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Abs t r ac t .  Process migration is one technique to implement environ- 
ments that perform automatic load balancing. However on networks of 
workstations the load indices and heuristics that are used must respect 
the load that is imposed on the system by other users' processes. In this 
paper we suggest an approach that uses an existing process migration 
component to construct an automatic load balancing system for MPI ap- 
plications. Both the load indices and the heuristics consider load that is 
imposed on the system due to other users activity. For a computational 
fluid dynamics application performance improvements between 10% and 
54~0 could be achieved. 

1 Consistent Checkpointing with CoCheck 

The CoCheck environment allows both the creation of checkpoints and the mi- 
gration of processes of parallel applications on networks of workstations. Initially 
CoCheck extended PVM [3], so that  PVM applications could be star ted under 
the control of a resource management  system [9]. In that  case, CoCheck was 
used to create checkpoints in order to provide global scheduling of parallel ap- 
plications. Although process migrat ion was already supported, its performance 
needed further improvement.  Consequently, the focus of the research was set on 
performance improvements  of checkpointing and particularly process migration. 
This could be achieved by transferring the checkpoints directly over T C P  net- 
work connections [8]. As the next step, CoCheck was implemented to support  
the proposed MPI  [5] message passing standard. Therefore, the protocol was 
integrated with tuMPI  1 which is an implementat ion of the MPI  s tandard defi- 
nition [10]. As could be shown in [10] migration times of a process are depended 
on the size of the migrated process. The t ime to migrate  a single process is given 
in 1. 

X 

t(x) = 1.77s + 763kBytes/s (1) 

1 Technische Universit£t M/inchen Message Passing Interface 
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For that  implementation of CoCheck a load balancer was added that  performs 
automatic load balancing by process migration. The load balancer comprises a 
component to gather load information from all nodes. This information is used by 
a decision component to determine nodes that  are overloaded and underloaded 
respectively. Among the processes on the overloaded nodes candidates have to 
be selected which will be migrated to new nodes. Finally, a process is selected 
and migrated. 

The remainder of this paper is organized as follows. Firstly, an overview on 
related work is presented. Then the automatic load balancing system for MPI is 
explained. After that  performance results of the load balancing system will be 
discussed. Finally a conclusion and an outlook on future work is given. 

2 R e l a t e d  W o r k  

Andres et al. [1] describe an environment that performs automatic load balanc- 
ing on a network of workstations for PVM applications. In their approach the 
migration component is completely integrated into the PVM system. On each 
node a load monitor determines the current load. This information is broad- 
casted to all PVM daemons. Each daemon sets up a matr ix  with the current 
load indices of all the nodes. Upon request this matr ix  is made available to the 
load balancer. Migrations are only performed if the load imbalance exceeds a 
predefined constant which represents the cost of the migration. Processes which 
dominate the current processor or which perform only small amounts of work are 
not migrated. Also the number of migrations is restricted per process to avoid 
thrashing. In [1] Andres et al. conclude that  "Although we did not achieve the 
dramatic performance improvements we had hoped for when we implemented 
load migration under PVM, a great deal was learnt about what makes a good 
or bad migration heuristic [...]." 

Hector [6] provides dynamic task allocation to MPI applications. Its migra- 
tion component has been inspired by former versions of CoCheck [8; 10]. Hector 
adds an additional process (task allocator) to each node of the system. Each task 
allocator is responsible to collect the load information on its node, launch pro- 
cesses and monitor the execution of the processes. In addition there is a master 
allocator that  collects the load information of all slave allocators. Based on this 
global load view of the application the master allocator decides about migrating 
processes. 

3 A u t o m a t i c  L o a d  B a l a n c i n g  w i t h  C o C h e c k  f o r  t u M P I  

tuMPI is an implementation of the MPI standard. It is primary intended for 
conducting research in the area of process migration and checkpointing [10]. The 
automatic load balancer which has been implemented for tuMPI consists of three 
components: a load measure component, a decision component and a migration 
component. The latter is provided by CoCheck [8; 10]. The remaining two com- 
ponents will be introduced now. Both have been added as an additional part  
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to the tuMPI  daemon. This is a central component  of every tuMPI  application 
which is responsible for the process management .  

3.1 L o a d  M e a s u r e m e n t  

In accordance with the literature where simple load indices and strategies achieved 
good results [2] the automat ic  load balancer of tuMPI  also uses a simple load 
index. It  is based on the average length of the ready queue on a node during 
the last minute ( a v e n r u n ) .  This value is available on every UNIX system and 
can easily be determined. With  the rup  command  the value of a v e n r u n  can also 
be determined on remote nodes, so that  there is no need for additional monitor  
processes on the nodes which execute processes of parallel applications. 

