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Abs t r ac t .  We present an infrastructure for building parallel applica- 
tions by interconnecting slightly modified pre-existing parallel compo- 
nents. This infrastructure (called PHIS) allows the cooperation of corn* 
ponents that run in different parallel machines. In succession, we describe 
the rationale behind PHIS, the primitives used to interconnect the appli- 
cation components and its internal architecture and we compare PHIS 
t o  related systems. Finally, we present an application where PHIS is 
used to interconnect several distinct components that define a parallel 
heterogeneous computational steering architecture ibr genetic algorithm 
applications. 

1 I n t r o d u c t i o n  

The work described here is integrated in an ongoing project having the main 
goal of developing an execution environment targeted at a heterogeneous set 
of machines, connected by a local area network, including dis tr ibuted-memory 
multiprocessors. Our interest by heterogeneous architectures was motivated by 
some of the applications tha t  we use as testbeds. In fact, some of these applica- 
tions (for example computat ional  fluid dynamics simulation and application of 
genetic algorithms to environmental science problems) are suited to a decompo- 
sition where the following components can be found: 

- One or more computationally intensive components support  the parallel ex- 
ecution of algorithms tha t  simulate some physical process, using some pa- 
rameters  tha t  can be modified during the execution. In some cases, this 
simulation could be itself decomposed into several components where each 
one could benefit from a different, programming model which, in turn, could 
be more adapted to a particular hardware platform. 

- A visualization component  supports on-line da ta  visualization. 
- An interactive control component allows modification and inspection of the 

parameters  of the simulation(s). 

In these kind of environments, it should be possible to develop each com- 
ponent independently from the others and to reuse already existent software as 
much as possible. 
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1.1 Requ i remen t s  for a in terconnect ion  sys t em 

In order to support the configuration and the data exchange between the compo- 
nents that comprise the application, an interconnection system has the following 
requirements: 

1. to support the interconnection of existing tools and application components, 
requiring minimal modifications to each component. 

2. to support heterogeneous computational models, corresponding to the mul- 
tiple components of the applications. 

3. to provide some degree of architecture and operating system independence, 
and easy retargetability. 

1.2 W h y  current  solutions are not  sa t isfactory 

Several alternatives to interconnect components are possible: 

Using an existing message-passing system Most of the current message-passing 
systems do not fulfill the above mentioned requirements 1 and 2, as they do 
not have mechanisms to allow interprocess communication between separately 
started applications. For example, in MPI-1, the MPI intercommunicator mech- 
anism allows the linking of processes in two different groups that may commu- 
nicate using send and receive calls, but has limitations. For example, only pairs 
of processes can be interconnected and this must be managed explicitly in each 
component. 

If we consider PVM, we see that requirement 1 is partially achieved. How- 
ever, possibly some rewriting of the components would be necessary to prevent 
tag conflicts. Also, support of PVM everywhere would introduce unnecessary 
overhead. 

Using a common interprocess communication mechanism The interconnection of 
components could be achieved by hand coding of the applications that interact, 
using some common interprocess mechanism (sockets, for example). This would 
require a knowledge of the particular interprocess communication and would not 
allow the reuse of code in other architectures. 

1.3 How PHIS  achieves the  above requ i rements  

PHIS achieves all the requirements above: 
1: It has facilities for interconnecting separetely started components, and pro- 

vides a well-defined and architecture-independent interconection programming 
model. 

2: It allows the communication between components written using different 
programming models. 

3: Its design eases the porting to a wide variety of architectures and runtime 
systems. 
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1.4 O r g a n i z a t i o n  o f  t h e  p a p e r  

The paper is organized as follows. In section 2 an overview of the PHIS system 
is given, and its use is illustrated with a simple example. Section 3 describes 
the internal logical architecture of the PHIS system, the current implementation 
status, and its most distinctive aspects. In section 4, we show how PHIS is 
being used to implement a heterogeneous computational steering environment 
for genetic algorithm applications. A comparison between the functionalities of 
PHIS and other related systems is made in section 5. Finally we briefly present 
some conclusions and outline further work. 

