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A b s t r a c t .  We examine the reliability properties of ideal fat-trees, a 
general model used to capture both distance and bandwidth constraints 
of various classes of fat-tree networks. We allow the edges and the vertices 
of the network to fail independently with probability f ,  and show that: 
(1) Any fat-tree G can always be partitioned into an upper (GH) and a 
lower (GL) part. After the faults, the remaining part of GL guarantees 
that a linear ]faction of the leaves of the fat-tree still connect to the 
upper part, with high probability. (2) G~ is robust, in the sense that, 
after the faults, at least half of the edge-disjoint paths between any set 
of "leaves" of GH are preserved with probability tending to 1, even in the 
case of failure probabilities as high as f < 0.25. The robust properties 
of GH hold for the case that fat-nodes do not have internal edges and 
also for the cause that fat-nodes are random regular graphs. (3) For the 
special case of a pruned butterfly, there is a critical probability pc for the 
existence of a linear sized component surviving the failures and including 
a large fraction of terminal nodes. We show that pc _> 0.42. 

1 Introduction 

Fat-trees play an impor tan t  role in lnoderu multiprocessor architectures because 
of the efficient (with respect to VLSI design and routing) universality proper- 
ties they have ([17], [3], [11]) and, also, because they provide a natural  basis 
for the development of efficient routing algorithms ([10], [t8], [6]) and for the 
implementat ion of interconnection networks in parallel supercomputers  ([16]). 

Aiming at a general s tudy of various existing fa~t-tree networks, we use the 
ideal fat-tree model introduced by Bilardi et al ([7]), which captures both  dis- 
tance and bandwidth constraints and provides a framework for designing algo- 
r i thms portable among different fat-tree networks. An abstract  definition of the 
ideal fat-tree network is the following: The N terminal nodes (processors) are 
placed at the leaves of a complete binary tree whose internal nodes are switching 
modules building a routing network among the processors. The nodes of the tree 
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are connected via channels of appropriate capacity, which is equal to the number 
of edges joining each node (except from tile root) to its parent. The communi- 
cation over the network is subject to certain distance and capacity constraints: 
1) A message which is sent from a source s it arrives at its destination t after 2 h 
steps, where h E {1, . . . ,  log N} is the height of the lowest common ancestor of s 
and t, and 2) the number of messages traversing any channel should not exceed 
the channel's capacity. This model is ideal in the sense that the routing time is 
the minimum satisfying distance and capacity constraints, while most existing 
fat-tree networks would incur a polylogarithmic (with respect to the ideal fat- 
tree) slowdown in routing time. Also, a general capacity function w(n) usually 
obeys the following natural conditions: (i) w(2n) > w(n), that is; the outgoing 
bandwidth of a subtree does not decrease with its size, and (it) w(2n) < 2 w(n), 
that is, the bandwidth toward tile parent does not exceed the total bandwidth 
toward the children. Here n E {1, . . . ,  N/2} is the number of leaves of the subtree 
rooted at a given node and w(n) denotes the capacity of the fat-edge (or the 
number of edges) to tile parent. Usually, w(n) = O (n ~/2) is assumed since it 
satisfies the above conditions, and also ensures area universality (see [5]) of the 
ideal fat-tree. 

In this work, we analyze the tolerance of ideal fat-trees in the presence of 
faults, which may lead to unavailability of parts of fat-nodes or edges of  the fat- 
tree (interconnection) network of the multiprocessor architecture. Let G be an 
undirected graph. A random graph G* of t ype -G  is obtained by selecting edges 
of G independently and with probability p. We can thus, represent a communi- 
cation network in which edges fail independently and with probability f = 1 - p .  
In [20, 22] this model was defined and used in order to prove the preservation 
with high probability of multiconnectivity and expander properties in various 
graphs of type-G.  Let, G be the tree-structured graph representing thefinitiM 
fat-tree before the faults. The corresponding random graph G* of t y p e - G  rep- 
resents the faulty fat-tree obtained by allowing edges to fail independently and 
with probability f .  We show that various properties in t y p e - G  fat-tree net- 
works are preserved for a wide range of failure probabilities, including:J as high 
as O(1). (Note that usually, tile assumption f = o(1) (e.g. f < 1/n)captures 
many realistic permanent failure patterns. A value of f = O(1) (independent of 
n) is considered to be a worst-case assumption.) In particular, we show4hat: (1) 
Any fat-tree, G, can always be partitioned into a lower part, GL, and an,~upper 
part GH. We show that GH is robust in the sense that it preserves most of its 
edge-disjoint paths (between its "terminals") witil high probability even:~when 
f < 0.25. (2) We also show that a linear fraction of the leaves (terminals):of G 
stays connected (through what remains out of GL) to GH, with high probability. 

