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Abstract 

The use of  formal language is a way to introduce rigour in the specification of  the 

requirements for information systems. This stage is traditionally considered as fhe 

most informal one of the life-cycle stages. Thus, the choice of a model best suited 

for this purpose is still an open issue. 

In this paper we propose a data model called Enity-Relafionship-Time (ERT), 

which is able to capture the structural components of such a specification. It is 

part of  the TEMPORA conceptual model and it is an extension of  the binary 

relationship model including a number of  additional features such as the 

possibility to explicitly refer to past or future states of  the system, to model 

complex objects, etc. 
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1. Introduction 

Recent years have witnessed a growing realisation that the development of large information 

systems is becoming increasingly more difficult as user requirements become broader and more 

sophisticated. Consequently, requirements analysis is becoming even more sensitive because the 

late discovery of misunderstandings of the users' needs is the source of the most expensive 

modifications to such systems [Greenspan, 1984; Balzer et al, 1983; van Assche et al, 1988]. By 

enforcing greater rigour during requirements analysis i.e., by introducing formal recording, 

would definitely help to avoid such misunderstandings, by removing ambiguities, redundancies 

and untimely choices [Mylopoulos, 1986]. 

Many recent approaches have suggested the use of a formal language for requirements analysis 

(see [CRIS-1], [CRIS-2], [CRIS-3], [Roman, 1985] ). However, the features needed for a 

language suited for the formal expression of requirements are largely debated. Several existing 

languages inherit their basic concepts from other fields like data base modelling, knowledge 

representation or programming languages without paying enough attention to their 

appropriateness for expressing the customers' needs. This is the result of focusing mainly on 

languages and their foundations instead on understanding the process. 

Much debate is currently under way as to the most appropriate set of requirements for conceptual 

modelling languages [Roman, 1985; Balzer et al, 1983]. An emerging consesus is the need for 

modelling 

Temporal Aspects. Such an extension would provide the often needed ability to reason 

about elements of the Universe of Discourse (UoD) which involve time. For example, 

historical data is required in hospital information systems in monitoring patient progress 

and relate current situation to previous ones. In other systems, planning is of equal 

importance. For example, in weather forecast systems one needs to be able to reason for 

the future based on current and previous data. 

Complex Objects. Such an extension would provide the ability needed for many 

applications for the abstraction of information that is going to be used as a single unit. 

For example, in CAD/CAM or CASE applications one needs to be able to deal with 

objects that consist of a number of components and to reason for them and at the same 

time to be able to deal with their components. 
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The process of requirements analysis is mainly an activity of modelling an application domain. 

This implies that certain things are needed for the natural description of various phenomena 

perceived in a Universe of Discourse (UoD)[Dubois, 1986; Dubois, 1987]. For example, we 

need: 

• to classify phenomena perceived individually and associations among them, 

• to classify phenomena perceived as complex structures, 

• to express both static and dynamic cons~'aints about the phenomena, 

• to explicitly refer to a global time. 

In section 2 of this paper we describe briefly the TEMPORA paradigm and its architecture 

together with the basic components of the specification environment. In section 3 we describe in 

detail the structural formalism of the TEMPORA conceptual model which possess the features 

described above. In particular, we discuss its basic concepts and extemais together with the 

semantics of time and complex objects used. 

2.  The TEMPORA paradigm 

2.1 Introduction 

The aim of the TEMPORA project is to improve the software development process through the 

exploitation of an approach which explicitly recognises the role of business policy within an 

information system and visibly maintains this policy throughout the software development 

process, from requirements specifications through to an executable implementation [van Assche 

et al, 1988; Loucopoulos, 1989]. This implies that the TEMPORA paradigm views the 

development of an information system as the task of developing or augmenting a knowledge base 

of business rules [TEMPORA, 1988]. In particular the need to explicitiy represent business 

rules, to be kept distinct from the procedures and elementary data operations which implement 

them, has been recognised in a previous ESPRIT project [RUBRIC, 1989a; RUBRIC, 1989b] 

and this philosophy is continued in TEMPORA. 
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The TEMPORA project builds on the rule-oriented system development paradigm and extends 

this work in two directions. The first direction is concerned with the utilization of a commercial 

DBMS as the underlying data management mechanism. The second direction is concerned with 

enhancing the paradigm with the explicit modelling of temporal aspects at both specification and 

application levels. 

