
Interconnecting Multiple Heterogeneous Parallel
Application Components

Pedro D. Medeiros Jos~ C. Cunha

Universidade Nova de Lisboa - Faculdade de Ci~ncias e Tecnologia
Departamento de Inform£tica

Portugal
e-mail: {pm,jcc}@di.fct.unl.pt

Abs t r ac t . We present an infrastructure for building parallel applica-
tions by interconnecting slightly modified pre-existing parallel compo-
nents. This infrastructure (called PHIS) allows the cooperation of corn*
ponents that run in different parallel machines. In succession, we describe
the rationale behind PHIS, the primitives used to interconnect the appli-
cation components and its internal architecture and we compare PHIS
t o related systems. Finally, we present an application where PHIS is
used to interconnect several distinct components that define a parallel
heterogeneous computational steering architecture ibr genetic algorithm
applications.

1 I n t r o d u c t i o n

The work described here is integrated in an ongoing project having the main
goal of developing an execution environment targeted at a heterogeneous set
of machines, connected by a local area network, including dis tr ibuted-memory
multiprocessors. Our interest by heterogeneous architectures was motivated by
some of the applications tha t we use as testbeds. In fact, some of these applica-
tions (for example computat ional fluid dynamics simulation and application of
genetic algorithms to environmental science problems) are suited to a decompo-
sition where the following components can be found:

- One or more computationally intensive components support the parallel ex-
ecution of algorithms tha t simulate some physical process, using some pa-
rameters tha t can be modified during the execution. In some cases, this
simulation could be itself decomposed into several components where each
one could benefit from a different, programming model which, in turn, could
be more adapted to a particular hardware platform.

- A visualization component supports on-line da ta visualization.
- An interactive control component allows modification and inspection of the

parameters of the simulation(s).

In these kind of environments, it should be possible to develop each com-
ponent independently from the others and to reuse already existent software as
much as possible.

129

1.1 Requ i remen t s for a in terconnect ion sys t em

In order to support the configuration and the data exchange between the compo-
nents that comprise the application, an interconnection system has the following
requirements:

1. to support the interconnection of existing tools and application components,
requiring minimal modifications to each component.

2. to support heterogeneous computational models, corresponding to the mul-
tiple components of the applications.

3. to provide some degree of architecture and operating system independence,
and easy retargetability.

1.2 W h y current solutions are not sa t isfactory

Several alternatives to interconnect components are possible:

Using an existing message-passing system Most of the current message-passing
systems do not fulfill the above mentioned requirements 1 and 2, as they do
not have mechanisms to allow interprocess communication between separately
started applications. For example, in MPI-1, the MPI intercommunicator mech-
anism allows the linking of processes in two different groups that may commu-
nicate using send and receive calls, but has limitations. For example, only pairs
of processes can be interconnected and this must be managed explicitly in each
component.

If we consider PVM, we see that requirement 1 is partially achieved. How-
ever, possibly some rewriting of the components would be necessary to prevent
tag conflicts. Also, support of PVM everywhere would introduce unnecessary
overhead.

Using a common interprocess communication mechanism The interconnection of
components could be achieved by hand coding of the applications that interact,
using some common interprocess mechanism (sockets, for example). This would
require a knowledge of the particular interprocess communication and would not
allow the reuse of code in other architectures.

1.3 How PHIS achieves the above requ i rements

PHIS achieves all the requirements above:
1: It has facilities for interconnecting separetely started components, and pro-

vides a well-defined and architecture-independent interconection programming
model.

2: It allows the communication between components written using different
programming models.

3: Its design eases the porting to a wide variety of architectures and runtime
systems.

130

1.4 O r g a n i z a t i o n o f t h e p a p e r

The paper is organized as follows. In section 2 an overview of the PHIS system
is given, and its use is illustrated with a simple example. Section 3 describes
the internal logical architecture of the PHIS system, the current implementation
status, and its most distinctive aspects. In section 4, we show how PHIS is
being used to implement a heterogeneous computational steering environment
for genetic algorithm applications. A comparison between the functionalities of
PHIS and other related systems is made in section 5. Finally we briefly present
some conclusions and outline further work.

