
Automatic Parallelization of Irregular and
Pointer-Based Computations: Perspectives from

Logic and Constraint Programming

Manuel Hermenegildo

School of Computer Science
Technical University of Madrid (UPM), Spain

hermeOfi.upm.es ht tp: / /www.cl ip.dia . f i .upm.es/~herme

Abs t r ac t . Irregular computations pose some of the most interesting and
challenging problems in automatic parallelization. Irregularity appears in
certain kinds of numerical problems and is pervasive in symbolic applica-
tions. Such computations often use dynamic data structures which make
heavy use of pointers. This complicates all the steps of a parallelizing com-
piler, from independence detection to task partitioning and placement.
In the past decade there has been significant progress in the develop-
ment of parallelizing compilers for logic programming and, more recently,
constraint programming. The typical applications of these paradigms fre-
quently involve irregular computations, which arguably makes the tech­
niques used in these compilers potentially interesting. In this paper we
introduce in a tutorial way some of the problems faced by parallelizing
compilers for logic and constraint programs. These include the need for
inter-procedural pointer aliasing analysis for independence detection and
having to manage speculative and irregular computations through task
granularity control and dynamic task allocation. We also provide pointers
to some of the progress made in these áreas. In the associated talk we
demónstrate representatives of several generations of these parallelizing
compilers.

Keywords : Automatic Parallelization, Irregular Computations, Speculation, Pointer
Aliasing Analysis, Task Granularity Control, Global Analysis, Abstract Interpretation.

1 Introduct ion

Some very significant progress has been made in parallelizing compilers for reg­
ular, numerical computations, generally based on the FORTRAN language (see,
e.g., [3]). This research has resulted in well known concepts and techniques includ-
ing a well understood notion of independence (based on the Bernstein conditions
or, for example, more recent notions of "semantic independence" [4]), sophisti-
cated syntactic loop transformations, transformations based on polytope models,
extensive work on partit ioning and placement, etc. On the other hand, the appli-
cability of these techniques has remained comparatively limited for irregular or
symbolic computations, and still few practical systems deal with parallelization
across procedure calis. Also, the techniques used often rely on the relative clean-
liness of FORTRAN as a programming language and additional work is needed
in order to extend them to other mainstream languages like C or C + + . These

http://upm.es
http://www.clip.dia.fi.upm.es/~herme

languages include features such as dynamic, recursive data structures and pointer
manipulation which complícate the detection of independence among statements
or procedure calis and much current work is aimed at developing the related
independence analyses. An important example is pointer aliasing analysis (see,
e.g., [40] and its references).

We argüe that, despite the apparent differences among imperative, functional,
logic, constraint, and object oriented languages, the fundamental issues being
tackled are quite similar. Thus, we believe that progress towards more effective
parallelizing compilers for all programming paradigms can be sped up by cross
fertilization of the results obtained in different paradigms. It is with this thought
in mind that we present in the following a brief overview of some of the problems
which appear in the área of automatic parallelization of logic and constraint
programs. We also provide pointers to the some of the solutions and achievements
of the área.

2 Logic and Constraint Programming

Due to space limitations, we will present only a brief overview of logic and con­
straint programming, specifically tailored to the objective of our presentation
(the reader is referred for example to [42,30] for details). We warn the reader
that this cannot in any way be considered a fair introduction to the topic, since
we completely overlook aspects of logic and constraint programming which are
widely perceived as important. These include the declarative nature and the log-
ical semantics: programs in these languages are often not only the coding of an
algorithm, but also a logical statement of a problem, which is very cióse to a
specification. In the following we take a fully operational view - the same one
that the parallelizing compiler takes.

The basic "statements" of a constraint logic program are constraints. Con-
straints relate (logical) variables. Such variables can be free, or they can be con-
strained to a certain valué or set of valúes. For example, the statement X=Y+Z
establishes that the given constraint must hold among those variables (we as-
sume for example that the variables range over floating point numbers). Such
constraints are kept in the store. Assume Y and Z have a "known" valué at the
time of executing this constraint (for example, the store contains Y=2 and Z=3).
Then, the operational semantics of such a constraint is very similar to that in any
other language: the statement implies an addition (2+3) and an "assignment" of
the result (5) to X. This can also be seen as telling (posting) the constraint X=5.
Assume instead that such valúes are not known. Then executing the statement
involves placing the constraint in the store for later solution if/when another con­
straint is executed. Sequences of constraints are separated by commas. Assume
again an empty initial store and the sequence of constraints "Y=2, X=Y+Z". After
executing this sequence the store would contain "Y=2, X=2+T1, Z=T1". Here, we
are making the assumption that sequences of constraints execute sequentially in
the order in which they appear and that the store is always kept as "fully solved"
as possible and in a normalized form -see [30] for details.

