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Abstrac t .  We have designed an algorithm for embedding of complete 
k-ary trees into 2-dimensional square meshes. The embedding has load 
1, optimal dilation (the constant is 3 if k = 3 and 2 otherwise)., and 
expansion 2. This solution can be easily converted into an embedding 
with optimal expansion 1/2 for load 2 while keeping the dilation the 
same, 

K e y w o r d s :  complete k-ary tree, 2-dimensional square mesh, embedding 
problem, expansion, load, dilation. 

1 Basic definitions 

A graph G is a pair (V(G), £(a)) where V(G) is the set of nodes of G and £(G) 
is the set of edges of G. An edge with end nodes u and v is denoted by (u, v). 
The set of all paths of graph G is denoted 7:'(G). An embedding of a guest graph 
a = ( v ( a ) . E ( a ) )  into a host graph H = (V(H),S(H)) is defined as a pair of 
mappings (p,~) where p :  V(G) - -  V(H) and ~ :  £(G) --~ P(H). The quality of 
an embedding is measured using several p a r a m e t e r s .  

The  dilation of an edge ea E £(G) The expansion of (p, ~) is defined as Iv(a)l " 
is the length of the path ~(ea);  the dilation of (p,~) is the maximum dilation 
over all edges of G; the average dilation of (p, ~) is the average over all edge 
dilations. The load of a node VH E V(H) is the number of nodes of V(G) that  
are mapped onto vH; the load of (p,~) is the maximum load over all nodes of 

[ IV(G)I ] if the load of H. An embedding of G into H has the optimal load z = [W-V(-B'g| 
each node VH of H is z - 1 _< load(vH) _< z. 

For k > 2, h _> 0, let CTk,h denote the k-ary complete tree of height h and 
p(k, h) = (k TM - 1)/(k - 1) be the number  of its nodes. Each internal node of 
CTk,h has exactly k children and each leaf of CT~,h is at distance h from the 
root. The level of a node v of CTk.h, denoted by l(v), is the distance of v from 
the root. For 0 < i < h, define 

Ai = {v E V(CTk,h) : 0 _< l(c) < i} and cti = tdlil, 
B~ = {~ ~ V(CTk,h)  : l(u) = i} and ~ = IS~I- 
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Fig. 1. a) Decomposition of M,, into z'vI~ and A'/~, b) Decomposition of Y(M~) into 
zones Zi, 0 < i < w. 

For n > 1, let Mn denote the square mesh [n x hi: Vertex set of M,~ is 
];(Mn) = {u = [ux, uy] " I < u~,uy ~ n} and edge set of Mn is g(Mn) = 
{(u,v) : ( l u x -  v~:[ = 1 anduy = %) or ( l u y -  vy I = 1 andu~ = v~)}. Mesh node 
c = [[n/2], [n/2]] is said to be the center of Mn. Let L(i) denote the set of mesh 

" " " 1 ' )  • " nodes m distance , from c. For odd n, let M~ and il/id be the decomposmon of 
M,~ into two subgraphs as depicted on Figure la. It follows that IV(M~)I = 
(n 2 + 1)/2 and IV(M2)I = IV(M.)I - I V ( M 2 ) I  = ( n  2 - 1 ) / 2 .  The minimum 
odd n such that IV(M~)I >_ ~(k, h) will be denoted by d(k, h). It is easy to show 
that d(k,h) = 2  l ( ~ / 2 / ~ ( k , h ) - l - 1 ) / 2  / + 1. Since the diameter of 

f %  J | 

is d(k, h) - 1, it follows that the lower bound on the dilation of an embedding 
CTk,h into Ma(k,h)with load 1 is ¢ ( k , h ) =  [[(C'2p(k,h) 1 - 1 ) / 2 ] / h ] .  

2 R e l a t e d  w o r k  

Embeddings of CT2,h into meshes have been investigated in several papers. From 
the diameter argument, it follows that the lower bound on the dilation for an 
embedding with toad 1 is K 2 ( ~  h) / log#(2,  h)). The well-known H-tree con- 
struction from [7] and the improved embeddings in [2, 5] all have load 1 and 
dilation O(~J-~,h)) ,  but they embed CT2,h into non-optimal square meshes. 
Modified H-tree construction from [4, 7] also embeds CT2,h into a non-optimal 
square mesh, but it achieves optimal load 1 and dilation 0 ( ~  h)/log #(2, h)). 