At s tar tup  t ime of an application the user can specify two additional param-  
eters which configure the intervals at which the load should be determined. The 
first parameter  specifies the t ime between two successive measurements  when no 
migrat ion was necessary. The second parameter  determines the t ime at which 
the next measurement  is performed when a process was migrated. This facility 
has been introduced to allow more t ime after a migrat ion for the load values 
to stabilize. This avoids too many  migrations to a machine before the addi- 
tional load of a process has shown its effects also in the a v e r u n  value. Since the 
complete parameters  with which an application is s tar ted are given to the call 
of l~PI__Init those two parameters  are removed from the parameter  list during 
tha t  function. Hence, the application does not need to be changed to handle the 
additional parameters:  MPI__In±l; provides the desired transparency. 

3.2 Decision Component  

Although the migrat ion of processes with CoCheck is only possible between mi- 
gration compatible  (homogeneous) machines 2 the decision component  supports 
heterogeneous networks of workstations. Therefore the network is divided in ho- 
mogeneous sub-clusters and the decision component  tries to evenly distribute 
the load within each sub-cluster. As even within homogeneous sub-clusters the 
potential  computat ional  power of the machines can vary due to different clock 
frequencies, main memory  capacity, etc. the above mentioned a v e n r u n  value of 
each machine is normalized with a machine specific architectural constant c~. In 
the current implementat ion the user is responsible to assign this constant to each 
machine in the mapping  table that  specifies the cluster and that  is processed by 
tuMPI  during startup.  Future versions will automatical ly  assign this value to 
each machine. The load index that  is used in the decision component  is provided 
in (2). 

2 Migration between binary compatible machines is not always possible due to different 
run-time properties of processes. In the case of Sun machines the binaries can be run 
on any machine, but it is not possible to migrate a process from a sun4m to a sun4c 
implementation of the SPARC specification due to a different run-time stack. Hence 
the requirement of binary compatible machines is not sufficient. 
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1-4- a v e n r u n i  
loadi - -  (2) 

o~i 

imbal  = I m=ax(loadi) - m in ( load i ) l  (3) 

Increasing the a v e n r u n  value by one in the denominator guarantees that  
in case of unloaded machines ( a v e n r u n  = 0) machines with different speeds 
can actually be distinguished. Hence, the decision component can choose the 
potentially faster machine in case a destination machine for a migration has to 
be determined. 

The evaluation phase begins after the load on all machines has been deter- 
mined. Therefore the normalized load indices of all nodes are calculated using (2) 
for a node i. After that  the difference between the highest and lowest normal- 
ized value is calculated according to (3). If this difference exceeds a specified 
imbalance value a migration is considered. Otherwise no migration will be per- 
formed and the next measurement starts after the waiting time that  has been 
specified (c.f. section 3.1). If however, the current load imbalance is greater than 
the specified imbalance value suitable migration candidate is determined. Cur- 
rently, a simple strategy is used which selects a process of the application on the 
node with the highest normalized load index. Similarly the destination node is 
selected with a simple strategy: it is the node with the lowest normalized load 
index. Finally, CoCheck is requested to migrate the selected process from the 
source to the destination node. 

As the a v e n r u n  value is influenced by processes which do not belong to the 
parallel application this approach also can cope with load imbalances caused 
by external influences. However problems arise when the machine pools of two 
tuMPI  applications overlap. In this case the two load balancers might work 
against each other. In future versions this situation must be detected and the 
load balancers must coordinate their migration decisions regarding the nodes in 
the overlapping node set. 

Currently, the above mentioned value for the load imbalance that  has to be 
exceeded so that  migrations are actually performed to level the load must be 
specified by the user as an additional parameter  on the command line. As in the 
case of the measurement intervals (c.f. section 3.1) this parameter is automati-  
cally removed during MPI_Init. 

4 P e r f o r m a n c e  E x p e r i m e n t s  

To evaluate the performance of the automatic load balancer we applied it to a 
computational  fluid dynamics application. This application is briefly described 
in the next section. After that  the hardware environment for the experiments 
and the results of the experiments are presented. 
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4.1 N S F L E X  

NSFLEX is a computational fluid dynamics application which is used to solve 
problems in aerodynamics [4]. More precisely, it solves two and three dimensional 
Navier-Stokes and Euler Equations. The speed of the flow can stretch from 0.3 
to 100 Mach. The discretization was clone with a finite volume method by solv- 
ing the Reynolds Equations. The linearization uses the Newton method. The 
turbulent flow is modeled with Baldwin-Lomax and solved with a Gaufl-Seidel 
method. Several grid topologies are supported (C-grid, O-grid and H-grid). The 
NSFLEX code for MPI which has been used in the experiments was initially 
implemented for MPICH and solves the Cast-7 problem. The problem was par- 
titioned in such a way, that  four processes were required to compute the solution. 
Each of the processes occupied 6840 kBytes main memory during run-time. Most 
of this memory (6044 kBytes) was located in the data  segment. 

