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Abst rac t .  The progress of science involves a constant interplay between 
diversification and unification. Diversification extends the boundaries of 
science to cover new and wider ranges of phenomena; successful unifica- 
tion reveals that a range of experimentally validated theories are no more 
than particular cases of some more general principle. The cycle contin- 
ues when the general principle reveals further directions for experimental 
investigation. This paper suggests that the time has come to attempt a 
unifying classification of theories of parallel programming. Ideally, this 
should provide a common basis for reasoning about specifications and 
the correctness of designs, for optimising programs by algebraic trans- 
formation, and for implementing them in a range of technologies on a 
variety of machine architectures, to satisfy the needs of a wide range of 
applications. 

1 Introduct ion 

There is a lot of inherent diversity in the study of concurrency. There are ma- 
jor dichotomies between shared store and disjoint store approaches, between 
pairwise synchronisation and global lockstep synchronisation, between chan- 
nelled and unehannelled communication, between isochronous and buffered in- 
pu t /ou tput ,  and between hardware and software implementations. These are the 
variations suggested by the range of architectures available for implementation, 
and by the needs of applications which range from embedded real t ime systems 
through telecommunications to massive scientific simulations. The diversity of 
the phenomena gives scope for an equM diversity of the theories needed to ex- 
plain and control them. Further dichotomies can be introduced by theorists, who 
adopt varying styles of presentation even for very similar theories, for example, 
by describing their operationM, algebraic or denotational semantics. 

But we believe that  the time is ripe to make a start  on a process of unifica- 
tion. A unifying theory is one that  reveals the relationships among a family of 
subtheories, by capturing the essential properties that  they share, and clarifying 
the equally essentiM features that  distinguish them. Unification permits knowl- 
edge, skill, experience, languages and tool support to be transferred from one 
application to another, and helps in the design of systems to be implemented 
in a mixture of technologies, including even hardware. This ambitious task can 
be accomplished only by following the example of unifying theories in other 
branches of mathematics and naturM science. It will have to take advantage of 
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the discoveries and skills of many branches of theoretical computer science, es- 
pecially those of programming language semantics. Denotational, algebraic and 
operational styles of presentation all have an important role, once their mutual 
consistency has been proved. We aim at nothing less than a comprehensive the- 
ory of programming, providing a common basis for specification, design, coding, 
implementation, compilation and optimisation of a variety of programming lan- 
guages and paradigms. Only by unifying theories at a basic level will we consoli- 
date our claim that computing science is an independent and coherent scientific 
discipline, worthy of study as an aid to the engineering of its applications. 

We will illustrate the search for unification by selecting a few examples drawn 
from theories of parallel programming. We will concentrate on a definition of a 
family of parallel combinators JIM, where the members of the family are deter- 
mined by different choices of the single parameter M. We will show how many 
different theories can be generated by simply varying that parameter. All the 
variations share the same basic algebraic properties, and the properties that 
differentiate them are also expressed algebraically. In many cases, a complex 
theory for a composite programming language can be constructed as the sum of 
its simple parts; in other cases, account must be taken of unavoidable interaction 
effects. We hope to show that unification is an interesting study, even for those 
who do not wish to follow the necessary mathematical details. 

2 A l g e b r a  

The goal of unification is one that has long been sought by mathematics; and it 
has been achieved most successfully by application of the techniques of modern 
algebra. Consider an analogy with the study of the foundations of arithmetic. 
This has revealed many different meanings for the arithmetic operation of ad- 
dition, as applied in different kinds of number system - -  natural, integral, frac- 
tional, real, complex, quaternion, matrix, etc. The unifying properties shared by 
all these variations are algebraic: all forms of addition are associative and sym- 
metric; and furthermore there is always a neutral element which is unchanged 
when added to itself 

0 + 0 = 0  
x - ~ y - = y - k x  

( x + y ) + z  = x + ( y + z )  

We will insist that any definition of parallelism shares exactly these properties 
of addition. We will use parallel bars to denote the combination of processes 
running concurrently: if P and Q are program fragments which describe the 
behaviour to two processes, (P II Q) describes the result of executing them in 
parallel. The neutral program ]I (skip) is one that does nothing and changes 
nothing. The traditional algebraic laws for addition are transcribed in this new 
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application to programs as 

ulJ =H 
P I I Q = Q i I P  

(P II Q)II n = e II (Q II R) 