Constraint logic programming also provides a method for procedure abstrac-
tion. For example, code segment (a) below:

foo(Z,X) - Y = 2 ,
X=Y+Z.

(a)
main - f o o (K , W) ,

K = 3 ,
w r i t e (W) .

(b)

defines a two-argument procedure f oo. A procedure defines a local dynamic invo-
cation context in the usual way, Le., upon entering the procedure Y is a new local
variable while X and Z are formal parameters . The calling regime is not unlike
"cali by reference" (see the discussion later about logical variables being essen-
tially pointers). For example, the effect of calling foo(3,W) is tha t upon return
W=5 is added to the calling context. Note tha t the procedure is syntactically not
very different from what one would write in a functional or imperative language,
and its behavior is essentially the same for calis such as foo(3 ,W) . However,
the complete operational behavior of the constraint programming procedure is
richer because it allows other "calling modes." For example, a cali to foo (K,5)
succeeds and upon return K=3 is added to the calling context. Furthermore, a
cali to f oo(K,W) also succeeds and upon return the constraint W=2+K is added to
the calling context. In some ways, the statements and procedures in constraint
programs can be seen as "reversible" versions of their syntactic counterparts in
conventional languages. Note tha t also the declarative meaning of such programs
is richer because it defines a complete logical relation (rather than a function)
among its arguments. Procedure calis can appear in the bodies of procedures in-
terspersed with constraints. For example, code segment (b) above would produce
"5" on the s tandard output .

Procedures can have múltiple definitions, which represent different alterna-
Uves. Establishing a somewhat inaccurate parallel with conventional languages, a
set of procedure definitions can be seen as an "undoable" form of case statement
or conditional. When such a procedure is entered it is said to créate a choice. Such
alternatives are tried in the textual order in which they appear in the program,
Le., the first definition of a procedure is tried first and, if tha t results in a failure,
then the next one is tried (again, we follow the default execution strategy used
in most practical constraint programming languages). A failure occurs when a
constraint is executed which makes the store unsolvable (Le., it is incompatible
with the current state of the store). This is not unlike the case of a test evaluating
to false in a conditional. When a failure occurs, the system backtracks to the last
choice left behind and tries the next alternative in tha t choice. For example, the
following program:

main : - b a r (K, W) ,
K > 2 ,
w r i t e (W) .

bar (X,Y) : - X < 0 , Y = - 1 0 .
bar (X,Y) : - X >= 0, Y = 10.

prints "10". The first alternative of b a r is tried first, resulting in W=-10 and K
< 0, but executing K > 2 produces a failure since the store now has no solution.
After trying the second alternative of ba r , K > 2 succeeds (the store is then K >
2 , W = 10) and the program terminates after printing the valué of W.

The following, slightly more interesting example defining the Fibonacci rela-
tion illustrates the use of recursion:

f i b (0 , 0) .
f i b (l , 1) .

f i b (N , F1+F2) - N > 1 , F1>=0, F2>=0,
f i b (N - l , F l) ,
f i b (N - 2 , F 2) .

(where some syntactic sugar is used). Calling f i b (8 , Y) establishes Y=21, and
calling f i b (X , 2 1) establishes X=8. Calling f ib (X,Y) produces as alternatives
the constraints (X=0, Y=0), (X=l, Y=l) , (X=2, Y = l) , e t c .

In the previous examples we have been using a certain constraint system:
essentially, equalities and inequalities involving linear arithmetic expressions over
the (pseudo-)real numbers. In many cases the operations of constraint programs
can be compiled directly into s tandard machine operations. However, in others
(when actual constraint solving is involved) a constraint solving algorithm needs
to be applied. Thus, the definition of each constraint system must include a
decidable and (hopefully) efncient "solver." Practical languages typically include
several constraint systems.

A particularly interesting constraint system present in almost all constraint
languages is tha t of "equality relations over da ta structures" (Le., finite trees).
This is generally referred to as the Herbrand domain (and is the "working do­
main" of the Prolog language). For example, the following program (note tha t
variable identifiers start with upper case while constants and da ta structure de-
scriptors - functors- start with lower case):

main - X = f (Y , Z) ,
Y = a ,
W = Z,

W = g (K) ,
X = f (a , g (b)) .

first builds (dynamically) a new two-argument structure whose constructor sym-
bol is f (in other words, a tree whose root node is f and which has two open
branches). The variables Y and Z are pointers to the two arguments of the struc­
ture. The statement Y = a "binds" the first argument of the structure to the
constant a (Le., at this t ime X points to f (a , Z)) . The following statement aliases
the pointers W and Z (e.g., W points to Z). Therefore, the result of the statement W
= g(K) is to "bind" the second argument of the structure to g(K) (and as a result
X now points to f (a , g (K))) . The last statement finally binds K to the constant
b. This last statement illustrates how open arguments inside a structure can also
be accessed by traversing the structure using a process not unlike the "pattern
matching" available in modern functional programming languages (except tha t
it is again a "reversible" versión of it). The algorithm capable of solving all such
equality constraints over da ta structures is uniftcation. One of the nice charac-
teristics of this constraint system is tha t there exist very efficient algorithms for
performing unification.1 As mentioned before, Prolog, one of the most popular
logic programming languages, is essentially a constraint logic programming lan­
guage which uses exclusively the Herbrand domain. It is no surprise tha t Prolog
is considered very well suited for the easy manipulation of da ta structures with
pointers.2