2 .2  Overview of the TEMPORA Conceptual Component 

The TEMPORA paradigm is that development of an information system should be viewed as the 

task of developing or augmenting the policy knowledge base of an organisation, which is used 

throughout the software development process, from requirements specification through to the 

run-time environment of application programs. Within TEMPORA, this knowledge base is 

concerned with the definition of the principal facts and operations within the organisation 

together with the rules which guide these operations and ensure the integrity of these facts. 

It has been seen from the outset of TEMPORA that realistic modelling of the application domain 

demands temporal modelling. This is because nowadays "time-less" models are considered to be 

with respect to information systems conceptual modelling requirements, like "programming in 

machine code instead of using high-level programming languages" [Falkenberg, 1988]. As a 

consequence, the TEMPORA model must be capable of dealing with historical information issues 

as well as being capable of modelling temporal business rules. An abstract view of the 

TEMPORA conceptual components and their interrelationships is shown in the diagram of figure 

1. In this figure there are two levels namely the specification level and application level. At the 

specification level three models are defined, the ERT model, the Process model and the Rule 

model while at the application level we have a database schema and a language which describes 

and manipulates the information contained in it. 

The structural component is expressed as an extended binary-relationship model called 

Entity-Relationship-Time (ERT) model. It is extended because it accommodates directly the 

representation of time as a distinguished entity and also, it caters for the representation of 

complex objects. 

The process component deals with the definition of operations. A process is the smallest 

independent unit of business activity of meaning, initiated by a specific trigger and which, when 

complete, leaves the business in a consistent state. By analysing processes in terms of the ERT 

model we end up with a set of primitive actions suffered by an entity such as salary increase. 
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Control of the behaviour of a system is modelled in terms of rules. Two general classes of rules 

are recognised: static rules which are concerned with the integrity of the database and dynamic 

rules which are concerned with the control of transactions. More specifically, static rules are 

expressions that must hold in every valid state of the database. It can be said to hold (or not hold) 

simply on the basis of the extension of the database with respect to a single state. In other words, 

the static rules represent either integrity constraints on the ERT model or derivations on it. 

Dynamic rules are expressions that define valid state transitions in the database. It can be said to 

hold (or not hold) only by examining at least two states of the database. In effect, the dynamic 

rules specify the interaction of state components and/or event occurrences and they represent 

either dynamic integrity rules or control of operations. 

3. The Enti ty-Relat ionship-Time (ERT) Model  

3.1 The basic concepts 

Besides the temporal dimension and the provision of complex objects, ERT differs from the 

original Entity Relationship model [Chen, 1976] in that it regards any association between 

objects in the unified form of a relationship thus avoiding the unnecessary distinction between 

attributeships and relationships [Kent, 1979; Nijssen, 1988]. 

The ERT model represents explicitly entity types and value types. For each relationship the ERT 

model recognises sentence predicates which are used to make statements (e.g. "a PRODUCT is 

sold at a PRICE") and referent functions which are used as a selection mechanism for entities or 

values (e.g. "a PRODUCT ... sold at a PRICE .."). In essence, these are two linguistic ways of 

expressing the same diagrammatic structure. 

Time is introduced in the ERT model as a distinguished entity class. More specifically, we 

timestamp each time-varying entity class and each time-varying relationship class with a time 

period class. That is, we assign a time period for every time-varying piece of information that 

exists in a schema. For example, for each entity class we associate a time period which 

represents the period of time during which an entity is modelled (existence period of an entity). 

The same argument applies also to relationships i.e., with each time-varying relationship we 

associate a time period which represents the period during which the relationship is valid (validity 

period of a relationship). 
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The structural components of  the TEMPORA model are based upon an extended binary entity 

relationship modelling formalism using the following concepts. 

Figure 1: Overview of the TEMPORA Conceptual Component 

Entity 

Entity Class 

Relationship 

Relationship Class is 

Value 

is anything, concrete or abstract, uniquely identifiable and being of 

interest during a certain time period. 

is the collection of all the entities to which a specific definition and 

common properties apply at a specific time period. 

is any permanent or temporary association between two entities or 

between an entity and a value. 

the collection of all the relationships to which a specific definition 

applies at a specific time period. 

is a lexical object perceived individually, which is only of  interest 

when it is associated with an entity. That is, values cannot exist in 

their own. 

