaction, is required. Properties are 

formulated, on which all sorts of analysis of application models can be based. 

In fig. 3.1 we show a proposal for a screen layout of a tool supporting the 

modelling of tasks using the CTM. The data models of the places and the RIDL- 

queries of the transit ion are shown in separate pop-up windows. When these 

windows are left out, a plain PrT-net remains. 

The tool may provide additional support for a modelling procedure in the sense 

as described in [Brinkkemper 88]. To be distinguished are the preliminary task 

modelling, identification of individual transitions, modelling of data  at  the 

places, formulation of the RIDL-queries and the checks on the components. 

When the transitions in a task are known, they can be put  in a preliminary 

schema, wi th  some in te rmed ia te  task places connect ing them. Those 

transitions can be modelled and analysed separately. After tha t  they can be 

integrated for global analysis of consistency, connectivity or for other purposes. 
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Conceptual schema of P1 Input to T2 

is available 

Conceptual schema of View V1 Input to T2 

Typing: <Rentable Film, Person~ 

T2 
Searching price 

Rental price 
(a,f,pr) (a,f,pr) 

, pr> 

2 

price price of 

Typing: <Rentable Film, Amount of Money> 
Datastore: Information concerning films and ... 

V l  
Information 
concerning 
films and 
tapes 

Conceptual schema of P2 output from T2 

Typing: <Rentable Film, Person, 
Amount of money> 

RIDL-query of transition T2 

FUNCTION Rental price (DATABASE a; RENTABLE FILM f, 
AMOUNT OF MONEY pr) BOOL; 

BEGIN 
pr = Amount-of-money is-rental-price-of Rentable film f 

END; 

Fig. 3.1 Screen layout of CTM tool 
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However, we propose in this section a practical d iagramming convention, tha t  

deviates  in  two ways from the  theoret ical  technique.  This  is necessary  to 

improve the practical applicability. The discrepancies between the  practical 

and the  theoretical  technique can be overcome by s tandard  t ransformat ions ,  

t ha t  can be derived from the descript ions below. The adapta t ions  are the 

following. 

First,  we use data base views instead of database tuples. Since tasks need only a 

certain par t  of the data  present  in the data base, we define a view tha t  models 

this part.  This view is positioned on the arrow from the information place to the 

t rans i t ion .  An in fo rma t ion  place gets  s u r r o u n d e d  by such  views. The 

conceptual schema of a view is a derivable par t  of the conceptual schema of the 

information place. Recall t ha t  the information places correspond with the  data  

for which retrieval queries or update  queries are formulated, whereas the  data  

model at the  task places s tand for the parameters  of the transit ion. Syntactical 

and semant ical  cross-checks of queries and pa ramete r s  versus  da ta  models 

can be performed automatically. 

All inpu ts  and outputs  of a t ransi t ion are now specified by small conceptual 

schemas. An example of a view is shown in fig. 3.1 for the information place 

Information concerning films and tapes. The conceptual schema of view V1 is 

par t  of the conceptual schema C6 in fig. 2.3. In  the PrT formalism such views 

are not prohibited, but  the strong relation of the data  in the data store with tha t  

in the da ta  view m u s t  be described completely. This is not  practical,  since 

database managemen t  systems implement  views very effectively. 

Secondly, we propose for the tool implementat ion to support  the decomposition 

of tasks .  This  decompos i t ion  obeys ana logous  ru les  as those  for the  

decomposition of activities in data  flow diagrams.  The conceptual schemas at 

the places may  also be decomposed, but  the decomposition mus t  always satisfy 

the  r equ i r emen t  tha t  tasks  process da ta  e lements  (see the  defini t ions in 
[Brinkkemper 89a]). 

In PrT-nets this is again not possible due to the unclear firing semantics of the 

decomposition, when  data  elements  corresponding to more t han  one inpu t  or 
output  place are optional. 