Sequential composition of the components of a program is subject to a very 
similar set of algebraic laws. The program (P; Q) describes the execution of P 
followed by that of Q, where Q does not start until P has terminated successfully. 
This operator obeys stronger laws for the neutral element ]I, but it is obviously 
not symmetric 

l [ ; P =  P = P;II 
(P; Q);R = P; (Q;R)  

The meaning of sequential composition is the same in every sequential program- 
ming language, and it will surely satisfy these laws, independent of the details 
of notation or the complexity of other features included in the language. 

The non-determinism often associated with parallelism is a well-known source 
of problems, which can also be tackled with the aid of algebra. Let (P V Q) 
describe the possible range of behaviours of a program that may behave like P 
or it may behave like Q, though in advance we do not know (and cannot control) 
which of them it will be. The basic algebraic properties expected of this operator 
are similar to those of any other operator that offers choice between alternatives: 
idempotence, symmetry and associativity 

P V P = P  
P v Q = Q v P  

(PVQ)  V R = P V ( Q V R )  

One great advantage of the modularity of algebra is that it permits the prop- 
erties of different operators to be captured independently of each other, as we 
have shown for parallelism, sequentiality and non-determinism. But the inter- 
actions between the operators are just as important; these too are expressed 
algebraically, most often by simple distribution laws like those that hold be- 
tween multiplication and addition in arithmetic. For example, both parallel and 
sequential composition distribute through non-determinism 

(P V Q) II n = (P II R) V (Q II n) 
(P V Q); R - (P;/~) V (Q; R) 
R; (P V Q) -- (/~; P) v (R; Q) 

These laws help to reason about non-determinism by considering each case sep- 
arately. There are also useful laws which relate parallel with sequential composi- 
tion; they are more distinctive to particular theories, and a range of alternatives 
will be described in later sections. 
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3 T h e  t h e o r y  o f  p r o g r a m m i n g  

The practical value of algebraic laws can only derive from their application 
to particular branches of engineering, science or even mathematics itself. Each 
application gives its own interpretation to the variables P, Q,/~ appearing in the 
equations. The main practical value of a theory of programming is to assist in 
the design and implementation of programs that are correct, in the sense that 
they meet their specifications. We therefore allow our variables to range not just 
over computer programs, but also over system designs and user specifications, 
which are ideally formulated long before the program is written. 

Thus we unify the study of programs, designs, and specifications, regarding 
them all as different kinds of predicate that describe the behaviour of a computer 
system in relationship to its environment and its users. When a predicate serves 
as a specification, it describes the full range of the desired and permitted be- 
haviour of the system. In the interests of clarity, a specification may be expressed 
with the aid of any relevant abstractions and notations of mathematics. When a 
predicate is used as a program, it describes the full range of possible behaviour of 
a computer that is executing the program. In order to permit automatic compi- 
lation and execution of such a predicate, it has to be expressed wholly in a very 
restricted notational framework, namely a programming language. The formal 
semantics of the language defines the meaning of each notation by translating 
it into the corresponding predicate. Since both specifications and programs are 
predicates expressed in different notations, it is natural to allow intermediate de- 
signs to be expressed as any helpful mixture of programming and mathematical 
notations. 

The strongest reason for interpreting programs, designs and specifications 
within the uniform mathematical space of predicates is an extremely simple 
treatment of the elusive concept of program correctness. A program is correct 
just if it logically implies its specification 

program =~ specification 

This means that any behaviour of the actual program when executed is a be- 
haviour described by (and therefore permitted by) the specification. The tradi- 
tional engineering technique of stepwise design is justified by the transitivity of 
implication, as expressed by the inference rule, known as cut 

program :=~ design design =:~ specification 
program ~ specification 

Repeated application of this rule permits an implementation to be split into 
many steps. The design formalises the interface between each step. The succes- 
sive designs are expressed in notations getting closer to the target programming 
language. The last step is the pure program, whose correctness has been guar- 
anteed by this stepwise method of construction. 