1 Furthermore, there are also very successful compilation techniques which (specially
if global analysis of the program is performed) can transíate sequences of operations
such as those in the program above into a number of machine instructions that is
essentially the same as if a lower-level language liad been used to express the same
data structure and pointer creation and binding operations. The reader is referred to
[43] for an overview of progress in such compilation techniques.

2 Modern logic and constraint programming languages have many other features, such
as support for higher order and meta programming, module and object systems,

3 Parallelization of Constraint Logic Programs

One of the main theses of this paper is tha t logic programming and constraint
programming languages offer a particularly interesting case study for the área
of automatic parallelization. On one hand, these programming paradigms pose
significant challenges to the parallelization task, which relate closely to the more
difScult challenges faced in imperative language parallelization. Such challenges
include highly irregular computations and dynamic control flow (due to the sym-
bolic nature of many of their applications), non-trivial notions of (semantic)
independence, the presence of dynamically allocated, complex da ta structures
containing pointers, and having to deal with speculation.

On the other hand, due to their high-level nature these languages also facil­
í tate the study of parallelization issues. As we have seen, logical variables are
actually a quite "well behaved" versión of pointers, in the sense tha t no castings
or pointer arithmetic (other than array indexing) is allowed. Thus, pointers in
these languages are not unlike those allowed, for example, in "clean" versions of
C. In addition, similarly to functional languages, logic and constraint languages
allow coding in a way which expresses the desired algorithm in a way tha t reflects
more directly the structure of the problem. This makes the parallelism available
in the problem more accessible to the compiler. The relatively clean semantics
of these languages also makes it comparatively easy to use formal methods and
prove the transformations performed by the parallelizing compiler both correct
and efficient.3 Quite significant progress has been made in the past decade in
the área of automatic program parallelization for logic programs and some of the
challenges have been tackled quite effectively. In the following touch upon a few
of them (see, for example, [11] for an overview of the área).
W h e r e t h e Para l l e l i sm can b e Found: There are several types of parallelism
which are traditionally exploited in logic and constraint programs. For example,
in applications involving extensive search the choices represented by alternative
procedure defmitions are often "deep." Le., a number of steps are typically ex-
ecuted before a failure implies exploring an alternative definition. In this case
different processors can execute simultaneously the different procedure defmi­
tions (i.e., the different branches of this search space). The resulting parallelism
is called or-parallelism. An alternative strategy is to parallelize the statements
and /o r procedure calis in procedure bodies, in the same way as in more traditional
languages.4 This kind of parallelism is referred to as and-parallelism. A typical

aggregation procedures, different sets of librarles, etc. with interesting implications
on the automatic parallelization process. However, space limitations prevent us from
considering these additional issues.

3 Functional programming is another paradigm which also facilitates exploitation of
parallelism. However, it can be argued that the lack of certain features, such as point­
ers and backtracking, while making the parallelization problem easier, also precludes
studying some interesting problems.
In fact, at a finer level of granularity, also parts of body statements can be executed
in parallel. However, for simplicity, and without loss of generality, we assume paral­
lelization at the goal level, meaning that the units scheduled will be body statements
and procedure calis. Note also that the concurrency expressed by concurrent logic

example of and-parallelism is the parallel execution of the two recursive calis
in the definition of the Fibonacci relation given before. Because and-parallelism
corresponds to the traditional parallelism exploited in loop parallelization, di­
vide and conquer algorithms, etc., we will concéntrate our discussion on it. Also,
and-parallelism is the only kind of parallelism tha t can be exploited in applica-
tions where choices are "shallow" (Le., they correspond more closely to s tandard
conditionals).

Correc tnes s and Efficiency of t h e Paral le l izat ion: As in any other pro-
gramming paradigm, the objective of the parallelizing compiler is to uncover as
much as possible of the available parallelism, while guaranteeing tha t the correct
results are computed {correctness) and tha t other observable characteristics of
the program, such as execution time, are improved (speedup) or, at the minimum,
preserved (no-slowdown) - efficiency. For comparison, consider the following seg-
ments of programs in (a) a traditional imperative language, (b) a (strict) func-
tional language, and (c) a constraint logic programming language (we assume
tha t the valúes of W and Z are initialized to some valué before execution of these
statements):

Si

S'2

Y
X

:= W+2;
:= Y+Z;

(a)

(+ (+ W 2)
Z)