2 O v e r v i e w o f P H I S

An application is built of several components. Each component is an existing or
new parallel program that is characterized by a virtual machine and an associ-
ated programming model (see figure 1). We assume, from the point of the view
of the hardware, that the virtual machine can be supported on top of a worksta-
tion, a (possibly heterogeneous) network of workstations, a dis tr ibuted-memory
multiprocessor or a shared-memory multiprocessor, or any combination of the
above. Regarding the programming model, we restrict (at least for the moment)
our system to components that rely on a message-passing library, for example
PVM [8] or MPI [6]. The application builder must have access to the source code

Application components

< l I I - .
PHIS interconnection system

Communication between c o m p ~

Virtual machines

Fig. 1. System's overview

of the applications and must be able to introduce some modifications. We expect
these modifications to be small and confined to well defined parts of the code.

131

2.1 P H I S p r o g r a m m i n g m o d e l

We assume that an application is built from a statically-defined number of com-
ponents. In designing the application, the programmer must identify, in each
component, the processes that will interact with the other components. These
processes will be the ones that must be modified and linked to the library that
supports the communication and synchronization between components.

The interconnections between components are established before starting
each component and cannot be modified during execution. The main concept
for the integration of distinct components in the PHIS interconnection system
is a specialized form of process group. The groups in PHIS are closed (only a
process inside the group can send a message to the group [15]) and static (in the
configuration phase processes enter in groups, and can only exchange messages
after a configuration freeze). The process groups have a name that is an ASCII
string. The sending of messages to groups is asynchronous 1. By default, on mes-
sage arrival a handler is called that enqueues the message for later processing.
However, on entering the group, the process can specify an application-specific
handling routine.

According to this, the modifications made to the source code of each compo-
nent should concentrate on the following parts:

- On the initialization phase, the integration of the process into the relevant
groups.

- Where appropriate, the sending and handling of interconnection messages.

A simplified description of the PHIS primitives follows:

Initialization
Joining a group
Freezing the configuration
Termination
Buffer setup for sending
Putt ing data in a buffer
Sending the message
Message availability
Receiving a message
Getting data from a buffer
Buffer releasing

PHIS_Init (+ComponentName)
PHIS_Join(+GroupName, +HandlingRoutine
PHIS_Freeze()
PHIS_Finalize 0
PHIS_InitPackBuffer(- b u i l d)
PHIS_PackXXXX(+bufId, + data)
PHIS_Send(+GroupName, +bui ld)
PHIS_MessagesAvailable(+GroupName, - res)
PHIS_Recv(+GroupName, - b u i l d)
PHIS_UnpackXXXX(+build, - data)
PHIS_FreeBuffer (+build)

Barrier PHIS_Barrier(+GroupName)

2.2 Ske le ton of t he d e v e l o p m e n t o f an app l i ca t i on us ing P H I S

As an example of the PHIS functionalities we present a very simple application
with two components, where one component calculates a Mandelbrot set and
the other displays the result in a X-window display:

1 In the following, the term message refers to the PHIS interconnection messages
between application components, unless stated otherwise.

132

1. Component "calculate" runs on a PVM virtual machine, and was programmed
using a computer farm approach (1 Master + N slaves). If we want to cal-
culate the Mandelbrot set corresponding to a rectangle with heigth H, and
length L, a natural approach to the problem is to divide this rectangle in
several strips and make each strip a unit of work. Each worker receives a
strip defined by its width, height and the coordinates of lower left and upper
right vertexes. A calculation of a bit map, according to a recurrence formula
is performed. The bitmap obtained is the result of the workers' work.

2. Component "display" is a sequential process that runs on a workstation.

Figure 2 shows the interconnection between the two components.

component

Strips group
Data
visualization
display

Fig. 2. Components in the Mandelbrot application

In the following we present the three programs that compose our system,
including the calls to the PHIS system.

/* master program -*/
main () {

pvm_spawn(' slave' NSLAVES, rids)
divide the space in M tiles
for (i=-l; i < M; i++){

/* wait for a request and reply with TILE i */
pvm_recv(-1, ...); pvm_bufinfo(..., ~tid)
pvm_initsend(...) ; pvm_pkfloat(...); pvm_send(tid)

}
for (i=O; i < NSLAVES; i++){

/* all tiles sent: wait for the slave to request a tile and kill it */
pvm_recv(-I); pvm_bufinfo(.... ~tid); pvm_kill(tid)

}
pvm_exit ()

133

/* slave program , /
main() {

mytid = pvm_mytid(); myparent = pyre_parent()
PHIS_Init('calculate'); PHIS_Join('strips', DefaultHandler);
PHIS_Freeze();
do{

/* ask/or a tile */
. . . p v m _ s e n d (m y p a r e n t )
p v m _ r e c v (- 1 ) ; p v m _ u p k f l o a t (. . .) ; . . . ;
c a l c u l a t e _ t i l e (. . .) ;