Many familiar engineering principles can be described as elementary proof 
rules in logic, and they can be used directly in reasoning about the correct- 
ness of programs. For example non-determinism can be simply equated with the 
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propositional concept of disjunction! A sufficient (and necessary) condition for 
the correctness of a non-deterministic program (P  V Q) is that  both alternatives 
should be correct, as shown by the familiar rule for proof by cases 

progl ~ design prog2 ~ design 
(progl Y prog2) =~ design 

The predicate calculus introduces free variables, bound variables, and quan- 
tification. Free variables are used in programming theory in the same way as in 
natural science, to describe phenomena that  are more or less directly observable 
in the real world. Each observation of the system under study yields a measure- 
ment which is taken as the value of the appropriately named variable occurring 
(free) in the predicate that  describes the system. Theoretical and experimental 
scientists have to agree on the association between the name of each variable 
and the timing and method for making the measurement that  will determine its 
value. A scientific theory or prediction expressed as a predicate is valid if it is 
always true whenever its free variables are replaced by the values observed in the 
course of a properly conducted experiment. The set of free variables relevant for 
a given scientific theory may be called its alphabet; and different theories have 
different alphabets describing different kinds of experiment. 

In the theory of programming, the alphabet is determined by the names of 
the global variables, say x, y , . . . ,  z, which are accessible and updatable by a 
given program. As in other branches of science, the first and most important  
occasion for making an observation is when the experiment starts, or when the 
program is set to run. We indicate such initial observations by placing a left 
arrow over the name of the global variable: ~--~'- x ,  y are the initial values of the 
global variables x and y; conversely, a right arrow o n - ~ , ~  indicates the final 
values observed on termination of the program. To begin with, we will assume 
that  the start  and the finish are the only two occasions when observations can 
be made. The alphabet of a program P is denoted by ~P,  and it is split into 
initial and final subalphabets, similarly distinguished by arrows. 

c~ P = +~ P U -~ P 

In programs, the alphabet is usually determined by the context of declara- 
tions which surround a program rather than by the variables that  appear in its 
text. Certain conventions ensure satisfaction of various constraints that  we shall 
place on the definition of programming notations. But this is an issue that  we 
will largely ignore. 

4 Sequential and Parallel Programs 

The basic constituent of every program in our theory is the assignment state- 
ment, for example 

x : = x + y  
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When executed, this ensures that  the final value of the variable on the left 
of the assignment symbol is equal to the value of the expression on the right, 
where all the variables in the expression take their initial values. A mathematical  
statement of this fact is taken as the definition of the assignment, for example 

x : = x + y  =dr x ----~-+y 
: = ,  + y )  = 

For simplicity, we will assume that  evaluation of expressions always terminates. 
Larger programs are built from the basic assignments by combinations ex- 

pressed in the notations of the programming language. Consider for example, 
the conditional i f  b t h e n  P else  Q. Given that  P and Q are predicates, the 
semantics of the language must define the predicate corresponding to this com- 
bination. Let 7 be the initial value of the boolean expression b, obtained by 
distributing the left arrow to all its variables. If b is true initially, the behaviour 
of the program is described by P, and if false, the behaviour is described by Q; 
and one of these two cases must hold. These facts are expressed simply in the 
propositional calculus by the definition 

P ,a b ~ Q =d] (~- A P)  V (-~7 A Q) provided c~P = a Q  

The algebraic properties of the conditional are easily proved as mere tau- 
tologies. The infix notation gives a familiar shape to the laws - -  idempotence, 
symmetry, associativity, etc. 

P < b ~ P - - P  
P <bt> Q = Q ~ b t >  P 

(P < b~, Q)<bt> R = P , ~ b ~ ( Q , ~ b ~  R) 
= P ,a b t> R 

The definition of sequential composition of programs is based on that of 
composition in the relational calculus. In executing (P; Q), the final value of 
each global variable of P is taken as the initial value of the variable of Q that  
shares the same name. But this transmission of values is never observed; all that  
is known is that  each value exists (or at least that  it could have existed) at the 
time that  control passes from P to Q. In the predicate calculus, such an unknown 
value is concealed by existential quantification over the global variables of the 
intermediate state. These are then removed from the alphabet of the result. 