2 O v e r v i e w  o f  P H I S  

An application is built of several components. Each component is an existing or 
new parallel program that  is characterized by a virtual machine and an associ- 
ated programming model (see figure 1). We assume, from the point of the view 
of the hardware, that  the virtual machine can be supported on top of a worksta- 
tion, a (possibly heterogeneous) network of workstations, a dis tr ibuted-memory 
multiprocessor or a shared-memory multiprocessor, or any combination of the 
above. Regarding the programming model, we restrict (at least for the moment) 
our system to components that  rely on a message-passing library, for example 
PVM [8] or MPI [6]. The application builder must have access to the source code 

Application components 

< l  I I - .  
PHIS interconnection system 

Communication between c o m p ~  

Virtual machines 

Fig.  1. System's overview 

of the applications and must be able to introduce some modifications. We expect 
these modifications to be small and confined to well defined parts of the code. 
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2.1 P H I S  p r o g r a m m i n g  m o d e l  

We assume that  an application is built from a statically-defined number of com- 
ponents. In designing the application, the programmer must identify, in each 
component, the processes that  will interact with the other components. These 
processes will be the ones that  must be modified and linked to the library that  
supports the communication and synchronization between components. 

The interconnections between components are established before starting 
each component and cannot be modified during execution. The main concept 
for the integration of distinct components in the PHIS interconnection system 
is a specialized form of process group. The groups in PHIS are closed (only a 
process inside the group can send a message to the group [15]) and static (in the 
configuration phase processes enter in groups, and can only exchange messages 
after a configuration freeze). The process groups have a name that  is an ASCII 
string. The sending of messages to groups is asynchronous 1. By default, on mes- 
sage arrival a handler is called that  enqueues the message for later processing. 
However, on entering the group, the process can specify an application-specific 
handling routine. 

According to this, the modifications made to the source code of each compo- 
nent should concentrate on the following parts: 

- On the initialization phase, the integration of the process into the relevant 
groups. 

- Where appropriate, the sending and handling of interconnection messages. 

A simplified description of the PHIS primitives follows: 

Initialization 
Joining a group 
Freezing the configuration 
Termination 
Buffer setup for sending 
Putt ing data  in a buffer 
Sending the message 
Message availability 
Receiving a message 
Getting data  from a buffer 
Buffer releasing 

PHIS_Init (+ComponentName)  
PHIS_Join( +GroupName, +HandlingRoutine 
PHIS_Freeze( ) 
PHIS_Finalize 0 
PHIS_InitPackBuffer( - b u i l d  ) 
PHIS_PackXXXX( +bufId, + data  ) 
PHIS_Send( +GroupName, +bui ld  ) 
PHIS_MessagesAvailable( +GroupName, - res  ) 
PHIS_Recv( +GroupName, - b u i l d  ) 
PHIS_UnpackXXXX( +build, - data  ) 
PHIS_FreeBuffer ( +build ) 

Barrier PHIS_Barrier( +GroupName ) 

2.2 Ske le ton  of  t he  d e v e l o p m e n t  o f  an  app l i ca t i on  us ing  P H I S  

As an example of the PHIS functionalities we present a very simple application 
with two components, where one component calculates a Mandelbrot set and 
the other displays the result in a X-window display: 

1 In the following, the term message refers to the PHIS interconnection messages 
between application components, unless stated otherwise. 



132 

1. Component "calculate" runs on a PVM virtual machine, and was programmed 
using a computer farm approach ( 1 Master + N slaves ). If we want to cal- 
culate the Mandelbrot set corresponding to a rectangle with heigth H, and 
length L, a natural  approach to the problem is to divide this rectangle in 
several strips and make each strip a unit of work. Each worker receives a 
strip defined by its width, height and the coordinates of lower left and upper 
right vertexes. A calculation of a bit map, according to a recurrence formula 
is performed. The bitmap obtained is the result of the workers' work. 