Next to this  and next  to the discussions in the previous sections, we suggest  
three additional functionalities in a CTM-tool. 
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1. Suppor t  of modell ing t ransparency.  Because of the dependencies between 

the  t ask  models and the  models of other types, like activity models and 

global conceptual  schemas,  developers working wi th  the  tool wish to be 

able to t r ans fe r  directly from one type of model  to the  o ther  via a 

dependency between the  models. For example the  t ransfer  from a task  

model to the activity it  belongs to. See [Brinkkemper 89b] for a discussion of 

the  modell ing t ransparency functionali ty of workbenches and the  various 

degrees of it. 

2. Syntactic and semant ic  analysis of data  models and queries. As already 

suggested above, the presence and the type of the data tha t  are processed or 

created in a t rans i t ion  can be analysed and compared wi th  the  queries 

specified. Fur thermore,  the violation of the constraints can be pointed out. 

3. Suppor t  of re-use. A support  tool can compare the  pa t t e rns  of the  data  

models or of the t ransi t ions with existing models and suggest  to make  use 

of them. 

For a discussion of system generation,  reverse engineer ing and s imulat ion in 

the CTM, we refer to [Ter Hofstede 89]. 

4. TIIEORETICAL I S S U I ~  

In this section we will address some theoretical issues concerning the  CTM. 

Firs t  the  relat ion between the  CTM and data  flow diagrams is invest igated.  

Then the  computat ional  power of the CTM is considered briefly. Finally some 

remarks  about correctness of conceptual schemas at task  places are made. 

4.1 The relation between activities and tasks 

Data flow diagrams generally consist of activators and flows. Flows represent  

in format ion  in motion,  act ivators can be considered as funct ions on these  

flows. A well-known representat ive of data  flow diagrams are the ISAC activity 

graphs  or A-graphs [Lundeberg 80]. We will use an  adapted  version of these 

activity graphs here. 
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D e f i n i t i o n  4.1 A da ta  flow d iagram is a 9-tuple (S, A, D, F, R, Q, U, G, H), 

w h e r e  

S is a non-empty finite set of states, 

A is a non-empty  finite set of activities, 

D C_C_ S is a set of data  stores; E = S \ D  (by definition) is a set of flows, 

F C_C_ S x A u A x S is a non-empty set of arrows, 

R C E x E is the subflow relation, 

Q C A x A is the  subactivity relation, 

U C__ S × A is the substate-activity relation, 

G is a non-empty  finite set of conceptual schemas,  

H • G S is a function from the  set of s tates  to the  set of conceptual schemas. 

In [Fa lkenberg  89] some of the  rules  are  s ta ted  this  9-tuple m u s t  fulfil. An 

example  of such a rule  would be t h a t  every  s ta te  has  a source, which  could 

formally be expressed as: 

V s •  S 3 a • A [ ( a , s ) • F ]  

D e f i n i t i o n  4.2 The set of tasks Y d o f a  data  flow diagram D = ( S t  AE, DE FE, RE, 

QE, Ud; GE, H ~  is given by: 

Yd = { t I t • Ad1-3 v•  Ad[ (v,t) • Qd] } 

Informal ly ,  a t a sk  is an  act ivi ty  a t  the  bot tom level of  the  decomposi t ion 

hierarchy,  i.e. an  activity t ha t  is not  decomposed into o ther  activities. 

D e f i n i t i o n  4.3 Let  a be a task of a diagram D, a • YE, then 

Wd(a) = {sl s • Sdl ((a,s) • F d v  (s,a) • Fd) ^ ( s e E d ~  -,3 t • E d [  (t,s) • Rd] ) } 

Wd(a) is the  set of s tates  which are  input  for or output  of the task  a and do not 

have any  subflows. 

These  def ini t ions  enable  us to fo rmula te  the  re la t ions  be tween  da t a  flow 

d iagrams and  CTM-nets  formally. 

Suppose a is a task  of da ta  flow diagram 

D = (SE, Ad, DE, FE, Rd; QE, UE, GE, H ~  

So a e Yd. Let  

Ca = (Ha, Ta, Pa, Za, ~ a ,  Za, Ia, Ca, Aa, Oa, Xa, ~ a )  
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represent the CTM-net for task a. 