An embedding of CT,_.h into its optimal square mesh with load 1 and dila- 
tion O ( ~ )  is presented in [8]. In [3], the author proves that CT2,h can 
be embedded into its optimal square mesh with optimal load 1 and optimal di- 
lation O ( ~ / l o g / ~ ( 2 ,  h)). The general problem of embedding 6'T~,,h into 
2-dimensional meshes is discussed in [1]. 

In this paper, we give an algorithm for embedding of complete k-dry trees 
into 2-dimensional square meshes with expansion 2, load 11 and optimal dilation. 
This solution can easily be converted into embedding of complete k-dry trees into 
2-dimensional meshes with load 2, expansion 1/2, and optimal dilation. Hence, 
both solutions are optimal with respect to load, expansion and dilation within 
constant factors close to one. 
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3 T h e  e m b e d d i n g  a l g o r i t h m  

In the following text, we will assume k _> 3 and h _> 0 and use symbols #, d, and 
¢ instead of #(k, h), d(k, h), and ¢,(k, h). The embedding algorithm is based on 
a decomposition of the mesh Md into vertex-disjoint zones Zi defined as follows 
(see Figure lb). 

D e f i n i t i o n 1 .  Let ~ = h - 1 if (h - 1)q) = d21 and w = h otherwise. Let (p,~) 
be an embedding of CTk,h, k >_ 3, h >_ O. into Md with load 1. For 0 < i < w, 
define 

L(0) if i = 0 ,  

Zi=  L ( ( i - 1 ) ¢ + l ) t O . . . W L ( i ¢ )  if 0 < i < w ,  

L((i 1)~ + 1) W U L(-4~-) otherwise. 

.Obviously, the last zone Z~o may  be narrower than the inner zones Zi, 0 < 
i < w. The number of nodes within zones Zi increases linearly with i. 

L e m m a 2 .  For O < i < w , 

1 if i = 0 ,  

IZi i=  4i¢ 2 - 2 ¢  "~+2~k if O < i < w ,  
1 2 ~(d 1) - 2(i -- 1)2 .  -" - 2(i - 1)¢ otherwise. 

:From the definition of d, it follows tha t  ~-'~.-~--0 ]Z.I = [F(M~)I -> #" To describe 
the embedding algorithm, we need to specify tree node subsets of Aj and Bj, 
0 _< j _< h, mapped into zones Zi, 0 < i < oJ. 

D e f i n i t i o n 3 .  For 0 < j <_ h, define 

= : e v ( z , ) }  
= Bj : v ( z , ) }  

and c~j(Zi) = [Aj(Zi)l, 
and flj(Z~)= [Bj(Zi)]. 

The embedding algorithm embeds the tree nodes level by level. Since [Zi[ 
grows linearly with i whereas fli grows exponentially with i, we cannot just 
simply map all nodes from Bi into Zi for 0 < i < o~. 

The embedding algorithm consists of two phases. In the first phase, succes- 
sively for i = 0 , . . . ,  [~], all the tree nodes from Bi are embedded into Zone Zi, 
Hence, up to level [hJ, the tree is embedded level by level into successive zones. 
As we will show later, it follows from Lemma 4 that  after the first phase, there 
are free unloaded mesh nodes in zones Zi, 0 < i < [hJ. 

Hence, in the second phase, successively for i = [h] + 1 , . . . ,  h - 1, we will 
embed the tree nodes from Bi so tha t  the tree will grow not only towards the 
border of the mesh but also backwards to fill in the remaining free parts of the 
previous zones (see Figure 2 for an example). 

Assume that, for given i _> [hi  + 1, ,31(Zi) tree nodes from Bi are em- 
bedded into Zi. Among their kfli(Zi) children, fli+t(Z/+l) of them will be em- 
bedded into Zi+l and the remaining children will stay in Z/, i.e., kfli(Zi) = 
fli+1 (Zi) +/3/+1 (Z/+I). The ratio between '3/+1 (Zi) and ¢3i+1 (Z/+t) is determined 
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by the following strategy. All the subtrees of nodes from Bi+i(Zi) will be embed- 
ded backwards into zones Zi -1 ,  Zi-, . ,  . . . ,  level by level. Hence, 3i+l+p(Zi-p) = 
kP¢~i+l (Zi) for all p = 1 , . . . ,  h - i - 2 ,  and the backward phase ends up in zone 
Zi_(h_i_2) = Z2i_h+2, which will be loaded with kh-i-2~i+l (Zi) tree nodes from 
Bh-1. It follows tha t /3h-1  (Z~.i-h+-,) = kh-;-'~C3i+l(Zi). All the kh-i-Ifli+~(Zi) 
nodes, i.e., all the children of nodes ]3h_l(Z2i+h_2), will be used to fill up the 
empty parts of both  22i-h+1 and Z2i-h+2 in this order and if some of these 
children still remain, they will be embedded into Z~.i-~+~. Since now on, zones 
Z2i_h+ I and Z2i_h+ 2 are full and the algorithm will proceed to fill up the next 
two zones. Again, it s tar ts  by split t ing children of Bi+~(Zi+~) into Bi+2(Zi+l) 
and Bi+2(Zi+2). 