Value Class is the proposition establishing a domain of values. 

T ime  Per iod  is a pair of  tirne points expressed at the same abstraction level. 

Time Per iod Class is a collection of time periods. 

269 



Complex Object  is a complex value or a complex entity. A complex entity is an 

abstraction (aggregation or grouping) of entities, relationships and 

values (complex or simple). A complex value is an abstraction 

(aggregation or grouping) of values. 

Complex Object Class is a collection of complex objects. That is, it can be a complex entity 

or a complex value class. 

In addition, the following axioms apply to the concept of a relationship class. 

1. An entity can only participate in a relationship if this entity is already in the population 

of the entity class specified in the relationship. Furthermore, the validity period of the 

relationship should be subperiod of the intersection of the existence periods of the two 

involved entities. 

2. Each entity in a subclass population has also a reference (e.g., foreign key) in the 

population of its superclasses. In addition, the existence period of the specialised entity 

should be a subperiod of the existence period of the generalised entity. 

. I f  an entity belongs to a population of an entity class, it cannot also belong to the 

population of a value class at any time and vice-versa. Furthermore, any two entity 

classes which are not themselves subclasses of a third entity class and all have no 

common subclasses, must be disjoint at any time point. Note that this definition does 

not prevent entities from moving between entity classes during their lifetime. 

In addition, an entity or relationship can be derived. This implies is that its value is not stored by 

default. Also, for each such derivable component, there is a corresponding derivation rule which 

gives the members of this class or the values of this relationship at any time. 

We accommodate explicitly generalization/specialization hierarchies. This is done through the 

ISA relationships which have the usual set-theoretic semantics. More specifically, we assume 

that two subclasses of the same entity class and under the same specialization criterion are 

always disjoint. 

3.2 External Representation of ERT 

Figure 2 presents the current notation for the ERT externals. Note also that in the graphical 
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model we cater for representation of some of the most common rules such as partial/total ISA 

relationships and cardinality constraints for relationships. 

| 
A ~ A I | 

| | 

! . . . . . . . . .  _,__.? 

c I 1  ° ,  

Entity class A and derived 
entity class A (dashed) 

Time stamped entity class B 
and, time stamped derived 
entity classB (dashed). T is a 
symbolic time period. 

Complex entity class C and 
complex value class D. 

E • 

a B _ b . _ _  - . . .  i t . ? - ~ . . b . . .  
m l  m2 ml u-~ m2 

a 
ml I ml .--~ 

Simple value class E. May have 
reiationships to nodes of type A, 
B,C and D 

Relationship (binary) that may connect 
nodes of type A,B,C or D. a and b are 
relationship names (b is inverse of a). ml 
and m2 indicate mapping in the format 
(x:y), where x,y are non-negative integers, 
or N. Non-filled box indicates derived 
relationship. 

Unary relationships named a, 
attached to nodes of type A or B. 

a 

ml 

r - - r - - ;  b . _ _ _ a _  I 

roll L T j ~ 2  "-  
Time stamped binary relationships. 
T is a symbolic time period 

Time stamped unary predicates. T as 
above. 

ISA relationships (or rather ISS). Filled 
box -> total, non-filled -> partial. 
Several arrows pointing to round box 
indicate disjoint subsets. 

Figure 2. Graphical notation for the ERT externals 

Cardinality constraints may be given to all relationships (including the IS_PART_OF 
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relationship) and also for their respective inverse relationships. These are expressed in the format 

(x-y), where x indicates the minimum cardinality and y the maximum cardinality for the set of 

range-objects that are related to an arbitrary domain-object via the particular relationship and 

correspondingly for the inverse. Hence, 0 < x < y. 

Note here that we do not include a separate notation formalism for the IS_PART OF 

relationships between a complex object and its components. However, we interpret their 

corresponding cardinality constraints in a slightly different way. This will be explained in more 

detail when we discuss the semantics of complex objects in the next section. The decision not to 

employ a specific notation was based on the general objectives of a modelling formalism which 

are, besides others, that it must be simple, easy to understand and should only express the 

essential facts about the Universe of Discourse in question. 