There is a substantial body of literature concerning the fault toleranae of 
interconnection networks which we will not review in detail here due to:space 
limitations (see e.g. [24, 14, 15, 8, 23, 12]). In [24] a fault tolerant network w,hich is 
area-universal over all network layouts with few bends is given, and impossibility 
results with respect to the area-universality of fault tolerant networks:under 
arbitrary patterns of faults, are presented. In [14, 15, 8, 23] the fault tolerance 
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properties of butterflies, multibutterflies, and randomly-wired splitter networks 
are studied. Note that although, the above important results can be (in some 
cases) probably extendable to other networks including the fat-trees, our results 
concerning the robustness properties of ideal fat-trees are of interest since they 
can be applied to any tree-structured interconnecton network including a variety 
of fat-tree networks. 

In this work we also consider the pruned butterfly, which is an interesting 
special case of a fat-tree with fat-nodes having no internal edges. For this special 
case we study (Section 5) the critical probability pc for the existence of a linear 
sized component surviving the failures and including a large fraction of terminal 
nodes, and we show that pc _> 0.42. The existence of a linear-sized component 
in the faulted version of a network is an important measure of its robustness. If 
such a component does not exist, then the computation in the faulted version 
of the network is bound to be more than a constant factor slower than the 
computation in the fault-free version. A number of results for special networks 
have been presented in the literature. We refer here to the works of Karlin et 
al ([12]) for the butterfly network, Kesteu ([13]) for the d by d two-dimensional 
mesh, Erdbs and aenyi ([9]) for the complete graph, and Ajtai et al ([1]) for the 
hypercube of dimension d. Our result for the case of the pruned butterfly is a 
judicious modification of the approach in [12, l]. 

2 F a u l t y  f a t - t r e e s  r e m a i n  " f a t - e n o u g h "  e v e n  f o r  c o n s t a n t  
f a i l u r e  p r o b a b i l i t i e s :  T h e  c a s e  w h e r e  f a t - n o d e s  h a v e  n o  
i n t e r n a l  e d g e s  

Let G be the undirected graph representing the tree-structured fat-tree network 
and Ta be the corresponding tree taken by viewing each fat-node as a single 
(super)vertex and by collapsing the parallel edges into one, with the appropriate 
capacity. Bilardi and Bay ([5]) have suggested the following definition of "'),-fat" 
tree-networks, which is based on the relation between the number of edge disjoint 
paths connecting two subsets A, B of terminal nodes and the maximum flow 
F(TG,A, B) that can be pushed from A to B over the network. The "7-channel- 
sufficient" definition of Bilardi and Bay ([5]) is as follows: 

Defini t ion [Bilardl and  Bay, [5]] A tree-structured graph G is "7-channel- 
sufficient" if for every disjoint sets of leaves A, B there exist at least 7 F(Tc , A, B) 
edge disjoint paths from A to B in G, where TG is the tree corresponding to graph 
G and 7 E (0, 1) is a constant. [] 

We consider here tile fat-tree partitioned into two parts, a higher (closer to 
the root) GH and a lower GL part. We first show that GH is robust, even 
for f --- O(1). For the GL part we just show (in section 4) that at least a 
constant fraction of the terminal nodes remains connected to (what remains of) 
GH despite the faults. 
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2.1 P r e s e r v a t i o n  o f  n f i n i m m n  cu t s  ill u p p e r  (GH) f a t - t r e e s  w i t h  
edge failures 

Let H be such that all channels in the upper H levels of the graph G have 
capacity at least ~v/~ l x / ~ n ,  where c~ >_ x/~ a constant. Denote by GH this 
upper part of the graph G. Remark that a cut in GH with respect to any two 
subsets A, B of "terminal" nodes of GH is a set of edges intersecting any path 
between nodes of A and B. Note that the nlinimum cut between any subset of 
the "terminal" nodes of GH (i.e. the fat-nodes of GH to which GL connects) is 
at least (~v~ Iv/V@ n before the faults. Now let CA,B (GH) be the size of minimum 
(in cardinality) cut in GH, for A, B fixed, and CA,B(G*H) be the corresponding 
minimum cut value in the graph of type- -Gu.  