2. Component "display" is a sequential process that  runs on a workstation. 

Figure 2 shows the interconnection between the two components. 

component 

Strips group 
Data 
visualization 
display 

Fig.  2. Components in the Mandelbrot application 

In the following we present the three programs that  compose our system, 
including the calls to the PHIS system. 

/* master program -*/ 
main () { 

pvm_spawn( ' slave' ..... NSLAVES, rids) 
divide the space in M tiles 
for (i=-l; i < M; i++){ 

/* wait for a request and reply with TILE i */ 
pvm_recv( -1, ... ); pvm_bufinfo( ..., ~tid .... ) 
pvm_initsend(...) ; pvm_pkfloat(...); pvm_send( tid .... ) 

} 
for (i=O; i < NSLAVES; i++){ 

/* all tiles sent: wait for the slave to request a tile and kill it */ 
pvm_recv( -I .... ); pvm_bufinfo( .... ~tid .... ); pvm_kill(tid) 

} 
pvm_exit () 
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/* slave program , /  
main() { 

mytid = pvm_mytid(); myparent = pyre_parent() 
PHIS_Init('calculate'); PHIS_Join('strips', DefaultHandler); 
PHIS_Freeze(); 
do{ 

/* ask/or a tile */ 
. . .  p v m _ s e n d (  m y p a r e n t  . . . .  ) 
p v m _ r e c v (  - 1  . . . .  ) ;  p v m _ u p k f l o a t (  . . .  ) ;  . . .  ; 
c a l c u l a t e _ t i l e ( . . . ) ;  

PHIS_InitPackBuffer( ~b ); PHIS_PackByte(b,...); ... ; 
PHIS_Send('strips',b); 

}while (i) ; 

, 

main () { 
- display program -*/ 

PHIS_Init('display'); PHIS_Join('strips', DefaultHandler); 
PHIS_Freezs(); 
do{ 

PHIS_Kecv( 'strip', &b ); 
PHIS_UnpackByte(b .... ); ... ; 
display the part of the pixel map received 
PHIS_FreeBuffer(b); 

}while (i); 

3 PHIS  architecture 

The PHIS system is internally organized as a distributed architecture consisting 
of a collection of cooperating daemons that support the communication primi- 
tives described in 2.1. Each daemon process supervises the interaction between a 
single application component and the other components in a PHIS configuration. 
Such interconnection daemons (called P H I S  agents) run in one of the processors 
belonging to the virtual machine that supports the execution of its associated 
application component. The basic functions provided by each PHIS agent are 
supported through the following two libraries: 

I n t e r componen t  l ibrary This library supports the communication among the 
daemons. As we suppose that the interconnection between the components is 
supported by a "software bus" made of a local network running the TCP/IP 
protocols, there is no difficulty in using the well known facilities of these 
protocols (sockets, RPCs, multicast) to build this library. 

I n t r a c o m p o n e n t  l ibrary This supports the commmunication between each 
PHIS agent and the processes which constitute its associated application 
component. The messages sent by these processes must be forwarded to 
the component's outside environment, and any incoming messages must be 
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delivered to the destination processes in the component (i.e. those belonging 
to the message destination group). 

Figure 3 illustrates the relationship between each PHIS agent and the pro- 
cesses in an application component. The implementation of these libraries is not 

mcp°nent~'~ 
ess ~ ~ ~ ~  

I 
f eomp . . . .  t "~  , • I . . . . . .  I I component componentt 
\ process d I Native message- [ libra libra 
~ - - - L ~ - J ~ .  i p ~ s s i n ~ & -  [ ~ .  I ~ ~ I 

'l ~ ~ ~ .  I Na.ve UDe I 
[ l fbHl~ t "-~. : : : s : g  . . . .  kets < - ~  

Native message- ~ 1  system I Nativ . . . .  sage- I ~ - -  , I PHIS  agents  
[ passing system J 

Fig.  3. Runtime environment of processes in each component 

further discussed here due to lack of space. However, we must stress the fact 
that  they are implemented with portability in mind. For example, the intracom- 
ponent layer is internally decomposed into two layers, one that  is architecture- 
independent and the other that  depends on the native communication system. 
A well-defined interface between the two layers exists. 