(b)

Y = W+2,
X = Y+Z,

(c)
For simplicity, we will reason about the correctness and efficiency of parallelism
using the instrumental technique of considering reorderings (interleavings). State­
ments si and S2 in (a) are generally considered to be dependent because reversing
their order would yield an incorrect result, Le., it violates the correctness condi-
tion above (this is an example of a flow-dependency).5 A slightly different, but
closely related situation occurs in (b): reversing the order of function application
would result in a run-time error (one of the arguments to a function would be
missing). Interestingly, reversing the order of statements s\ and S2 in (c) does
yield the correct result. In fact, this is an instance of a more general rule: if no
side effects are involved, reordering statements does not affect correctness in a
constraint logic program. As another example, consider the following program
(which uses only the Herbrand domain, Le., it is a Prolog program, and which
we will cali program (d)):

main:
Si

S2

-
p(X),
q(X),
write(X).

p(X)

q(X)
q(X)

:- X=a.

:- X=b,
:- X=a.

large computation.

Note tha t , again, reversing statements si and S2 produces the same result (X=a).

programming languages express is between and-tasks. See [28] for an extended discus­
sion on this topic. Interesting models for exploiting and-parallelism at a finer level of
granularity are, for example, [41,31].

6 To complete the discussion above, note that output-dependencies do not appear in
functional or logic and constraint programs because single assignment is generally
used - we consider this a minor point of difference since one of the standard tech-
niques for parallelizing imperative programs is to perform a transformation to a single
assignment program before performing the parallelization.

The fact that (at least in puré segments of programs) the order of statements
in constraint logic programming does not affect the result6 led in early models
to the proposal of execution strategies where parallelism was exploited "fully"
(Le., all statements were eligible for parallelization). However, the problem is that
such parallelization often violates the principie of efficiency: for a finite number
of processors, the parallelized program can be arbitrarily slower than the sequen-
tial program, even under ideal assumptions regarding run-time overheads. For
instance, in the last example, reversing the order of the calis to p and q in the
body of main implies that the cali q(X) (X at this point is free, Le., a pointer to
an empty cell) will first enter its first alternative, performing the large computa-
tion. Upon return of q (with X pointing to the constant b) the cali to p will fail
and the system will backtrack to the second alternative of q, after which p will
succeed with X=a. On the other hand the sequential execution would terminate in
two or three steps, without performing the large computation. The fundamental
observation is that, in the sequential execution, p affects q, in the sense that it
prunes (limits) its choices. Executing q before executing p results in performing
speculative choices with respect to the sequential execution. Note that this is in
fact very related to executing conditionals in parallel (or ahead of time) in tradi-
tional languages (note that q above could also be (loosely) written as "q(X) : -
if X=b trien large computation e l se if X=a then t r u e e l s e f a i l . ") .

Something very similar occurs in case (c) above: while execution of the two
constraints in the original order involves two additions and two assignments (the
same of operations as those of the imperative or functional programs), executing
them in reversed order involves first adding an equation to the system, corre-
sponding to statement S2, and then solving it against s±, which is more expen-
sive. The obvious conclusión is that, in general, arbitrary parallelization does not
guarantee that the two conditions above are met.

Notions of Independence: Contrary to early beliefs held in the field, most
work in the last decade has considered that violating the efficiency condition is
as much a "sign of dependence" among statements as violating the correctness
condition. As a result, novel notions of independence have been developed which
capture these two issues of correctness and efficiency at the same time: inde-
pendent statements as those whose run-time behavior, if parallelized, produces
the same results as their sequential execution and an increase (or, at least, no
decrease) in performance. As seen before, dealing with correctness is a matter of
correctly sequencing side-effects (plus low-level issues, of course, such as locking).
The techniques developed to this end are interesting, but, due to space limita-
tions, we will concéntrate on the arguably more interesting issue of guaranteeing
efficiency. To sepárate issues better, we will discuss the issue under the assump-
tion of ideal run-time conditions, Le., no task creation and scheduling overheads
(we will deal with overheads later). Note that, even under these ideal conditions,
the statements in (c) and (d) are clearly dependerá,.

6 Note that in practical languages, however, termination characteristics may change,
but termination can actually also be seen as an extreme effect of the other problem
to be discussed: efficiency.

A fundamental question then is how to guarantee independence (without hav-
ing to actually run the statements, as suggested by the definition). A fundamental
result in this context is the fact that, if only the Herbrand constraint system is
used (as in the Prolog language), a statement or procedure cali, q, cannot be
qffected by another, p, unless there are free pointers (pointers to empty structure
fields) from the run-time data structures passed to q from the data structures
passed to p. This condition is called strict independence [16,25].7 For example, in
the following program:

main - X = f (K , g (K)) ,
Y=a,
Z=g(L) ,
W=h(b,L),

p (X , Y) ,
q (Y , Z) ,
r (W) .

p and q are strictly independent, because X and Z point to data structures which
do not point to each other, and, even though Y is a shared pointer, it points
to a fixed valué, which p cannot change (note again that we are dealing with
single assignment languages). As a result, the execution of p cannot affect q in
any way and they can be safely run in parallel (and, again assuming no run-time
overheads, no-slowdown is guaranteed). Furthermore, no locking or copying of
the intervening data structures is required (which helps bring the implementa-
tion closer to the ideal situation). Similarly, q and r are not strictly independent,
because there is a pointer in common (L) among the data structures they have
access to.