The notation for a complex object in TEMPORA is exemplified in figure 3. In this figure, there is 

an example ERT diagram with a complex entity class CAR and a complex value class 

ADDRESS. Furthermore, the complex entity class CAR and the complex value class ADDRESS 

of figure 3 may be exploited to yield their detailed structure of figure 4. This mechanism might be 

preferably built into an ERT editor. 

3.3 Semantics of complex objects 

Complex objects can be viewed fi'om at least two different perspectives: 

1. The representational perspective which focuses on how entities in the real 

world should be represented in the conceptual schema. This entails that 

objects may consist of several other objects arranged in some structure. 

Events in the real world are then mapped to operations on the corresponding 

objects. In contrast, if complex objects are not allowed, like e.g., in the 

relational model, then information about the object is distributed and 

operations on the object are transformed to a series of associated operations. 

2. The methodological perspective which means that the complex object 

concept is regarded as a means for stepwise refinement of the schema and 

for hiding away details of the description. This in turn means that complex 

objects are merely treated as abbreviations that may expanded when needed. 
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The basic motivation for the inclusion of the complex entity/value class in the externals 
formalism, is to abstract away detail, which in a particular situation is not of interest, from the 
model. In addition, the semantics that we attach to complex objects are equivalent to structural 

object orientation as defined in [Dittrich, 1986]. 

l 1-11 

1-11 as l a ~  1 

~MPLOYEEI SP1 ~ ADDRESS~ ] h 

I1-111-N 

~ 1  I I h a s .  

has l ~  has[ 1-1 

h-I l - ]  

IMANAGER I SP7 t 1_1 

1-1 has 

l i b  
1-1 

OfficeNo~ 1-1 

II l i l  has-  CAR S~ 1-t 1 1-1 RegNo 

Figure 3. An example ERT schema 

Many papers dealing with complex objects view a complex object as consisting of a 
conglomerate of objects and relationships. This means that they do not, distinguish between 
aggregation and grouping, but rather consider a general composition mechanism which also 
involves relationships/attributeships. This is the approach adopted in ERT. Graphically, 
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composition is shown by surrounding the components with a rectangle representing the 

composite object type (see figure 4). 

CAR 
HasComp~l- 1 HasComponen~2- 4 

IsPartOf I1_ 1 IsPartOf[ 1-1 

I I ooo 1 
s~l-1 s ~  -1 ha ha 

I1-N I1-N 

I  owo J I  olo4 

ADDRESS 

HasComp ~ IsPartOf [ STREET] 
1-1 ~ 1-N I NA_MEA 

HasComp ~ IsPart~.!~ 
1 - 1  ~ - 

CITY 
NAME 

, i  

Figure 4. The complex objects of the example in more detail 

The components of a complex object comprise one or more hierarchically arranged substructures. 

Each directly subordinate component entity must be is_part_of-related to the complex object 

border so that the relationship between the composite object and its components will be 

completely defined. Whether the HasComponent relationship is one of aggregation or grouping, 

can be shown by means of the normal cardinality constraints. That is, if its cardinality is 0-1 or 

1-1 the component is aggregate whereas if its cardinality is 0-N or 1-N the component is a set. 

Most conceptual modelling formalisms which include complex objects [Kirn et al, 1987; Lorie, 

1983; Rabitfi et al, 1988], model only physical part hierarchies i.e, hierarchies in which an 

object cannot be part of more than one object at the same time. In ERT, we extend this notion in 

order to be able to model also logicalpart hierarchies where the same component can be part of 

more than one complex objects. 

To achieve this we define four different kinds of IS_PART OF relationships according to two 

constraints, namely the dependency and exclusiveness constraints. The dependency constraint 

states that when a complex object ceases to exist, all its components also cease to exist 

(dependent composite reference) and the exclusiveness constraint states that a component object 

can be part of at most one complex object (exclusive composite reference). That is, we 

accommodate the following kinds of IS_PART_OF variations [Kim, 1989] : 
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i) dependent exclusive composite reference 

ii) independent exclusive composite reference 

iii) dependent shared composite reference 

iv) independent shared composite reference 

Note that we do not accommodate specific notation for these constraints. Their interpretation 

comes from the cardinality constraints of the IS_PART_OF relationship [Wangler, 1989a]. That 

is, assume that the cardinality of the IS_PART_OF relationship is (~,[3). Then, et=0 implies 

non dependency, et#0 implies dependency, [3=1 implies exclusivity while [341 implies 

shareness. 