3.1 C o n f i g u r a t i o n  o f  an  a p p l i c a t i o n  

An application is configured through a configuration file that  is visible to the 
application processes that  interact with other components. The configuration 
includes, for each component, the following information: 

- Name of the component (as given in PHISln i t ( ) ) .  
- Number of processes in the component that  must interact with other com- 

ponents. 
- Name and architecture of the machine where the interconnection daemon 

should be launched. This physical machine belongs to the virtual machine 
where the component runs. 

- A character string describing the communication protocol that  should be 
used to communicate between the interconnection daemon and the compo- 
nents of the application ( for example "sysVipc", "tcp", "parix" ). 

- A character string with information relevant to the above mentioned protocol 
in the previous field ( for example a T C P / I P  port, a shared memory key for 
UNIX System V IPC, etc.). 

The configuration file for the Mandelbrot application is given below: 
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; application processes arch name protocol parameters 

calculator 8 snnos frodo tcp 2500 
display 1 aix grafikus sysVipc 333 

3.2 I n t e g r a t i o n  of  the  PI-IIS calls in already existent applications 

When we modify the source code of a program that is executed as a process 
belonging to a component we introduce calls to the programming interface de- 
scribed in 2.1. A question that immediately arises is the possibility of interference 
between the calls made by application processes to the original message-passing 
system and the ones internally used by the interconnection system. As the in- 
terconnection system uses asynchronous sending primitives, the main question 
concerns the receiving of messages. As most of the hardware platforms support 
the UNIX system call interface, the most natural way of handling the arrival of 
messages from the interconnection system is to associate this event with the de- 
livery of a signal. The handler will receive the message, and the only ,requirement 
that must be made to the original message-passing system is to be ~'signal-safe". 

3.3 Implementation status 

The ongoing implementation of PHIS runs on a set of UNIX workst:ations. The 
mappings of the PHIS architecture to this physical architecture are'~as follows: 

- the network of agents is initialized using the 'rsh' facilities; 
- the agents communicate using a reliable protocol built on top:of UDP; 
- the primitives of the intercomponent library are implemented ~using UNIX 

system facilities and sockets; 
- we are experimenting with components writen using PVM (which is signal- 

safe) and the MPICH implementation of MPI. 

4 Using PHIS to support a heterogeneous computational  
steering environment 

In a related ongoing project we are currently developing an environment sup- 
porting parallel and distributed computational steering of applications based on 
genetic algorithms. The project aims at producing a highly efficient and produc- 
tive environment that can be used by researchers in a department of environ- 
mental sciences, as well as in our department, in order to solve a large diversity 
of optimization problems. One requirement posed by this environment concerns 
its efficiency which can only be fully achieved through parallelism. Three proto- 
types for parallel genetic algorithms have already been developed towards this 
goal: 



136 

- A prototype supports the parallel execution on a shared-memory Pentium- 
based multiprocessor, under the WindowsNT operating system, using a master- 
slave model as a basis [12]. 

- A prototype supports parallel and distributed execution on a PVM platform, 
using the island model as a basis [4]. 

- A prototype integrates genetic algorithms and simulated annealing and sup- 
ports parallel execution on the PVM system [5]. 

The environment consists of the following components: 

i. A computationally intensive component supports the parallel execution of 
the genetic algorithm; its interface with other components in the environment 
is defined by a set of parameters which characterize the genetic algorithm, 
and the description of a population of individuals. 

2. A visualization component supports on-line data visualization of the out- 
come of the computational component in a graphic workstation; it also sup- 
ports visualization of performance data, obtained by having a monitoring 
component associated with the computational component. 

3. An interactive control component allows the dynamic modification and in- 
spection of the application parameters whose values can also be displayed. 