P ( . . . ~ + , 7 ) ;  Q(~-,~- , . . . )  = 3 y , z , . . . P ( . . . ,  y, z) A Q(y, z , . . . )  
~ ( P ; Q )  = ~ P o ~ Q  - ~ 'PN~Q~ ' -+ ~- provided ~ :P = ~ Q 

The proviso on the alphabet is usually met by adding identity clauses to P and 
Q, as needed to increase their alphabets, for example 

P A ( 7  = ~ )  

But again, we will ignore this slight complexity. 
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The simplest possible definition of parallel composition of P0 and P1 is just 
their conjunction P0 A P1. But a proviso is needed to avoid programs like 

(z := 3 A x := 4) 

Considered as a predicate, this is uniformly false and so cannot truly describe any 
observation whatsoever of the real world. Such contradictions must be forbidden 
in any programming language that  is to be implementable. So we define the 
restricted case of what is called disjoint parallelism, by requiring that  there is 
no variable updated by both processes 

P0 I I P1 = P0 A P1 if ~ P 0  n a p l  = {}  
~(P0 II P1) = ~P0 u ~P~ 

An example is a simultaneous assignment to two distinct variables x and y 

ix :-- x + y) II (y := x - y) = ( -~ =~- +~- A ~ = ~ -  - T )  

The effect is more commonly written as a multiple assignment 

x , y  := x +  y , x -  y 

Note that when the second expression x - y is computed, the original value of 
x must always be used, and not the value updated by the other part of the 
assignment. 

In the general implementation of (P0 ]] P1), execution of P~ (say) may be 
delegated to a separate processor. But first, a separate copy must be made of 
the initial value of any variable which is updated by one of them and accessed 
by the other. As noted above, this is needed to ensure that  the accessing process 
always gets the initial value, and cannot detect any interference from the other 
process updating it. Synchronisation takes place when execution of both P0 and 
P1 has terminated; and then all the changes made by P1 must be copied back to 
the single global store. The additional processor that  has executed P1 can then 
be released, and the original processor continues execution (if necessary). 

But this is not the only way of executing disjoint parallel composition. If nei- 
ther process updates any of the global variables of the other, parallel execution 
can be simulated on a single timeshared computer (without copying initial val- 
ues) by arbitrary interleaving of the actions of the individual processes. This fact 
is expressed in algebraic laws which formalise the interaction between sequential 
and parallel composition 

P I I n = p  
(P; Q) it R = P; (O II n) provided ~-~P Cl WR = {} 

Under a similar proviso we can deduce 

(P 11 R) = (P; R) = (R; P) 
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Disjoint parallelism is the easy case to define and reason about. We now deal 
with the more interesting case when a certain variable, say m ,  is updated by 
both the processes 

~'P0 N ~P1 = { ~ }  

The same strategy we have described for parallel execution still works (with 
two copies of m) right up to moment of synchronisation, when the final value 
of m in the global store has to be determined. Each process offers its own rival 
candidate, which we will call m0 and ml, and these are in general different. To 
resolve the conflict, we need a m e r g i n g  operation M to determine the final value 
of m, usually as a function of the rival values, and also perhaps of the original 
initial value of m. So its alphabet is defined 

{m, ~} m0, ml, 

Such an M is written as a parameter of the parallel operator tIM 

P 0 ( ~ )  JIM P l ( ~ )  =d/  (P0(~0)[]  P l (~ ' l ) ) ;  M provided ~--~P0 A ~-~P1 = { ~ ]  

The parallelism on the right side of this definition has been made disjoint by the 
substitution of ~0 for m-+ in P0 and m-~l for m-+ in P1. 

What  then is the predicate M? That  is a choice that is made individually for 
each kind of shared variable and for each kind of theory. In addition, each theory 
may specify a restricted range of atomic actions by which a process is allowed 
to update the shared variable. Different choices of merge operator and atomic 
actions are illustrated in the following sections. They all satisfy the basic laws 
for parallelism displayed in section 2, but they have different sets of expansion 
laws. 