Z0 Z1 Z2 Za Z4 Z5 Z6 Z7 Zs Z9 Z10 

I ._d I ~  . . . . .  .dll.__,~dll . . . . . .  Ill . . . . . . .  ]1 . . . . . . .  II . . . . . . .  II 

Fig. 2. The distribution of nodes of CTk,lo within zones Zo u ... U Z10 

In general, the detailed way how the tree nodes will be distributed across 
zones of the mesh depends on whether  h is even or odd. Assume that h is even 
(for h odd, the conditions are similar).  The  distribution of tree levels into zones 
must satisfy the following constraints  (see Figure 2). 

1. i i s e v e n a n d 0 < i <  h Then  

where 

,ai(z{) = 

,Lgh-i+j+l (Zi-1) : ]¢/gh-i+j ( Zi ) 
(1) 
(2) 

for all j = 1, 3, 5, . . . ,  i - 1, (equation (2) says that all the children of nodes 
in ,3h-i+j (Zi) are embedded back into preceeding zone Z i _ J ,  

= I k-% + I 
(3) 
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(7h (Zi-i)  is the number of free mesh nodes in Zi- i  after embedding ah-~.(Zi-1) 
and all their children ~3h (Zi-3), ,3h (Zi -2)  and flh (Zi-1), Ah-2(Zi) is the num- 
ber of free mesh nodes in Zi after embedding ah-3(Zi )  for h > 4), and finally 

Zh(z,.) = IZ~ l -  ~,~_,(z'~). (4) 
(the remaining unloaded part of Zi will be filled up with leaves of CTk,h) 

2. i i s o d d a n d 0 < i <  ~ Then 

~h(zi) =/~i(z~) + ~h-~+l (zi) + 3h-i+a(z~) + . . .  +/3h_i+(i_~.)(zi) + ~h(z,), 

where/?j(Zi) for j = i, h - i + 1. h - i + 3 , . . . ,  h - 2, h is defined by (1), (2) 
and (4), and flh-i(Zi) = O. 

3. i i s e v e n a n d  ~ < i < h - l .  Then 

~h(z~) = ~(z~) + ~i+l(z;)  + ~+3(z i )  + . . .  + ;~h-~(Zd + ~h(Z~), 

where 

~(a) = k.3,_~(z~_~) - ~(zi_~) (5) 

and flj(Zi) for j = i +  1, i +  3 , . . . , h -  1,h is defined by (2), (3), and (4). 
h 4. i i s o d d a n d  7 < i < h - l .  Then 

where ~j (Zi) for j = i, i + 1, i + 3, . . . .  h - 2, h is defined by (5), (2), and (4), 
and ~h-1  (Zi)  --" O. 

4 T h e  a n a l y s i s  o f  t h e  e m b e d d i n g  a l g o r i t h m  

To justify the embedding algorithm, we must prove that zones Zi are large 
enough to accommodate the tree nodes distributed to them by the algorithm 
described above. This is proved by the following two lemmas. 

L e m m a 4 .  For i = 1 , . . . ,  h -  2, 

1 

L e m m a h .  Let (p,~) be an embedding of  CTk,t~, k > 3, h >_ O, into :~[d and 
0 < i < h -  1. I f  both h and i are even or both h and i are odd, then 

h - 1  

~, E ~r(Zi-1)-F | ~1) < .~lZi]" 
r = i + l  

I f  h is odd and i is even or h is even and i is odd, then 

h - 2  
i 1 Z -~ ~ a,(z~_~) < ~1 ~1. 

r = i + l  
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We can summarize by giving exact  formulae for computing/3j (Zi), 0 < i < w, 
0 _< j _< h (w is defined in Definition 1). 