The above mentioned prototypes and components illustrate another impor- 
tant requirement posed by this environment, namely concerning the need to 
support heterogeneity, not only at the parallel platform level, but also regarding 
the parallel computational models. We are using PHIS as an intermediate-level 
infrastructure that supports the above requirements, as illustrated in figure 4, 
where we show a PHIS configuration with 4 components: 

- The GeneticAlgorithm component, which encapsulates a parallel genetic al- 
gorithm that internally uses the master-slave model and is implemented on 
top of PVM. 

- The DataVisualization component is responsible for data interpretation and 
display. 

- The PerformanceVisualization component which is responsible for applica- 
tion monitoring and display of performance-related data. The performance 
visualization components rely upon existing tools such as Paragraph [I0] 
coupled with a distributed monitoring system 2 

- The Control component, which is responsible for the application of the steer- 
ing commands, and is actually being based on a distributed debugger (called 
DDBG) for PVM that we have independently developed on a related project 
[I] [2]. 

The definition of this PHIS configuration requires the specification of the 
following PHIS groups: 

Data Visualization Group The Master process and the process(es) respon- 
sible for the data visualization are members of this group. 

2 Alternatively in figure 4 we could have two separate Monitoring and Performance- 
Visualization components, easily configured using PHIS. 
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component 

D a t a  Visual izat ion 
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Data visualization 

Controi', 
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Steering 
coDso|e visualization visualization 

display display 

Fig. 4. PHIS in a computational steering environment for genetic algorithms 

Moni tor ing  Group The monitoring group consists of N distributed monitor- 
ing processes, each associated with a distinct slave process, and a coordina- 
tor. This group is responsible for the local recording, transfering and gath- 
ering of performance information. 

Control  Group The slave processes and a debugger system allow the modifi- 
cation of the genetic Mgorithm parameters during the execution. 

5 R e l a t e d  w o r k  

The construction of applications through the integration of multiple software 
modules executing on a heterogeneous set of machines has been recognized as an 
useful paradigm for some time [13]. One pioneering effort has been the Schooner 
system [11]. Recently, this area has received contributions by several projects 
like CUMULVS [14], Legion [9], CAVEComm[3] and I-Way/Globus [7]. 

The major advantage of PHIS (and other related systems like the ones men- 
tioned above) is the support of communication between applications written us- 
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ing different parallel programming models, e.g. a PVM-based component and 
a MPI-based component. The programming model of PHIS is more flexible 
than many of the related models cited above. For example Schooner forces a 
model of component interconnection based on RPCs with the known advantages 
and disadvantages. The main disadvantage is, in our opinion, the impossibility 
of multicasting. Some of the other systems are too connected to a particular 
message-passing system (like CUMULVS with PVM) or don't have a high level 
interconnection model (for example I-Way suggests the use of TCP/IP sockets 
for the interconnection of components). The PHIS programming model has some 
similarities with CAVEComm. 

Another distinctive feature of PHIS is its concern with the portability. To 
port PHIS to a different runtime system it is only necessary to rewrite the 
machine-dependent part of the intracomponent library. 

6 C o n c l u s i o n s  a n d  f u r t h e r  w o r k  

We have described the current status of an ongoing project that is developing 
the PHIS system, an infrastructure to support the interconnection of distinct 
application components. Due to the large diversity of parallel computational 
application components and support tools that have been developed in the last 
few years, using distinct programming models, and parallel platforms, we think 
there is a very strong motivation to this work. This is confirmed by our own 
experience in our faculty campus, where PHIS is showing great flexibility to 
support the interconnection of already developed components, as described in 
section 4. Currently all these components rely on the PVM system, but we do 
not antecipate major difficulties concerning the coupling of our interconnection 
libraries with MPI applications. Future work will include: 

- to port PHIS to other architectures in order to exploit the heterogeneous 
platform existing at our Department, which includes UNIX workstations, a 
DEC Alpha-based FDDI cluster, and two Transputer-based multicomputers. 

- to evaluate the overhead of using PHIS when compared to solutions where 
all the components use the same runtime system. 

- to use PHIS to interconnect components that are not message-passing based, 
namely ones that use a data-parallel approach and ones that use the shared 
virtual memory paradigm. 
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