The relation between the data flow diagram D and the CTM-net Ca is then 

expressed via an iniective function fa from the set of input and output states of 

task a in the data flow diagram Wd(a) and the set of places of task a in the 

CTM-net Ha: 

fa: Wd(a) -~ Ha. 

For this function fa the following properties must  hold: 

Proper ty  4.4 Bijecfive data store mapping 

fa I nd--> Ia is bijective 

This property states that  the restriction of fa to Dd is a bijective mapping on Ia, 

i.e. every information place of the CTM-net Ca is the unique image of a data 

store in the data flow diagram D which is input or output of the task a. 

Proper ty  4.5 Consistent input property 

V s e Wd(a )  [(s,a) e F d ¢ ~  3 u  e Ta [ (fa(s),u) e Ca ^ (fa(s) e Ia 

Aa((fa(s),u)) = ha((u,fa(s))))] ] 

If a flow s, which is not decomposed, is input  for task a in the data  flow 

diagram D, then there exists a transit ion in the CTM-net Ca which has the 

corresponding place fa(s) as input. If  a data store s is input for task a in the 

data flow diagram D, then there exists a transition in the CTM-net Ca which is 

connected to the corresponding place fa(s) by two arrows, one input arrow and 

one output arrow, with the same labeling. Conversely, if  a place tha t  is the 

image of a flow s, is input for a transition of the CTM-net Ca, then flow s must  

be input for task a in the data flow diagram D. If a place, that  is the image of a 

data store s, is input as well as output of a certain transition of the CTM-net Ca 

with both arrows having the same labeling, then data store s must  be input for 

task a in the data flow diagram D. 

Note that  when in a CTM-net a place is input as well as output of a certain 

transition and the arrow going from that  place to the transition has the same 

labeling as t he  arrow going from the transition to that  place, this means tha t  

the contents of that  place is only used, not changed, by the transition. 
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Proper ty  4.6 Consistent output  property 

V s e Wd(a )  [(a,s) e F d ¢ *  3 u  e Ta [ (u,fa(s)) e Ca ^ (fa(s) e Ia 

Aa((fa(s),u)) ¢ Aa((u,fa(s))))] ] 

The explanation of this property is analogous to the explanation of the previous 

property. 

Proper ty  4.7 Identical conoepta~al schemas proper ty  

V s e WE(a) [ Hd(s) = Xa(fa(s)) ] 

A state s in the data flow diagram of task a must  be associated to the same 

conceptual schema as its corresponding place fa(s) in the CTM-net. 

Normally activities, flows, places and transitions can be named. In this case s 

and fa(s) should also have the same name. 

Based on the properties of the CTM and the ones specified above, some 

theorems can be formulated of which we present one. 

T h e o r e m  4.8 The domain of all queries of a task is specified in the conceptual 

schemas related to the data stores of the task. 

Proof:  Let a be an arbitrary task and let Ta be the set of all transitions ofa. 

Define Q = {qe Pa 13te Ta [q = O(t)]}. Q is then the set of all queries of the task a. 

According to property 2.5 the domain of an arbitrary query qe Q is specified in 

conceptual schemas corresponding to information places p, tha t  are input  for 
the transition t: (p,t)e Ca. 

From property 4.4 we deduce that  this p is the image of a data store s: p = fa(s), 

and according to property 4.7 the conceptual schema Ha(s) of s is the same as 

the conceptual schema Xa(p) of p. QED 

In the same style it can be proven that  all data stores of the data flow diagram 

are used by queries in the tasks and that  the images of any two states related to 

the task a in the data flow diagram are connected via a path in the CTM-net. 