4.2 H a r d w a r e  E n v i r o n m e n t  f o r  the Exper iments  

All experiments have been done on five Sun Spare 10 machines which were 
equipped with 32 Mbytes of main memory and ran under the SunOS 4.1.3 op- 
erating system. The machines were physically distributed over several buildings 
and were interconnected via the local area Ethernet network of the computer sci- 
ence department.  The measurements have been performed during off-peak hours 
in the nights and on weekends to reduce the influence of other users. Despite 
these precautions it was not possible to completely dedicate the machines and 
the network for the experiments. 

4.3 Results  

In a first series of experiments we were concerned about how the number of 
migrations would influence the execution time of NSFLEX. Therefore NSFLEX 
was executed on four machines and a varying number of migrations were forced 
to the remaining machine. The average results are depicted in Fig. 1 whereas t(n) 
in equation (4) is the result of a linear regression applied to all measurements. 

t(n) = 330.55 + 12.83n (4) 

Although the average values and the linear regression show a linear increase 
of the execution times of NSFLEX a closer look at the individual measure- 
ments unveils noteworthy details. In contrast to the expectation that  migrations 
prolongs the execution time in any case, surprisingly also reductions could be 
observed. This is depicted in Fig. 2. 

The explanation for this effect is as follows. Although the migration itself 
takes a certain amount of time the experiment already describes an automatic 
load balancer with a random strategy where migration decisions are based on 
coincidence. Since the external load could not be completely eliminated, this 
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Fig. 2. Single measurements and linear regression. 

simply strategy of migrating a randomly selected process lead to better toad 
distributions under certain circumstances. The examination of the log files of 
the experiments, in which the load values of all machines had been recorded, 
showed that  in the cases where better execution times could be achieved, the 
source nodes indeed were overloaded. 

In a second series of experiments an additional process was placed on one of 
the nodes where an NSFLEX process was executed. The automatic load bMancer 
was enabled and configured, so that the toad imbalance value was set to 1.5 
and the two interval parameters were both set to 40 s. Hence, migrations were 
performed if the normalized difference between the least and most loaded node 
exceeded 1.5 and the time between two measurements were 40 s independent of 
migrations having been performed or not. The additional process on the node 
consumed about the same amount of CPU-time as the NSFLEX process as can 
be seen from the output  of the t o p  c o m m a n d  in Fig. 3. 
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PID PRI SIZE RES STATE TIMEWCPU CPU COMMAND 
1340276 24K 144K r u n  1 : 4 5  45.37~ 45.31~ AddLoad 
1343177 6840K 2904K run 1:23 45.37~ 45.31~ NsFlex 

Fig. 3. CPU time of the NSFLEX process and the additional load process. 

The average execution times of NSFLEX without performing migrations in- 
creased to 697 s in comparison to 336 s without the additional load process. The 
experiment was repeated with the the automat ic  load balancer being activated. 
In this case the average execution t ime could be reduced to 327 s. In some cases 
more migrations were necessary to achieve an even load distribution. In these 
cases execution times of 374 s and 500 s respectively could be achieved (54% 
reduction). The individual measurements  and the corresponding average vMues 
are given in Fig. 4. 
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Fig. 4. Effect of load balancing on NSFLEX execution times with one additional load 
process. 

In a similar experiment with two load processes execution times could be 
reduced from 636 s to at least 573 s (10% reduction). 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

In concert with tuMPI  CoCheck provides the basis for an automat ic  load bal- 
ancing system for MPI  applications. Both the migrat ion times of processes (not 
discussed here, refer to [10] for details) and the improvements  which could be 
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achieved using the NSFLEX application are very encouraging. Already the sim- 
ple policy based on the normalized length of the ready queue and the threshold 
value used in the prototype implementat ion could reduce execution times from 
10% to 54%. 

Current l imitations of the the decision components are tha t  they only initiate 
the migrat ion of a single process at a given t ime and tha t  decision components  of 
several applications cannot cooperate. The first l imitation reduces the efficiency 
of distributing the load evenly whereas the latter leads to problems in case of 
overlapping machine pools when processes migrate  to the same machine. Hence, 
the decision components have to be modified, so that  they migrate  more than one 
process if this is appropriate  and that  they can coordinate their migrat ion de- 
cisions in case of overlapping machine pools. Furthermore, the intra-application 
scheduling aspect which is covered by dynamic load balancing should be ex- 
tended to a resource driven inter-application scheduler which can be found in 
resource management  systems. Finally, the heuristics must  be evaluated with 
more applications. Particularly, the ability to balance the load in heterogeneous 
clusters must  be examined. 
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