5 Varieties of parallel composition 

As the simplest example of a shared variable, consider a s u m  which is used to 
accumulate the total of some resource (say machine cycles) used during execution 
of a program. Every use of the resource is accompanied by an increase of the 
s u m  by the amount x of the resource consumed. 

u s e ( x )  =d$  s u m  :---- s u m  q- x 

This is an atomic action, and it is the only kind allowed. When it is invoked in 
parallel by two processes, we need to define a merge operation that will compute 
the final value as the sum of the resources used by both processes. 

M = d r  s u m  :---- s u m o  -[- s u m 1  -- s u m  

The final subtraction of the sum is needed to counteract the fact that  both 
processes started with the same initial value of s u m ,  and one of them must be 
removed. 
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As in the case of disjoint parallelism, it is usually better to avoid taking a 
separate copy of the shared variable; instead the original variable is updated 
in its original position in global store by an interleaving of the atomic actions 
invoked by the two concurrent processes. Of course, some exclusion mechanism 
is needed to ensure that  the actions remain atomic: if one action is in progress, 
the start  of the other must be delayed until the first action is complete. This 
form of sharing by interleaving is justified by the same algebraic laws as for 
disjoint parallelism. Their  proof depends on the fact that  all the atomic actions 
commute with each other 

use(x); u e(y) = u e(y); 

The next example is of a theory that  predicts the minimum amount of elapsed 
clock t ime taken by a program; the time can be either simulated or real. Any 
process which takes one unit of clock time is accompanied by the atomic action 

tick =~/ clock := clock + 1 

When a parallel process terminates, it no longer performs these clock ticks. The 
final value of the clock is therefore that  of the process that  terminates later 

M =dr clock := max(clocko, clockl) 

The expansion law for this kind of parallelism indicates that  the clock keeps 
a truly global time, and ticks simultaneously for all the processes in the system 

Po )llM( ¢iek; ) = Ziek; ( PoHM P1) 

Actions that  occur simultaneously in two processes are called synchronising. 
A commonly shared resource in a parallel computing system is an output  

device or display on which all processes record messages describing important  
events in their evolution. This log is represented by a shared variable, with 
values ranging over sequences of messages. The atomic action outputs a message 
by appending its value to the end of the log 

op(x) log := log ^ (x) 

On termination of a parallel execution, the log has been extended by an inter- 
leaving of the messages appended by the two processes 

M = a / (  o/-5~ - o/~) is an interleaving of (o/~0 - o/~) and (o/~1 - o/~) 

The atomic operations on the log obey a form of the commuting law in which 
the equality had been weakened to an implication 

op( x ); ( PoIIM P1) ==~ ( op( x ); Po )IIM Qo 

A logical implication between programs always means that the antecedent 
is a valid way of implementing the consequent (because, by transitivity of im- 
plication, every specification satisfied by the consequent is also satisfied by the 
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antecendent). Actions which obey a law of this kind are called interleaving. The 
full expansion law for the shared log is an equivalence, but a rather complicated 
and expansive one. It states that  of two parallel atomic actions, one must occur 
first, but the choice is not determinate 

(op(x); Po)l[M(op(y); P1) = op(x); (Po[l(op(y); P1)) V op(y); ((op(x); P0)[IP1) 

We have now described three different paradigms for sharing a single variable 
among parallel processes; and we have classified the atomic actions by their ex- 
pansion laws as commuting, synchronising, or interleaving. A similar t reatment  
can be given to shared variables of more substantial type, such as sets, bags, or 
arrays. Indeed, a reMistic programming language may include many variables of 
all these types, and allow them all to be shared at any time among any num- 
ber of processes, updating them in parallel by any of their permit ted atomic 
actions. Fortunately, the theory of programming for such a complex language is 
no more complicated than the sum of the theories for its individual single shared 
variables. All that  is needed is to define the merge operation for parallel com- 
position as the conjunction of the separate merges for the individual variables. 
Similarly, the atomic actions are just the union of the atomic actions on the 
individual variables. And all their algebraic properties are preserved, whether 
they be commuting, synchronising or interleaving. The proof of this fact, under 
quite general hypotheses, perhaps deserves the title of a fundamental theorem 
of parallel programming. 