Unfortunately, the compiler cannot always determine independence by simply
looking at one procedure, as above. For example, in the program (a) below:

main - t (X , Y) ,
p (X) ,
q (Y) .

(a)
main - t (X , Y) ,

(indep(X,Y)
-> p(X) & q(Y)
; p (X) , q(Y)) .

(b)

it can determine that p and q are not (strictly) independent of t , since, upon
entering the body of the procedure, X, Y, and Z are free pointers which are shared
with t . On the other hand, after execution of t the situation is unknown since
perhaps the structures created by t (and pointed to by X and Y) have no free
pointers to each other. Unfortunately, in order to determine this for sure a global
(inter-procedural) analysis of the program must be performed. An alternative is
to compile in a run-time test just after the execution of t . This has the undesir-
able side-effect that then the no-slowdown property does not automatically hold,
because of the overhead involved in the test, but it is still potentially useful. The
compilation of such a test can be seen as a source to source transformation of the
program as shown in program (b) above (where, following the &-Prolog notation,
"&" represents parallel execution, and (a -> b ; c) is Prolog's syntax for "(if a
then b else c)"). Furthermore, perhaps the global analysis can determine that in
fact the operations that t performs on X and Y do not affect the execution of p
and q. This kind of independence is called non-strict independence [26]. It cannot

To be completely precise, in order to avoid any speculation, some non-failing condi-
tions are also required of the goals executed in parallel, but we knowingly overlook
this issue to simplify the discussion.

be determined in general a priori (Le., by inspecting the state of the computation
prior to executing t , p, and q) and thus necessarily requires a global analysis of
the program. However, it very interesting because it appears often in programs
which manipúlate "open" data structures (difference lists, dictionaries, etc.).

An even more interesting case occurs if other constraint systems are used in
addition to or in place of the Herbrand domain. Consider for example two pro-
cedure calis p(X) ,q(Y) and assume (a) that the store contains only (X>Z,Y>Z).
Assume, alternatively, that the store contains (X>Z,Z>Y) (b). The simple pointer
aliasing reasoning implied by the definition of strict independence does not apply
directly. However, p cannot in any way affect q in case (a), while this could be
possible in case (b), Le., two calis are clearly independent in case (a) while they
are (potentially) dependent in case (b).

Notions of independence which apply to general constraint programming (and
can thus deal with the situation above) have been proposed recently [21]. For
example, two goals p and q are independent if all constraints posed during the
execution of q are consistent with the output constraints of p.8 The following is
a sufficient condition for the previous definition but which only needs to look at
the state of the store prior to the execution of the calis to be parallelized (for
example, using run-time tests which explore the store c). Assuming the calis are
p(x) and q(y): (x fl y C def(c)) and (3_sc A 3-j¡c —>• 3_gUSc) where x is the set
of arguments of p, def(c) is the set of variables constrained to a unique valué in
c, and 3-x represents the projection of the store on those variables (the notion
of projection is predefined for each constraint system). In the example above, for
c = {X > Z,Y > Z} we have 3_{X-¡.c = 3_{Y-¡.c = 3_{XY}C = true and therefore p
and q are independent. For c = {X > Z, Z > Y} we have 3_{X}C = 3_{Y}C = true
while 3{X Y}C = X > Y and therefore p and q are not independent.

Other notions of independence proposed are based on "determinacy" (Le., lack
of choices) [39]: two computations that have no choices (Le., "do not backtrack")
are independent (provided, as before, that they can be guaranteed not to fail).
Note that this is in general also captured by the notion of constraint independence
given above.

The Parallelization Process: Experiments have shown that parallelization
using only local analysis and generating run-time tests results in an excessive
amount of overhead that severely limits speedups (see [8] for a recent comparison
of actual speedups obtained by several parallelization methods). On the other
hand it has also been observed that there exist programs that obtain better
speedups if a limited amount of run-time checking of independence is used than
if only static decisions are made. Thus, a parallelization methodology is generally
used which can accommodate both static analysis and run-time checking.