PHIS_InitPackBuffer(~b); PHIS_PackByte(b,...); ... ;
PHIS_Send('strips',b);

}while (i) ;

,

main () {
- display program -*/

PHIS_Init('display'); PHIS_Join('strips', DefaultHandler);
PHIS_Freezs();
do{

PHIS_Kecv('strip', &b);
PHIS_UnpackByte(b); ... ;
display the part of the pixel map received
PHIS_FreeBuffer(b);

}while (i);

3 PHIS architecture

The PHIS system is internally organized as a distributed architecture consisting
of a collection of cooperating daemons that support the communication primi-
tives described in 2.1. Each daemon process supervises the interaction between a
single application component and the other components in a PHIS configuration.
Such interconnection daemons (called P H I S agents) run in one of the processors
belonging to the virtual machine that supports the execution of its associated
application component. The basic functions provided by each PHIS agent are
supported through the following two libraries:

I n t e r componen t l ibrary This library supports the communication among the
daemons. As we suppose that the interconnection between the components is
supported by a "software bus" made of a local network running the TCP/IP
protocols, there is no difficulty in using the well known facilities of these
protocols (sockets, RPCs, multicast) to build this library.

I n t r a c o m p o n e n t l ibrary This supports the commmunication between each
PHIS agent and the processes which constitute its associated application
component. The messages sent by these processes must be forwarded to
the component's outside environment, and any incoming messages must be

134

delivered to the destination processes in the component (i.e. those belonging
to the message destination group).

Figure 3 illustrates the relationship between each PHIS agent and the pro-
cesses in an application component. The implementation of these libraries is not

mcp°nent~'~
ess ~ ~ ~ ~

I
f eomp t "~ , • I I I component componentt
\ process d I Native message- [libra libra
~ - - - L ~ - J ~ . i p ~ s s i n ~ & - [~ . I ~ ~ I

'l ~ ~ ~ . I Na.ve UDe I
[l fbHl~ t "-~. : : : s : g kets < - ~

Native message- ~ 1 system I Nativ sage- I ~ - - , I PHIS agents
[passing system J

Fig. 3. Runtime environment of processes in each component

further discussed here due to lack of space. However, we must stress the fact
that they are implemented with portability in mind. For example, the intracom-
ponent layer is internally decomposed into two layers, one that is architecture-
independent and the other that depends on the native communication system.
A well-defined interface between the two layers exists.

3.1 C o n f i g u r a t i o n o f an a p p l i c a t i o n

An application is configured through a configuration file that is visible to the
application processes that interact with other components. The configuration
includes, for each component, the following information:

- Name of the component (as given in PHISln i t ()) .
- Number of processes in the component that must interact with other com-

ponents.
- Name and architecture of the machine where the interconnection daemon

should be launched. This physical machine belongs to the virtual machine
where the component runs.

- A character string describing the communication protocol that should be
used to communicate between the interconnection daemon and the compo-
nents of the application (for example "sysVipc", "tcp", "parix").

- A character string with information relevant to the above mentioned protocol
in the previous field (for example a T C P / I P port, a shared memory key for
UNIX System V IPC, etc.).

The configuration file for the Mandelbrot application is given below:

135

; application processes arch name protocol parameters

calculator 8 snnos frodo tcp 2500
display 1 aix grafikus sysVipc 333

3.2 I n t e g r a t i o n of the PI-IIS calls in already existent applications

When we modify the source code of a program that is executed as a process
belonging to a component we introduce calls to the programming interface de-
scribed in 2.1. A question that immediately arises is the possibility of interference
between the calls made by application processes to the original message-passing
system and the ones internally used by the interconnection system. As the in-
terconnection system uses asynchronous sending primitives, the main question
concerns the receiving of messages. As most of the hardware platforms support
the UNIX system call interface, the most natural way of handling the arrival of
messages from the interconnection system is to associate this event with the de-
livery of a signal. The handler will receive the message, and the only ,requirement
that must be made to the original message-passing system is to be ~'signal-safe".

3.3 Implementation status

The ongoing implementation of PHIS runs on a set of UNIX workst:ations. The
mappings of the PHIS architecture to this physical architecture are'~as follows:

- the network of agents is initialized using the 'rsh' facilities;
- the agents communicate using a reliable protocol built on top:of UDP;
- the primitives of the intercomponent library are implemented ~using UNIX

system facilities and sockets;
- we are experimenting with components writen using PVM (which is signal-

safe) and the MPICH implementation of MPI.