Finally, the following rules should be obeyed concerning complex objects: 

• Complex values may only have other values as their components. In addition, the 

corresponding IS_PART_OF relationship will always have dependency semantics 

unless it takes part in another relationship. 

• Complex entities may have both entities and values as their components. Every 

component entity must be IS_PART_OF-related to the complex entity. 

• Components, whether entities or values, may in turn be complex, thereby yielding a 

composition/decomposition hierarchy. 

In the next section, we discuss the complex objects under the time dimension. In particular, we 

elaborate on how complex object hierarchies evolve over time and the constraints that should 

always be valid during this process. 

3.4 Semantics of time stamping 

The time period representation approach has been chosen because it satisfies the following 

requirements [Loki-86; Villain, 1982; Villain, 1986]: 
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1. Period representation allows for imprecision and uncertainty of information. For 

example, modelling that the activity of eating precedes the activity of drinking coffee 

can be easily represented with the temporal relation before between the two validity 

periods [Allen, 1983]. If we try, however, to model this requirement by using the line 

of dates then we will have problems since we do not know the exact start and ending 

times of the two activities. 

2. Period representation allows to vary the grain of reasoning. For example, we can at the 

same time reason about turtle movements and main memory access times. 

3. Humans comprehend periods of time much more easily than time points. 

The modelling of information using time periods takes place as follows. First, we assign to each 

time varying object in our model (entity or relationship), an instance of the built-in class 

SymbolPeriod. Instances of this class are system-generated identifiers of abstract time periods 

e.g., SP1, SP2, etc. Members of this class can relate to each other by one of the thirteen 

temporal relations between periods [Allen, 1983]. In addition, these members can be restricted 

by instances of the class CalendarPeriod. Instances of this class are all the conventional calendric 

periods e.g., 10/3/1989, 21/6/1963, etc. with absolute specified start and end points. 

has_  

x q T i m e  ~ , 1  0 
xt 0, Period D.1 Tick 

- - I  1,1 

has 

r_,a 1 Caleo'arl Symbol  TickNo 
Period Period . 

Figure 5. Time Period Metamodel 

In figure 5, we show graphically the definition of these concepts. In this, the symbol 'c represents 
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a temporal relationship and the symbol xt its inverse. Also, in this figure we indicate the fact that 

the two classes SymbolPeriod and CalendarPeriod are disjoint. Note however, that the exact 

definition of the calendar period units is not included in this figure. The reason is because we 

want to keep it as simple as possible. For details the interested reader is referenced in [Wangler, 

1989b]. The only think perhaps that we could add here is that for example, a date format like 

21/6/1963 is just a shorthand notation of a calendar period. 

According to the above discussion, we can time stamp the information in our conceptual model 

by using SymbolPeriod identifiers. However, we do not distinguish between time periods and 

time points. The fact that the abstraction level of a SymbolPeriod time stamp is say day can be 

inferred by its constraining temporal relations. For example, On the other hand, we can still 

represent explicitly in the conceptual schema the fact that an entity is time stamped only at the day 

abstraction level. This is done by distinguishing between different SymbolPeriod subclasses 

according to their abstraction level i.e., SPD, SPM,..etc. This last notation is not represented in 

the example of figure 3. We call this form of constraint a resolution constraint which when 

applied to a SymbolPeriod class restricts its members to calendar periods of the same resolution. 

It is suggested that it would be convenient to represent directly in the conceptual schema some 

other notions of time such as duration and periodic time. The first consequence of this is that the 

expressive power of our external formalism is increased and also the readability of the schema. 

The definition of the duration class is shown in figure 6. Members of this class are simple 

durations expressed in any abstraction level. Each duration consists of an amount of calendar 

time units and it is uniquely identified by the combination of the real and calendar unit values. 

For example, the duration "1,5 year" is a valid duration according to our definition. 