One of the more widely used approaches is illustrated in the following figure
(representing the parallelization of "gi (. . .) , g2 (• • •) , g3 (• • •)") [24,27,7]:

This actually implies a better result even for Prolog programs since its projection
on the Herbrand domain is a strict generalization of previous notions of non-strict
independence. E.g., the sequence p(X), q(X) can be parallelized if p is defined for
example as p(a) and q is defined as q(a).

icond(l -3)

icond(l-2) *V'~>x icond(2-3)
(V)

Local/Global analysis
and simplification

(t e s t (l - 3) - > (g l , g 2) & g 3
„A w . „ ; g l , (g 2 & g 3))
Annotation

Alternative: g l , (g2 & g3)

The bodies of procedures are explored looking for statements and procedure
calis which are candidates for parallelization. As in many other parallelizers, a
dependency graph is first built which in principie reflects the total ordering of
statements and calis given by the sequential semantics. To control the complexity
of the process these graphs are limited to one body of one procedure (if the body is
too long, the body can be partitioned in segments, but this does not happen often
in constraint logic programs). Each edge in the graph is then labeled with the
independence condition (the run-time check) that would guarantee independence
of the statements or calis joined by the edge. A global analysis of the programthen
tries to prove these conditions statically true or false. If a condition is proved to
be true the corresponding edge in the dependency graph is eliminated. If proved
false, then an unconditional edge (Le., a static dependency) is left. Still, in other
edges conditions may remain (possibly simplified). The annotation process then
encodes the resulting graph in the target parallel language (a variant of the
source language). The techniques proposed for performing this process depend on
many factors including whether the target language allows arbitrary parallelism
or just fork-join structures and whether run-time independence tests are allowed
or not. As an example, the figure above presents two possible encodings in &-
Prolog of the (schematic) dependency graph obtained after analysis. The parallel
expressions generated in this case use only fork-join structures, one with run-
time checks and the other one without them. Interesting techniques have been
developed for compilation of conditional non-planar dependency graphs into fork-
join structures, in addition to other, non graph-based techniques [17,35,7].

The global analysis required to simplify the conditional graphs has to perform,
among other tasks, inter-procedural pointer analyses, not unlike those proposed
for clean versions of C or C++. Early proposals based on traditional data flow
analysis techniques pointed in the right direction but proved imprecise [10]. The
presence of recursion and dynamic data structures has fueled the development
of quite sophisticated, incremental inter-procedural analyzers based on abstract
interpretation [12]. This has required the development of efficient analysis algo-
rithms as well as abstract domains for accurately and efficiently keeping track
of sharing patterns and pointer aliasing in recursive data structures [8,29,34,36].
These analyses have been applied to the detection of both strict and non-strict
independence [8,9]. Analyses have been developed also to derive other impor-

LCbL^l-JJ

tant properties beyond variable instantiation states such as determinism [39],
non-failure [13], and number of answers [6].

D e a l i n g w i t h Irregularity and S p e c u l a t i o n — D y n a m i c So lut ions : The
preceding discussion has on purpose avoided the issue of run-time overheads.
The obvious practical implication of the existence of overheads (task creation,
scheduling, da ta movement, etc.) is tha t even if a task is known to be indepen-
dent, its parallel execution may still render a slow-down. This can happen if the
task does not represent a sufficient amount of computation with respect to the
overheads incurred in its parallelization. In the case of constraint logic program-
ming the problem is compounded by the fact tha t , because of the symbolic nature
of the applications typically coded, the number of tasks generated at run-time
(as well as the computational cost and dynamic memory demands of each such
task) depend on run-time parameters .

Two main approaches have been explored in order to overeóme these prob-
lems. The first one is to combine dynamic task allocation policies with com-
pilation techniques (abstract machines) which reduce as much as possible the
overhead involved in the parallel execution of tasks. The best results have been
obtained by performing low level "micro-task" scheduling, independently of the
operating system threads, and generally based on distributed "task stealing" ap­
proaches. Micro tasks are often represented simply by two pointers, one pointing
to the procedure cali or statement and another to the relevant invocation record.
Interesting techniques have also been proposed for parallel dynamic memory
management. These techniques efficiently support , for example, efncient mem­
ory recovery during parallel backtracking search. Some interesting examples of
these dynamic scheduling and memory management techniques are presented in
[22,24,37] for and-parallelism and in [33,1,18] for or-parallelism, where also quite
interesting techniques for controlling speculation have been developed.
D e a l i n g w i t h Irregularity and S p e c u l a t i o n — Stat ic So lut ions : While
the dynamic techniques mentioned above have proven sufficient for obtaining
speedups in previous generations of shared memory multiprocessors (paradig-
matic examples are the Sequent Balance and Symmetry series), current trends
point towards larger multiprocessors but with less uniform shared memory access
times. Controlling in some way the granularity (execution time and space) of the
tasks to be executed in parallel can be a useful optimization in such machines,
and is in any case a necessity when parallelizing for machines with slower inter-
connections. This includes, for example, networks of workstations or the Internet.
The problem is challenging because the tasks being parallelized are often proce­
dure calis whose computational cost greatly depends on dynamic characteristics
of the input data. One of the solutions currently used is to derive at compile t ime
complexity cost functions which give upper and lower bounds on task execution
t ime as a function of certain measures of input da ta [14,15,32]. Interestingly, this
analysis makes use of some techniques developed in the context of imperative pro-
gram parallelization, such as the Omega test [38]. Programs are transformed at
compile-time into semantically equivalent counterparts but which automatically
control granularity at run-time based on such functions. Performance improve-
ments have been shown to result from the incorporation of this type of grain size
control, specially for systems with médium to large parallel execution overheads.