4 Using PHIS to support a heterogeneous computational
steering environment

In a related ongoing project we are currently developing an environment sup-
porting parallel and distributed computational steering of applications based on
genetic algorithms. The project aims at producing a highly efficient and produc-
tive environment that can be used by researchers in a department of environ-
mental sciences, as well as in our department, in order to solve a large diversity
of optimization problems. One requirement posed by this environment concerns
its efficiency which can only be fully achieved through parallelism. Three proto-
types for parallel genetic algorithms have already been developed towards this
goal:

136

- A prototype supports the parallel execution on a shared-memory Pentium-
based multiprocessor, under the WindowsNT operating system, using a master-
slave model as a basis [12].

- A prototype supports parallel and distributed execution on a PVM platform,
using the island model as a basis [4].

- A prototype integrates genetic algorithms and simulated annealing and sup-
ports parallel execution on the PVM system [5].

The environment consists of the following components:

i. A computationally intensive component supports the parallel execution of
the genetic algorithm; its interface with other components in the environment
is defined by a set of parameters which characterize the genetic algorithm,
and the description of a population of individuals.

2. A visualization component supports on-line data visualization of the out-
come of the computational component in a graphic workstation; it also sup-
ports visualization of performance data, obtained by having a monitoring
component associated with the computational component.

3. An interactive control component allows the dynamic modification and in-
spection of the application parameters whose values can also be displayed.

The above mentioned prototypes and components illustrate another impor-
tant requirement posed by this environment, namely concerning the need to
support heterogeneity, not only at the parallel platform level, but also regarding
the parallel computational models. We are using PHIS as an intermediate-level
infrastructure that supports the above requirements, as illustrated in figure 4,
where we show a PHIS configuration with 4 components:

- The GeneticAlgorithm component, which encapsulates a parallel genetic al-
gorithm that internally uses the master-slave model and is implemented on
top of PVM.

- The DataVisualization component is responsible for data interpretation and
display.

- The PerformanceVisualization component which is responsible for applica-
tion monitoring and display of performance-related data. The performance
visualization components rely upon existing tools such as Paragraph [I0]
coupled with a distributed monitoring system 2

- The Control component, which is responsible for the application of the steer-
ing commands, and is actually being based on a distributed debugger (called
DDBG) for PVM that we have independently developed on a related project
[I] [2].

The definition of this PHIS configuration requires the specification of the
following PHIS groups:

Data Visualization Group The Master process and the process(es) respon-
sible for the data visualization are members of this group.

2 Alternatively in figure 4 we could have two separate Monitoring and Performance-
Visualization components, easily configured using PHIS.

137

Genetic A,
component

D a t a Visual izat ion
component . t

Data visualization

Controi',

Control component

component

Steering
coDso|e visualization visualization

display display

Fig. 4. PHIS in a computational steering environment for genetic algorithms

Moni tor ing Group The monitoring group consists of N distributed monitor-
ing processes, each associated with a distinct slave process, and a coordina-
tor. This group is responsible for the local recording, transfering and gath-
ering of performance information.

Control Group The slave processes and a debugger system allow the modifi-
cation of the genetic Mgorithm parameters during the execution.

5 R e l a t e d w o r k

The construction of applications through the integration of multiple software
modules executing on a heterogeneous set of machines has been recognized as an
useful paradigm for some time [13]. One pioneering effort has been the Schooner
system [11]. Recently, this area has received contributions by several projects
like CUMULVS [14], Legion [9], CAVEComm[3] and I-Way/Globus [7].

The major advantage of PHIS (and other related systems like the ones men-
tioned above) is the support of communication between applications written us-

138

ing different parallel programming models, e.g. a PVM-based component and
a MPI-based component. The programming model of PHIS is more flexible
than many of the related models cited above. For example Schooner forces a
model of component interconnection based on RPCs with the known advantages
and disadvantages. The main disadvantage is, in our opinion, the impossibility
of multicasting. Some of the other systems are too connected to a particular
message-passing system (like CUMULVS with PVM) or don't have a high level
interconnection model (for example I-Way suggests the use of TCP/IP sockets
for the interconnection of components). The PHIS programming model has some
similarities with CAVEComm.

Another distinctive feature of PHIS is its concern with the portability. To
port PHIS to a different runtime system it is only necessary to rewrite the
machine-dependent part of the intracomponent library.