6 P r o c e s s  A l g e b r a  

In our suggested implementation of parallelism we have described the variables 
shared between processes in terms that suggest that  their values will be held, 
maybe even twice, in the memory of a computer. But this is not essential; and 
exactly the same theory applies when the shared concept is part of the external 
environment of the computer, like the output  log or the time of day, or even 
a completely abstract trace of the history of the events in which the system 
engages. Such a history is called a trace, and it is updated, like the log, by an 
atomic action of the form 

do(a) (trace := trac  ^(a)) 
where a is the event whose occurrence is recorded by this assignment. 

A theory of parallelism which deals exclusively with the occurrence of events 
rather than the updating of stored values is called a process algebra. Many vari- 
eties have been studied; they are generally known by their acronyms, for example 

CCS Calculus of Concurrent Systems 
SCCS Synchronised CCS 
ACP Algebra of Concurrent Processes 
CSP Communicating Sequential Processes 
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Each of these has a different definition of the parallel combinator. They are 
unified by showing that  these definitions differ only in the choice of a merge 
function as parameter. 

Our first example is SCCS, in which every event is synchronised in lockstep 
with events in the history of every other concurrently active process. This theory 
is adapted to the needs of a certain kind of real-time application, where real-world 
inputs and outputs are constrained to occur at regular intervals, say 24 times per 
second. The input data (or parts of it) are distributed to every active process; 
and the output is composed from data supplied at the same time by every active 
process. We describe the theory as applied to output. First we need a binary 
operator, denoted by I, which describes the way that output data supplied by two 
processes should be combined before transmission to their common environment. 
The environment may include other processes, which will combine this data 
yet again with their own data before eventual output to the world outside the 
computer. To simplify this kind of co-operation, the operator [ is usually assumed 
to be associative and commutative. 

The merge operation for SCCS is simply defined by applying I to the com- 
ponent outputs produced simultaneously by the two processes 

t r ~  := tr~We^((al l bl), (a2 ] b2) , . . . , (an  [bn)) 
+._____ 

where trac~eo = trace ^(al, a2 , . . . ,  an) 
+ - - - ' -  A and trac~el =lrace (bl, b2, . . . ,  bn) 

The expansion law for this merge is obviously of the synchronising kind 

(do(a); Po)ll(do(b); P1) = do(a I b); (P01lP1) 

The total synchronisation of SCCS is relaxed in ACP, which allows an event 
to occur with the participation of only a subset of the concurrently active pro- 
cesses, missing perhaps any that  are not ready. As a result, the merge operation 
on the traces is a mixture of synchronisation and interleaving, in which each 
event of each process either occurs independently or is combined by ] with the 
corresponding event of the other processes. For example 

merges (t, ()) = {t} 
merges ((a), (b)) = {(a]b), (a, b), (b, a)} 

We cannot give the expansion law for ACP or the remaining process algebras, 
because it uses a variant of the choice operator which is not defined until the 
last section. 

The parallel operation of CCS is a special case of that  of ACP. It introduces 
a special action T, called the silent action, which represents an internal and 
invisible transition within a process. Non-silent actions are split into two classes: 
outputs which are indicated by overbar, and inputs which are undecorated. A 
synchronisation only takes place between a single input and a single output, and 
the result is always a silent action 

(a ] ~) = 7 for all actions a 
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CSP is a theory which explicitly differentiates the set of atomic actions that  
are allowed in each of the parallel processes. The parallel combinator is indexed 
by these sets: in (PA]IB Q), P engages only in events from the set A, and Q only 
in events from the set B. Furthermore, each event in the intersection of A and 
B requires synchronous participation of both processes, whereas other events 
only require participation of the relevant single process. As a result, the parallel 
composition of CSP is defined by a rather simple form of merge 

" - - - +  ~ A t race  = t race  t 
where t e (A U B)* and t [ A  = u A t I B  = v 
where ~ ~ ^ t race  u traceo = and t r Y 1  = *---- ̂  t race  v 