4 Conclusions: Towards Cross-Fertilization

As a result of the work outlined in previous sections, quite robust, publicly avail-
able compilers and run-time systems have been available for some time now,
generally for Prolog, which automatically exploit parallelism in complex applica-
tions. Such systems have been shown to provide speedups over the state of the
art sequential implementations. The speed and robustness of these compilers has
also been instrumental in demonstrating that abstract interpretation provides a
very adequate framework for developing provably correct, powerful, and efficient
global analyzers and, consequently, parallelizers [44]. More recently, techniques
and practical tools have also been developed for the analysis of general constraint
logic programs [20] as well as for their parallelization [19]. Prototypes incorpo-
rating the granularity control techniques mentioned above are also starting to be
available. However, much work still remains to be done in these áreas, and we
believe there may be good opportunity at this time for increased transference of
techniques across programming paradigms.

It can be argued that particularly strong progress has been made in the con-
text of (constraint) logic programming in inter-procedural analysis of programs
with dynamic data structures and pointers, in parallelization using conditional
dependency graphs (and possibly generating run-time independence tests), in the
definition of the advanced notions of independence that are needed in the pres-
ence of speculative computations or languages which include constraints, in the
development of efficient task representation techniques and dynamic scheduling
algorithms to deal with irregularity and speculation, and in the static inference
of task cost functions for controlling granularity.

On the other hand, the techniques developed in the área of constraint logic
program parallelization are certainly weaker than those developed in the context
of nunierical computing for regular problems. For example, logic programming
parallelizers can discover the parallelism in complex recursive traversals of data
structures, but do not handle well traversals that are based on integer (Le., ar-
ray subscript) arithmetic, for which much work exists in the área of imperative
languages. Also, while current parallel constraint logic programming systems are
reasonably good at dealing with tasks with dynamic costs, the techniques cur-
rently used are again comparatively weaker for the static case than the partition-
ing and placement algorithms used in imperative program parallelization [5,23].
Ideally, a parallelizing compiler should perform good partitioning and placement
for any kind of architecture, using static techniques when possible and dynamic
techniques when unavoidable. It thus appears that it would be quite interesting to
merge the complementary work done in these áreas by the different communities.

Constraint logic programming extends the high-level programming paradigm
that logic programming offers in symbolic applications to numerical domains. We
believe it offers a natural platform in which to study the combination of the par­
allelization techniques used in the numerical and symbolic programming fields.
Independently of the convenience of using constraint programming languages di-
rectly (as is being done with significant commercial success in difficult problem
áreas such as scheduling or resource allocation), we also believe that many fea-
tures of these languages, such as the use of constraints ("reversible statements")

or the embedded search capabilities, will slowly make their way into the designs
of mainstream languages. In the same way, other features of symbolic languages
(such as dynamic da ta structure creation and garbage collection, or bytecode
compilation) have already made it into widely used languages such as Java. Cur-
rent proposals in this direction include ILOG (a commercially successful library
which which extends C + + and Java with constraint handling capabilities) and
[2], an imperative language with search capabilities.

References

1. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor­
mance. In 1990 North American Conference on Logic Programming, pages 757-776.
MIT Press, October 1990.

2. K. Apt and A. Shaerf. Search and Imperative Programming. In POPL'97: 24th
ACM SIGPLAN-SIGACT Symposium on Principies of Programming Languages,
pages 67-79, París, France, January 1997. ACM.

3. D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-
Performance Computing. Computing Surveys, 26(4):345-420, December 1994.

4. E. Best and C. Lengauer. Semantic Independence. Science of Computer Program­
ming, 13:23-50, 1990.

5. J. Bevemyr, T. Lindgren, and H. Millroth. Reform Prolog: the language and its
implementation. In Proc. Wth Intl. Conf. Logic Programming, Cambridge, Mass.,
1993. MIT Press.

6. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of prolog. In Proc. International Symposium on Logic Programming, pages 457-471,
Ithaca, NY, November 1994. MIT Press.

7. F. Bueno, M. García de la Banda, and M. Hermenegildo. A Comparative Study
of Methods for Automatic Compile-time Parallelization of Logic Programs. In
Parallel Symbolic Computation, pages 63-73. World Scientific Publishing Company,
September 1994.

8. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Global
Analysis in Strict Independence-Based Automatic Program Parallelization. In In­
ternational Symposium on Logic Programming, pages 320-336. MIT Press, Novem­
ber 1994.

9. D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

10. J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic Programs
Based on Static Data Dependency Analysis. In Compcon Spring '85, pages 218-225,
February 1985.

11. J. Chassin and P. Codognet. Parallel Logic Programming Systems. Computing
Surveys, 26(3):295-336, September 1994.

12. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming Languages, pages 238-252,
1977.

13. S. K. Debray, P. López García, and M. Hermenegildo. Non-Failure Analysis for
Logic Programs. In 1997 International Conference on Logic Programming, Leuven,
Belgium, June 1997. MIT Press, Cambridge, MA.

14. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

15. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on
Programming Languages and Systems, 15(5):826-875, November 1993.

16. D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth
Generation Computer Systems, pages 471-478. Tokyo, November 1984.

17. D. DeGroot. A Technique for Compiling Execution Graph Expressions for Re­
stricted AND-parallelism in Logic Programs. In Int'l Supercomputing Conference,
pages 80-89, Athens, 1987. Springer Verlag.

18. European Computer Research Center. Eclipse User's Cuide, 1993.
19. M. García de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent

And-Parallelism in CLP. In Programming Languages: Implementation, Logics, and
Programs, number 1140 in LNCS, pages 77-91, Aachen, Germany, September 1996.
Springer-Verlag.

20. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 18(5):564-615, 1996.

21. M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in Con­
straint Logic Programs. In 1993 International Logic Programming Symposium,
pages 130-146. MIT Press, Cambridge, MA, October 1993.

22. M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of
Logic Programs. In Third International Conference on Logic Programming, number
225 in Lecture Notes in Computer Science, pages 25-40. Imperial College, Springer-
Verlag, July 1986.

23. M. Hermenegildo and M. Carro. Relating Data-Parallelism and And-Parallelism
in Logic Programs. In Proceedings of EURO-PAR'95, number 966 in LNCS, pages
27-42. Springer-Verlag, August 1995.

24. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

25. M. Hermenegildo and F. Rossi. On the Correctness and EfRciency of Independent
And-Parallelism in Logic Programs. In 1989 North American Conference on Logic
Programming, pages 369-390. MIT Press, October 1989.

26. M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990
International Conference on Logic Programming, pages 237-252. MIT Press, June
1990.

27. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Emciency, and Compile-Time Conditions. Journal
of Logic Programming, 22(l):l-45, 1995.

28. M. Hermenegildo and the CLIP group. Some Methodological Issues in the De­
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principies
and Practice of Constraint Programming, number 874 in LNCS, pages 123-133.
Springer-Verlag, May 1994.

29. D. Jacobs and A. Langen. Accurate and EfRcient Approximation of Variable Alias-
ing in Logic Programs. In 1989 North American Conference on Logic Programming.
MIT Press, October 1989.

30. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503-581, 1994.

31. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In 1991 International Logic Programming Symposium, pages 167-183. MIT Press,
1991.

32. P. López García, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

33. E. Lusk et. al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

34. K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming, pages 166-189. MIT Press, October
1989.

35. K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-
parallelism. In Int'l. Conference on Logic Programming, pages 221-237. MIT Press,
June 1990.

36. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna­
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

37. E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel
Prolog System. In International Parallel Processing Symposium, pages 564-572.
IEEE Computer Society Technical Committee on Parallel Processing, IEEE Com­
puter Society, April 1995.

38. W. Pugh. A practical algorithm for exact array dependence analysis. Communica­
tions ofthe ACM, 8:102-114, August 1992.

39. V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Sup-
porting Full Prolog on the Basic Andorra Model. In 1991 International Conference
on Logic Programming, pages 443-456. MIT Press, June 1991.

40. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal­
ysis. In POPL'97: 24th ACM SIGPLAN-SIGACT Symposium on Principies of
Programming Languages, pages 1-14, Paris, France, January 1997. ACM.

41. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. Jour­
nal of Logic Programming, 29(l-3):245-293, November 1996.

42. L. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press, Cambridge MA, 1986.
43. P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation.

Journal of Logic Programming, 19/20:385-441, 1994.
44. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow

Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684-699. MIT Press, August 1988.

Acknowledgments : The author wishes to thank D. Padua, E. Pontelli, J. Marino, F.
Bueno, D. Cabeza, M. Carro, M. García de la Banda, P. López, and G. Puebla for their
comments on previous drafts of this paper.
Demo Information: During the invited talk some of the capabilities of two (publicly
available) parallelizing compilers are demonstrated. These are the &-Prolog system par­
allelizer [44,24,8] (which parallelizes standard Prolog programs) and the CIAO system
parallelizer [19] (a more recent system which parallelizes constraint programs), both
developed by our group, in collaboration with others.