10N 0 ,N[  

I Calendar l  ] Real J 
Uni t  . ,~  I • 

Figure 6. Metamodel of the duration class 
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The periodic time class is defined in figure 7. As shown in this figure, a periodic time has a base 

which is a calendar period, a duration and also it can be restricted by a symbol period. In other 

words, the interpretation of a periodic time can be expressed as "the base of every duration 

during symbol period". For example, the expression "first week of each month during next 

year" is a valid definition of a periodic time. In this case, the calendar period corresponds to "1-7 

days", the duration corresponds to "1 month" and the restricting symbol period is the next year 

corresponding to [1/1/1991, 31/12/1991]. Finally, a periodic time is uniquely identified by the 

combination of its base and its duration. 

Periodic Time I 

1 , ! / / ~ 1 , 1  

has_base J [ " , , ,yal id_during 

_durat ion 

IO,N ]O,N [O,N 
Calendar 
Per iod I I Durat i°n I S y m b ° l  Per iod 

Figure 7. Metamodel of the periodic time class 

In the sequel, we discuss how the previously presented time semantics interact with the other 

components of an ERT schema. First, we state some default assumptions for timestamping: 

1) 

2) 

Reincarnation of entities is permitted and moreover, the entity keeps its identity 

through time. 
Existence and validity periods should always be mapped onto the calendar time 

axis i.e, they should be specified in absolute terms. That is, 

if the existence period of a timestamped entity is not specified 

explicitly as an absolute value then we take the current time as the 

starting point of its existence period. 
if the validity period of a timestamped relationship is not specified 
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3) 

explicitly as an absolute value then we take as its starting point the most 

recent starting point of the existence periods of the two involved 

entities. 

Non timestamped entities and relationships are assumed always existing i.e., 

from system startup time until now. 

In ERT, we do not timestamp value classes and the ISPART_OF relationships in a complex 

value class should always be time invariant. This is because an aggregation or grouping of values 

is defined through the participating value components. These assumptions affect the way that we 

map ERT to the relational model. 

As discussed already, the validity period of a relationship should be a subperiod of the 

intersection of the existence periods of the involved entities. This does not hold for the ISA 

relationships where from the current semantics employed, we conclude that the existence period 

of the specialized entity should be a subperiod of the existence period of its generalization and 

that the ISA relationship is always time invariant. 

Timestamping, when applied to derived ERT components has slightly different semantics than 

usual. Since, the derived components are not stored by default, the interpretation of timestamps 

refers to their corresponding derivation formulas. That is, if a derived component is not 

timestamped then the derivation formula returns the value of it at all times i.e, for every valid 

state of the database. Alternatively, for the timestamped derived components, the derivation 

formula returns a value which is valid for the existence or validity period of this component, i.e., 

the derivation formula must somehow refer to this period. 

Finally, timestamping in a time varying IS_PART_OF relationship is translated to the following 

constraints (see [Theodoulidis, 1989] for more details). The dependency constraint in a time 

varying IS_PART_OF relationship boils down to: 

i) The existence periods of the complex object and the component object should 

fmish atthesame time with the validity period of the I S P A R T _ O F  

relationship. 

Also, the exclusiveness constraint is translated to: 

If an object A is part of the complex objects B and C , then the period during 

which A is part of B should have an empty intersection with the period during 

which A is part of C. 
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Concluding, the above presented time semantics permit us to keep historical information for the 

UoD, include a strong vocabulary for expressing temporal requirements [-McBrien, 1989] and 

also, model the evolution of complex objects through time in a natural way. 

4. Conclusions 

The aim of this paper was to present a data model which provides the expressive freedom 

required for the purpose of requirements analysis, perceived mainly as a real world modelling 

activity. 

The ERT model as discussed in this paper is used to describe the structural components of the 

TEMPORA conceptual model. It contains some features which bring it in the state of the art 

among the other models. More specifically, it accommodates directly the representation and 

manipulation of time and complex objects in a uniform way. 

Currently, we are working on the Rule and Process models of our formalism. In particular, we 

head towards a natural-language based External Rule Language enhanced with some form of 

abstraction mechanism(s) and a Process model able to express business functions in a simple and 

uniform way. A number of extensions have been planned including the introducion of history of 

rules. 
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