In this section we have concentrated on the simplest aspects of each of the 
four process algebras, the ones that can be described just by a trace of the events 
which actually happen. Unification has been achieved not by reduction of one 
algebra to another, but by an abstraction that  transcends them all. This leaves 
open for separate consideration the more interesting differences between the the- 
ories. Consider, for example, their treatment of the problem of livelock, which 
can occur when a system spends all its t ime on internal communication, ignoring 
the needs of its external environment. CCS places upon the implementation an 
obligation to avoid livelock wherever possible by some kind of fair scheduling. 
CSP places this obligation upon the programmer, so that  even strict priority 
scheduling is a valid implementation. ACP insists that  every process engage in 
at least one action, and avoids livelock by ensuring that  every recursively de- 
fined process is an unique fixed point of its defining equations. CSP chooses the 
weakest fixed point in those cases when there is a choice. These and other differ- 
ences can often be at tr ibuted to differences in the chosen style of presentation 
of the semantics - -  operational for CCS, algebraic for ACP and model-theoretic 
for CSP. A potent stimulus to unification is to require a mature theory to be 
presented in a variety of semantic styles, together with a proof of their mutual  
consistency. 

7 R e a c t i v e  S y s t e m s  

The simple trace model of process algebra is fully adequate to deal with processes 
that  engage in communications only with their common global environment. 
From the environment the system gets its input as an initial value, and provides 
its output  as a final value, observable (in principle) only when all the processes 
have terminated. But most process algebras also allow internal communication 
between concurrent processes: from time to time a process inputs a message 
that  has been output  by another process; and if the other process is not ready, 
the input operation has to be delayed until the message is available. In many 
process algebras, outputs will also be delayed whenever the matching input is not 
ready. These potential delays are needed for reliable communication, but they 
carry with them the dreadful risk of lasting forever - -  a phenomenon known as 
dead lock .  
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The primary purpose of a theory of programming is to assist in the design 
of systems guaranteed to avoid this kind of risk. To do this, the theory needs 
to assume that  the phenomenon of waiting is observable, perhaps on many oc- 
casions, between the start of a process and its termination. A Boolean variable 
wait is introduced to distinguish intermediate waiting states from termination. 
A deadlock is represented by a process STOP that  admits only waiting states 

STOP =dy (wait := true) 

The variable wait is shared by all processes, and so it needs a merge operation; 
this merely states the obvious fact that  termination occurs only when both 
processes have terminated; consequently a parallel composition waits when either 
of its processes is waiting, even if the other has terminated 

M =dr wait := waito V wait1 

While a process is waiting, its environment may offer various kinds of input 
and output.  If an offer is accepted, occurrence of the communication will be 
observed as the next event in the trace of the process. But if an offer is refused, 
the process will continue to wait until an acceptable communication is offered. If 
no communication is acceptable, the system is deadlocked and will wait forever; 
indeed that  is how deadlock is defined. In order to predict such deadlocks (and 
thereby avoid them), we need to assume that  the refusal of a communication 
by a process while waiting is just as observable as its acceptance. We therefore 
introduce a new variable re f ,  which contains the set of communications refused 
by a process while it is in a waiting state. In other states, whether busy or 
terminated, the value of ref is irrelevant. The ref variable is often implemented 
in hardware as an interrupt inhibit register, which prevents a computer from 
responding to interrupts which the software is not ready to cope with. 

The ref variable needs a merge operation 

M = dy ref := refo U refl 

This states that  an acceptable communication has to be acceptable by both 
processes. The definition given above applies to the CSP parallel combinator. 
For a purely interleaving definition of {{, we would merge the refusals by an 
intersection instead of union 

M =dy ref := refo A refl 

We have now introduced separately the basic observational variables needed 
to model the synchronisation of internal communications. But they are not as 
independent as the shared variables treated earlier; they are connected by joint 
appearance in the same set of atomic actions, which update them all simultane- 
ously. The action is the one that  actually engages in an event, say a. It cannot 
be described as an assignment statement,  because it has three states in which it 
can be observed 
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1. The initial state, as always. 
2. A waiting state, in which nothing happens until the other participants in the 

event are also ready for it. Of course, the offered action cannot be refused. 
3. A terminated state, after the event has happened. 