4.2 Computational power of the CTM 

There are various approaches to capture the idea of computation. The class of 

the Turing computable functions is an example of such an approach. The 

principle tha t  Turing machines are formal versions of algorithms and that  no 

computational procedure will be considered an algori thm unless it can be 
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presented as a Turing machine is known as Church's Thesis or the Church- 

Turing Thesis [Lewis 81]. If we can prove that  in the CTM one can simulate 

any arbitrary Turing machine, we prove in fact that  the CTM can compute any 

computable function. In [Ter Hofstede 89] a CTM-net is presented  tha t  

simulates an arbi t rary Turing machine. 

4~ Correctness of concept~ml schem_~s at task places 

A conceptual schema of a task place describes tha t  part  of the Universe of 

Discourse of those individuals that  can enter  that  part icular  task place. The 

conceptual schemas output of a certain transition must  be derivable from the 

conceptual schemas at the places input  for tha t  t ransi t ion and the RIDL 

expression belonging to that  transition. 

As an example consider fig. 4.1. In the simple CTM-net shown there, either the 

conceptual schema in task place P2 or the conceptual schema in task place P1 

is incorrect. In the conceptual schema of P1 we see that  a manager  never is a 

coworker and vice versa, while in the conceptual schema of P2 we see that  it is 

forbidden to be manager  and coworker of the same project. Tuple <e,m,p> 

comes in and goes out of transition T, so every tuple <e,m,p> that  enters P2 was 

previously contained in P1. Hence the population of P2 satisfies the constraints 

belonging to P1. The conclusion must  be that  one of the schemas is incorrect. 

The example shown was extremely simple, in general the situation is much 

more complex. Places can be output of more transitions, transitions can have 

more input places and schemas can change due to the RIDL expressions in the 

transit ions and the schemas in the information places. For a more detailed 

discussion on correctness aspects of conceptual schemas at task places we 

refer to [Ter Hofstede 89]. 

5. CONCLUSIONS 

In this paper the Conceptual Task Model was introduced, which was intended 

to fill the gap between informal requi rements  engineering and program 

development. CTM-nets were defined as special kinds of PrT-nets and the CTM 

was defined formally accompanied with some of the properties of a correct 
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CTM-net. A CASE tool implementation of the CTM was discussed briefly and 

the relation between activities and tasks investigated. Final ly the issues  of 

computational power of the CTM and correctness of conceptual schemas at 

task places, were addressed. 

is-manager- 
of 

<Employee, Employee, ~ , ~  
P1 Project> ~ .f,~'/" 

i:f-coworker- 

is-manager- 

P2 ( 

has-as- 
manager 

I 
has-as- 
coworker 

has-as- 
of 

<e,m,p> 

Employee, --, 

manager 

® 

? 
Project> Js-coworker- has-as- 

of coworker 

Figure 4.1 Incorrect CTM-net with respect to conceptual 
schemas 

The CTM has several strong points. It was developed to fulfil the requirements 

on task model l ing techniques as formulated in section 1. F luent  transfer 

between intermediate  design results  is supported due to the well-defined 
relation between activities and tasks and the incorporation of a data modelling 

technique. Tasks can be modelled on a conceptual level, thus  enabling the 
analyst  to abstract from particular machines  and programming languages  

and their limitations. The CTM allows for code generation and the verification 

of al! kinds of theoretical s tatements .  Common constructs used in the 
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processing of data elements as well as data manipulation and data retreival 

can be expressed easily. Finally, in principle every computable function can be 

specified in the CTM. 

The CTM has however also some weak properties, inherited from its PrT basis. 

Update and retrieval form a database cannot be modelled in an elegant way. 

Hierarchical decomposition of tasks is not possible, due to the unclear firing 

semantics of the decomposition, when data elements corresponding to more 

than one input  or output place are optional. CTM-nets tend to be 

diagrammatically quite complex, which makes the support by a tool an 

absolute requirement. 

The above mentioned.weak properties of the CTM suggest directions for future 

research. Other options for future research are the development of a detailed 

modelling procedure for the CTM and the implementation of a tool, that 

includes the various consistency and correctness analyses based on the 

formulated properties. 
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