L e m m a  6. 

F o r O < i < w  

~ ( z ~ )  = 

where 

l i f  j = 0  
/3j(Z0) = 0 otherwise. 

k/3i- t(Z/-1) - ~i(Zi-1) if j = i 

¼/3j+l(Zi-1) if i < j < h -  1 

['h(z'-~)+x~-~'(z') k~-~--l i f  and i < h - 1  and j = h - 1  k~.+k~.._~ 
( ( i a n d h  are even) or ( i andh  are odd)) 

A h _ I ( Z / )  if  j = h and i ¢ h 

0 otherwise, 

J Z I Z i I - E r = i l 3 r ( i )  if i < ~  
i - 1  j :~j(Z~) = ~ E~=o IZ-I if i - - E ~ = ,  ~ r ( z~ )  = ~  

0 otherwise, 

i i--1 
~h(z,) = ~ ~ h ( z , ) -  k ~ fi~_l(z~). 

r-----O r~O 

P r o o f :  The proof is by a detailed case analysis based on equations (1)-(5). [] 

The main result of the paper  follows. 

T h e o r e m  7. CTk,h, k >_ 3, h >_ O, can be embedded into mesh Md .with load 1, 
expansion 2, and dilation dil(k, h). where dil(k, h) = 2¢ i lk  >_ 4 and dil(k, h) = 
3~ i l k = 3 .  
P r o o f :  The exact proof is very technical and can not be included in its full 
extent here. We will just  sketch the s trategy leading to optimal dilation. 
We have shown how to dis tr ibute tree nodes across mesh zones with load 1 by 
giving formulae for comput ing numbers  flj (Zi), 0 _< j _< h, 0 < i < ~. To achieve 
the optimal dilation, we use the following strategy. 

1. for all i = 0 , . . . , ~ ,  nodes f rom Bi(Zi) are embedded into zone Zi starting 
from the outermost  layers of Zi. 

2. successively for j = i + 1 . . . .  , h - 1, nodes fi'om Bj(Zi) (if they exist) are 
embedded into the innermost  layers of Zi, 

3. if both h and i are even or bo th  h and i are odd, then nodes from Sh(Zi) 
will be embedded into remaining inner parts of Zi, 
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4. ifh is even and i is odd or h is odd and i is even, then the nodes from 6h(Zi) 
can have parents embedded into Zi-1 or Zi+l. Say that ]~'h(Zi) is the subset 
of nodes from ]3h(Zi) whose parents are embedded into Zi-1 and 13~(Zi) 
is the subset of nodes from Bh(Zi) whose parents are embedded into Zi+l. 
First, we embed nodes from B~(Zi) into the remaining innermost parts of 
Zi and then nodes from B'h'(Zi ) into remaining free nodes in Zi. 

Fig. 3. Embedding of CT3,4 into M~r with dilation 5 and load 1. 

As an example, Figure 3 shows the embedding of CT3,4 into M~7. The nodes of 
CT3,4 are labeled by their levels. 

5 E m b e d d i n g  o f  c o m p l e t e  k - a r y  t r e e  i n t o  o p t i m a l  m e s h  
f o r  l o a d  2 

We have described the embedding of CTk,h into MJ (see Figure 1). This embed- 
ding achieves load 1 and dilation dil(k; h), but the expansion is 2. However, this 
embedding can be easily converted into an embedding with expansion optimal 
for load 2 by folding the corners of .,'via 1 towards the center (see Figure 4). 

Lemma 8. Let p = L ~ ]  - L - ~ J -  CT~,,,, k ~ 3, h > O. ~an b~ ~mb~dded 
into mesh M~_.~p with load 2, expansion 1/2, and dilation dil(k, h). 
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12 ~i,~ ) 

Fig. 4. The transformation of the e.x-pansion-2 embedding into an expansion-1 embed- 
cling. 

6 Conclusions 

We have designed an embedding  of complete  Ga ry  trees into 2-dimensional 
square meshes with load 1, expansion 2, and dilation opt imal  within a mul- 
tiplicative constant  < 2 for k > 3 and < 3 for k = .3. It  can be easily converted 
into an embedding with op t ima l  expansion 1/2 for load 2 while keeping the dila- 
tion the same. Currently, we are working on the proof of optimali ty of the edge 
congestion. We conjecture t ha t  the embedding algorithm can be generalized for 
3-dimensional square meshes.  
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