These last two occasions are described by the alternatives displayed in the fol- 
lowing definition 

do(o) =d± =  itA V ^(a) A 

But there is a slight complexity we have overlooked. In sequential composi- 
tion, we must recognise the fact that  the waiting states of P are also waiting 
states of (P; Q). Fortunately, Q can distinguish its predecessor's waiting states 
by testing the truth of wait. The obligation on Q to leave them unchanged can 
therefore be elegantly expressed by the algebraic law 

Q : ]I <] wait t> Q 

Such a condition has been known as a healthiness condition, and a theory of 
programming must ensure that  it is satisfied at least by all programs expressible 
in the notations of the programming language. These, of course, include the 
action do(a), which needs to be slightly redefined. 

Programs and healthy predicates satisfy many more algebraic laws than ar- 
bitrary predicates. For example, the following law expresses the sad fact that  
deadlock cannot be rescued by any program written to run after it 

STOP;P = STOP 

Any theory of programming that  lays claim to realism must ensure validity of 
this law. But it is obviously not true of every predicate P, for example 

(STOP; wait :----false) -- (wait = false) # STOP 

Fortunately, the law is valid for all predicates that satisfy the healthiness condi- 
tion; and that includes all programs and also many designs and specifications. 
Indeed, one can classify designs and design languages by how many healthiness 
conditions they satisfy - -  the more conditions, the closer they are to programs. 

The original reason for introducing the complexity of waiting is to allow 
information to pass reliably from one concurrent process to another. This can 
now be done quite simply, by means of a new form of choice operator, denoted 
by plus (4-) in CCS and ACP. In CSP it is denoted ~, and called external choice. 
This is because P~ Q behaves either like P or like Q; the choice between them is 
not arbitrary (as for (P V Q)), but rather it is made by another process running 
concurrently, as explained below. 

Suppose 0 is an event in which P is ready to engage, but Q refuses it. 
Conversely, let 1 be an event refused by P, but initially acceptable to Q. Let 
R be a concurrent process in the environment. All three processes have both 0 
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and 1 in their alphabet. Now R can begin by performing 0, with the effect that 
P will be chosen for execution; or it can select Q by choice of the initial event 
1. The effect is neatly described by the following expansion laws, using CSP ]] 

((0; P)I(1; Q)) II (o; R) : o; (P II R) 
((o; P)l(1; Q)) II (1; R,) = 1; (Q II R,) 

Effectively, R has communicated one bit of information to its concurrent part- 
ner, which uses it to determine the subsequent behaviour, either P or Q. More 
information can be communicated by choice between a larger set of alternatives. 

The definition of external choice is amazingly simple, and uses only proposi- 
tional connectives 

(PI Q) -- (P A Q) <1 ( t ~  = i r ~ )  t> (P V Q) 

Observations of this process fall into two classes. Either nothing has happened 
( tr -~e = trYd-ce), in which case (Pl Q) can refuse an event just if both P and Q 
refuse it; or else something has happened, and every subsequent observation is 
either one of P or one of Q. By looking at the actual event, you will usually be 
able to tell which of P or Q has been chosen; but if both P and Q allow this 
same first event a, the choice between them is non-deterministic, as shown by 
the law 

(a;P)l(a;  Q) = a;(P v Q) 

Reactive systems are distinguished from familiar sequential systems by the 
introduction of observable waiting states. But they are usually implemented in 
a programming language which mixes sequential and reactive features. We have 
shown how to develop theories for each kind of feature separately. In putting 
the theories together, it may be necessary to adjust them to account for possible 
interactions. This is done simply by ensuring that the programs of each theory 
satisfy the healthiness conditions of the other. Much of the apparent complexity 
of programming language semantics arises from this multiplicity of healthiness 
conditions. 

We have not abolished the complexity, any more than chemistry abolishes 
the complexity of molecules compounded from their simpler elements. But as 
in chemistry, we have shown how to control the complexity by analysing it into 
components studied separately at first, and then exploring their interactions. As 
in chemistry, our work is built on the discoveries of many earlier researchers, 
only some of whom are mentioned in the references. And for the future, we 
hope to enlist the help of many other theorists in continuing our exploration 
of the wide range of possible programming paradigms, their implementation in 
different technologies, and their application in the design and delivery of useful 
and reliable systems. 
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