T h e o r e m  1. VA, B:  E(CA,B(G*H) ) = (l -- f)  CA,B(G,)  

P r o o f  ( ske t ch ) :  Consider a random indicator variable Xe for every edge e in 
a minimum A - B cut of GH, taken value 1 (0) when e remains in G~- (or not, 
respectively). The theorem follows easily by linearity of expectation. E] 

Now sort arbitrarily the edges of GH and let Ij be a random indicator variable 
showing whether edge ej remains in G*tl or not, that is 

1 if ej E G* H 
Ij = 0 otherwise 

Consider the sequence X0, X1, • •., Xt of random variables such that  

Xk = E(CA,B(G*H)II1,..., Ik) 
X o  : 

Xt = the value of minimum A - B cut in G~/ 

L e m m a 2 .  X o , X 1 , . . . , X t  is a (Doob) martingale (in fact, an edge exposure 
martingale). 

P r o o f :  Just define the filter Fk, F ~ - I , . . . ,  F0 where Fk is the or-field generated 
by the events corresponding to I1 . . . .  , Ik. Clearly, E(Xk+IIFk) = Xk, and the 
martingale criterion is met. [] 

L e m m a 3 .  [Xk -- Xk-1] _< 1 

P r o o f :  Remark that taking into account the indicator variable Ik, corresponding 
to whether ej E G~/is  holding or not, can only decrease the expectation of the 
minimum A -  B cut of the "so-far exposed" graph by at most 1 (this may happen 
when ej ~ G'H, otherwise Xk = Xk- l ) .  [] 

Thus, the Lipschitz condition holds, so we can employ the powerful method 
of bounded differences and get, by Azuma's inequality (see for example [19]), 
that,  VA > 0 

Pr{IX,-  Xol > )~v'7} _< 2e - ~ / 2  (1) 
We are now ready to prove the basic theorem of this section of the paper: 
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T h e o r e m 4 .  For any c~ >_ x/~, 

VA, B :  Pr{ICA,B(G*H) -- E(CA,B(G*H))[ > ~ v ~  l~-g-n} <_ 2 
n 

P r o o f :  By the definition of X0, Xi,  • •., X~ we get that 
Pr{ICA,B(G*H)- E(CA,B(G*H))I > o~v'~ ]ox/T~} = P r { I X t -  XoI > Av~}, where 
now )~ = ~x/I '@' ,  c~ _> v/2. Then by equation (1) we get 

a 2 log n ~ 2  2 
P r { l X , - X o l > ) W / ~ } < _ 2 e  - ~ = 2 n - - r  _< - 

n 

[] 
Thus, the minimum A - B  cut of G~ is around (1 +/3)E(mina,B_eut of G~/), 

i.e., (by theorem 1) around (1 4-/3)(1 - f)(,,,inA,B-cut of GH) with probability 
> 1 - ~ for some/3 E (0, 1). By choosing a/3 close to zero, we get 

C o r o l l a r y 5 .  For any A, B the maximum flow of GH between A, B is only frac- 
tionally reduced (by (1 - f )) almosl certainly. 

Note that this Corollary gives us information about the flow that  can be 
pushed in the whole graph only if the remaining part of GL can push such flow 
into GH. Note also that  in [4], the authors have shown a related result, namely, 
that the value of every cut in a compressed version G* of any particular graph 
G is very close to the corresponding cut in G. They have shown this to hold 
also for s - t cuts. However, the way the graph is compressed (in [4]) does not 
capture our fault model because their model includes each edge e in G* with 
probability p~ (the compression probability) but also gives to it a weight of 1/p~ 
if it is included. Thus, one cannot just apply the results in [4]. 