6 C o n c l u s i o n s a n d f u r t h e r w o r k

We have described the current status of an ongoing project that is developing
the PHIS system, an infrastructure to support the interconnection of distinct
application components. Due to the large diversity of parallel computational
application components and support tools that have been developed in the last
few years, using distinct programming models, and parallel platforms, we think
there is a very strong motivation to this work. This is confirmed by our own
experience in our faculty campus, where PHIS is showing great flexibility to
support the interconnection of already developed components, as described in
section 4. Currently all these components rely on the PVM system, but we do
not antecipate major difficulties concerning the coupling of our interconnection
libraries with MPI applications. Future work will include:

- to port PHIS to other architectures in order to exploit the heterogeneous
platform existing at our Department, which includes UNIX workstations, a
DEC Alpha-based FDDI cluster, and two Transputer-based multicomputers.

- to evaluate the overhead of using PHIS when compared to solutions where
all the components use the same runtime system.

- to use PHIS to interconnect components that are not message-passing based,
namely ones that use a data-parallel approach and ones that use the shared
virtual memory paradigm.

Acknowledgments

This work was partly suported by the CIENCIA and PRAXIS XXI (project
PROLOPPE) Portuguese Research programmes, the EEC Copernicus and TEM-
PUS programmes and DEC EERP PADIPRO project.

139

References

1. CUNHA, J., KRAWCZYK, H., WISZNIEWSKI, B., MORK, P., KACSUK, P., LUQUE,
E., SUTOVSKA, L., AND HLUCHY, L. Monitoring and debugging distributed mem-
ory systems. In Proceedings of uPg~, Eight Symposium on Computer and Micro-
processor Applications (Budapest, 1994).

2. CUNHA, J. C., LOURENQO, J., AND ANT~.O, W. A Debugging Engine for a Paral-
lel and Distributed Environment. In Proceedings of DAPSYS'96, 1st Austrian-
Hungarian Workshop on Distributed and Parallel Systems (Misckolc, Hungary,
Oct. 1996).

3. DISZ, T., PAPKA, M., PELLEGRINO, M., AND SZYMANSKI, M. CAVEComm users
manual. Tech. Rep. ANL/MCS-TM-218, Math and Computer Science Division,
Argonne National Laboratory, September 1996.

4. DUARTE, L., AND DUARTE, J. Genetic algorithms and parallel processing, in
portuguese, projecto final de licenciatura, 1996.

5. FERT, G. Genetic annealing and parallel genetic annealing. Master's thesis, Uni-
versity of Wroclaw / Universidade Nova de Lisboa, 1996.

6. FORUM, M. P. I. MPI: A message-passing interface standard. Tech. Rep. Com-
puter Science Department Technical Report CS-94-230, University of Tennessee,
Knoxville, TN, May 5 1994.

7. FOSTER, I., GEISLER, J., NICKLESS~ B., SMITH, W., AND TUECKE, S.. Software
infrastructure for the I-WAY high performance distributed computing experiment.
In Proceedings of High Performance Distributed Computing 1996 (1996).

8. GEIST, G., AND SUNDERAM, V. Network-based concurrent computing on the PVM
system. Concurrency: Practice ~ Experience 4, 4 (June 1992), 293-311.

9. HARPER, R. Interoperability of parallel systems: Running PVM in the Legion envi-
ronment. Tech. Rep. CS-95:23, Dept. of Computer Science, University of Virginia,
May 1995.

10. HEATH, M. W., AND ETHERIDGE, J. A. ParaGraph: a tool for visualizing perfor-
mance of paralleFprograms. University of Illinois and Oak Ridge National Labo-
ratory, January 1992.

11. HOMER, P. T. Constructing scientific applications from heterogeneous resources.
PhD thesis, University of Arizona, December 1994. Department of Computer Sci-
ence.

12. HORTA, B. Optimization using genetic algorithms and parallel processing, in
portuguese, projecto final de licenciatura, 1994.

13. KHOKHAR, A. A., PRASANNA, V. K., SHAABAN, M. E., AND WANG, C. Hetero-
geneous computing challenges and opportunities. IEEE Computer J. 26 (June
1993), 18-27.

14. KOHL, J., AND PAPADOPGULOS, P. CUMULVS user's guide: Computational
steering and interactive visualization in distributed applications. Tech. Rep.
ORNL/TM-13299; Computer Science and Mathematics Division, Oak Ridge Na-
tional Laboratory, August 1996.

15. LIANG, L., CHANSON, S., AND.NEUFELD, G. Process groups and group commu-
nications: Classifications and requirements. IEEE Computer (Feb. 1990), 56-65.