2.2 P r e s e r v a t i o n  o f  edge  d i s jo in t  p a t h s  u n d e r  c o n s t a n t  v e r t e x  and 
edge failures 

Recall that  in this first part of the paper, we consider the (worst, as far as 
connectivity issues are concerned) case where the fat-nodes of the tree-structured 
graph G have no internal edges at all. Now let H '  be such that each fat-node of 
the part G H, consisting of the upper H 1 levels of graph G, has at least k log n 
(internal) vertices (k > 2 a constant). The next theorem shows that,  for f 
constant, a constant fraction of the number of vertices in each fat-node survive 
the vertex faults with high probability. 

D e f i n i t i o n 6 .  For a particular fat-node V in G H, let Ev be the event "at least 
(1 - /3 ) (1  - f ) lYl  vertices of V remain in GH,",  where /3 E (0, l) a constant. 
Also, let E = Nv Ev, for all V E GH,. 

T h e o r e m 7 .  Pr{E} > 1 - n - (k ' - l ) ,  where k' > 2 a constant. 
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Proof i  See full paper [21]. [] 
The above theorem implies the survival of a constant fraction of vertices 

after the vertex faults within each fat-node. We will now prove that  the edges 
connecting the fat-nodes tolerate the edge faults well-enough to guarantee the 
preservation of at least half of the edge disjoint paths when f < 0.25, almost 
certainly. We show, in particular, that at least half of the edge-disgoint paths in 
GH, (connecting any sets of "terminal" vertices of GH,) are preserved in G~r, 
with high probability. Note that this implies that for any two sets of terminal 
nodes of the fat tree that remain connected to G~, after the faults, the edge- 
disjoint paths that join them are fractionally preserved, at least as far as the 
G~/, part of the graph is concerned. We assume here that  at least a constant 
fraction of terminal nodes connect to the tipper part GH. 

T h e o r e m  8. At least half of the edge disjoint paths in the graph GH, connecting 
any sets A, B of terminal nodes remain in G H, with probability at least 1 - 
0 (1o~) ,  for all failure probabilities f < 0.25. 

Proof." We will show this holding (on the average) in tile following section. 
From Theorem 7, at least (1 -/3)(1 - f) lVI vertices within each fat-node survive 
the vertex faults. Remark that when (1 - / 3 ) ( I  - f )  > 3/4, then for any two 
children V1, V2 of the same parent V in GH, , more than half of the nodes of 
V get edges from both V1, V2. Now, for a fat-node V of G H, at level k + 1, let 
pe(k + 1) be the (bad-event) probability that in G H, the remaining edge disjoint 
paths connecting any sets A, B of terminal nodes that arrive at the node V are 
less than half of the corresponding paths in GH,. Since, by our previous remark, 
more than half of the vertices of V get edges from both V1, V2 this bad event 
holds if the remaining edge disjoint paths arriving fl'om either 1/1 or V2 are less 
than half of the ones before the failures, thus: 

p, (k+ 1) = 1 - (1 -0 .hpc(k))  ~ =p~(k) P " - '  
4 

(2) 

By choosing q(k) such that p~(k) = 1 q(k)+l we get from equation 2 that 

1 1 1 4 q ( k ) + 3  
q(k + 1) + 1 q ( k ) + l  4(q(k) -4- l) 2 4(q(k)+l)  2 

1 
q ( k + l ) ~ q ( k ) + 2 + - -  q(k) 

By induction, it follows that  k < q(k) < k + Hk-1 + 3, where Hk is tile k - t h  
implying that q(k) = O(logn) ¢=~ p~(k) = 0 ( i o ~  ). harmonic number, To 

complete tile proof, remark that we get the best possible f satisfying (1 -/~)(1 - 
f )  > 3/4 by setting/3 ~_ 0, i.e. 1 - f > 3/4 ¢:~ f < 1/4 = 0.25. [] 
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3 T h e  case  w h e r e  t h e  f a t - n o d e s  are  r a n d o m  r e g u l a r  
g r a p h s  

In this section, we study the reliability properties of fat-trees whose fat-nodes, 
instead of having no edges at. all (as in the previous section), now have quite a 
lot of "built-in" connectivity. To be more specific, consider the case where the 
fat-nodes of the tree-structured graph G are random regular graphs of degree d 
(hence they are also expanders with high probability). 

Let H ~ be such that  all channels in the upper H' levels of the graph G have 
capacity at least k logn, where k > 0 a constant. Denote by GH, this upper 
part of the graph (including the random regular fat-nodes) and by Tan, the 
corresponding tree-structured graph (where we view each fat-node as a single 
supervertex). Let C be a capacity in T(7,, and (7* the corresponding capacity in 
T* (the type-Tall, random graph representing what remains from TGH , after GHt 
the edge faults). Note that the capacity of a channel connecting two fat-nodes 
is equal to the number of edges joining these nodes. 

D e f i n i t i o n 9 .  Let Ec be the event "C* is within (1 + f3)(1 - f ) C " ,  where 
/3 E (0, 1) is a constant and f the edge failure probability. [] 

The following theorem shows that at least a constant fraction of the capac- 
ity of any channel of this part of the fat-tree (and thus the nmnber of edges 
connecting the corresponding endvertices of the channel) is preserved with high 
probability. 

T h e o r e m l 0 .  There is a constant k t > 2 such that Pr{UcETC;H ' EC} ~_ n - ( k ' - l )  

P r o o f  ( ske tch) :  As mentioned earlier, a channel capacity of size C in GH, 
implies the existence of C edges connecting the endpoints of the channel. But 
the edges in G~/, fail independently and with probability f .  Thus, G~, is the 
result of performing on each channel C Bernoulli trials with success probability 
p = 1 - f .  By Chernoff bounds, we thus have: 

r r { E c }  = Pr{C* E (1 4-/3)(1 - f ) C }  > 1 - e - ~ O - ] ) c  

> 1 - e - @(1-])~l°g'~ = 1 - n -k' 

where k ~ = P-~2 (1 - f ) k  can be made at least 2 by choosing appropriate values for 
/3, k. Thus, Pr{3C in Tall, : E c  in g~;H, } < n n  -k'  = n -(k'-~) [] Note that the 
above theorem implies the preservation of a constant fraction of the edges joining 
any vertex pair, by choosing a small (but even constant) failure probability f 
and fl close to 0. In order to investigate what hal)pens in the interior of the fat- 

*d nodes we remark that each fat-node is a member of G,~a, , the class of all random 
regular graphs of degree d, whose edges fail independeutly and with probability 
f .  In [20], [22] the following facts have been shown: 

Fac t  1 Gd,p is highly disconnecled when f = 1 - p  is constant and d < ½ x / ~ n ,  
almost certainly. 
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Fac t  2 When Gd,e is disconnected, it still has a giant connected component for 
any f < 1 - -~ with high probability, for any d >_ 64. 

Fac t  3 The giant connected component of a random member of G~,p remains, 
with high probability, a certifiable efficient expander, despite the edge faults, pro- 
vided that f < 1 ~56 d " 
From Fact 3, we conclude that a constant degree d > do, do -- 25___~ suffices to 
guarantee that each fat-node remains, with high probability, an efficient expander 
despite the constant edge failure probability f .  By theorem 10 and fact 3 we get: 

C o r o l l a r y  11. Let E be the number of edge disjoint paths in fat-trees whose fat- 
nodes are random regular graphs of degree d. At least ( 1 - f ) E  edge disjoint paths 
survive the constant failure probability edge faults ahnost certainly, provided that 

256 [:3 d >  1-]" 

The following special case is indicative of the power of Corollary 1 l: 

C o r o l l a r y  12. Let E be the number of edge disjoint paths in fat-trees whose fat- 
nodes are random regular graphs of degree d. At least (3 /4)E edge disjoint paths 
survive the failures ahnosl certainly, provided that f < 0.25 and d > do, where 
do > (4/3)256 i.e. do > 340. [3 

4 T h e  c o n n e c t i v i t y  o f  t e r m i n a l  n o d e s  t o  t h e  u p p e r  p a r t  

Let T be tile set of terminal nodes of a fat tree R. Let GL, GH be the lower 
(respectively, higher) part of the "tree" graph as previously. Let F(GL, T, GH) 
be the maximum flow from T to the nodes of the GH through GL. Assuming 
that  R is 7-channel-sufficient we know that there exist at least 7F(GL, T, GH) 
edge disjoint paths from T to GH in R ([5]). If ITI = N, then the minimum cut 
between T and the nodes of GH is clearly at least ON (0 < 0 < 1 a constant) 
due to the channel capacities. Thus, the nodes in T are connected to the upper 
part  via N' = 78N disjoint paths. Tile survival probability of each such path is 
q = (1 - -  f)O(Ioglogg). For f constant, q beconles a t  least ~ ' 1  where c > 1 a 
constant. From the Bernoulli of N I trials and success probability q we get (by 
Chernoff bonnds) that: 

L e m m a l 3 .  At least (1 :i:/3)qN terTmnal nodes are connected to GH via edge 
disjoint paths with probability at least 1 - e - ~  qN, for any [3 6 (0, 1). 

For example, when f is constant then the expected number of terminal nodes 
' ( n ) . L e t X 0  XI .. b e t h e  that COlmect to GH via edge disjoint paths is O ~ , , . 

sequence where Xj is the expected lmmber of terminal nodes in T that connect 
(possibly through non-edge-disjoint paths) to level j of the lower part (level 0 
is T). Assume that the fat-tree is 1-channel sufficient (e.g., a pruned butterfly). 
Then, because 7 = 1 and f < 0.5, it is E(Xj+I) = Xj because each vertex sends 
at least two edges upwards, thus we get (for a proof see fllll paper) that: 
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L e m m a l 4 .  {Xj}  is a martingale, for any f < 0.5. [] 

By using Azuma's inequality and sums of Poisson trials we then get: 

T h e o r e m  15. For any f < 0.5 and 7 = 1 the expected number of terminal 
nodes that connect to GH (possibly via overlapping paths) is O(N),  and the 
actual number is concentrated around O(N).  [] 

Thus, we can suggest that robust fat-trees can be built in the following way: (i) 
The lower part should consist of fat-nodes guaranteeing 7 = 1 (e.g., a pruned 
butterfly or cliques or tree of meshes). (ii) The npper part should be built via fat- 
nodes being concentrators (e.g., regular random graphs) because of our results 
in the previous sections. 

5 T h e  s p e c i a l  c a s e  o f  t h e  p r u n e d  b u t t e r f l y  

The pruned butterfly is a particular case of a fat-tree with 7 = 1 (see e.g. [6] 
for a definition of the pruned butterfly). Given a pruned butterfly Pd, let Pd/P 
denote the random pruned subbutterfly of type-Pu obtained by considering each 
edge independently and inclnding (excluding) it in the pruned subbutterfly with 
probability p (respectively, f = 1 - p). Ill this section we show that there is 
a critical probability pc such that for p > p~ the pruned butterfly Pd/p has a 
connected component of linear size which inch, des at least h- 2 d terminal nodes, 
where 0 < h < 1 a constant, with high probability, while for p < Pc such a 
component does not exist almost certainly. 

We follow closely, but judisiously modify, the approach of Karlin, Nelson and 
Tamaki in [12] for the case of the butterfly network, and the approach of Ajtai, 
Komlos and Szemeredi in [1] for the hypercube network. We first choose Pl > Pc 
and P2 > 0 such that  (1 - p l ) ( l  -P2 )  = 1 - p  and therefore Pu/Pl UPd/P2 = Pa/P. 
Then, we prove that  a constant fraction of the nodes of Pd/Pl are in connected 
components of an appropriate size, which are called atoms. Finally, we show that  
the additional edges in Pd/p2 connect the atoms into a linear-sized component.  
Due to space limitations, details are given in the full paper ([21]). 

The characterization of the critical t)robability given above provides an algo- 
r i thm to compute it. In the full version of this paper we give the details of the 
computation of the critical probability. We also give a lower bound on the value 
of the critical probability Pc (P~ >_ 0.42). 

A c k n o w l e d g e m e n t :  We wish to thank G. Bilardi for his encouragement and 
fruitful discussions. 
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