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Abstract. In this work we present models and runtime measures for 
routing in asynchronous networks. We try to construct them in a way 
that they can be both realistic and easy to work with. For some of the 
models presented here variants of techniques used in the analysis of syn- 
chronous routing, like the delay sequence argument, can be adapted. On 
the other hand, for others we can only prove large upper bounds for 
any routing protocol. However, we present a model for which it seems 
possible to get better than trivial upper bounds, although known proof 
techniques ( like the delay sequence argument ) cannot be applied. 

1 I n t r o d u c t i o n  

Most theoretical analysis of routing protocols focusses on the synchronous net- 
work model. Under this model, all nodes and links of the network see a common 
clock, while the time is measured in discrete steps. An atomic piece of a message 
(called packet or flit depending on the routing policy) can be t ransmit ted  over 
a link in one t ime step. Messages are t ransmit ted synchronously. 

The assumptions made under the synchronous network model obviously sim- 
plify the efforts for theoretical analysis. For real networks, however, these as- 
sumptions do not hold. On large networks it is technologically impossible to pro- 
vide synchronization via a global hardware clock. Furthermore, routing switches 
may work at different speeds due to the load that  passes through them. Addi- 
tionally, not all links may support  the same bandwidth and transmission latency. 

In this paper  we propose several models for asynchronous routing, together 
with measures for routing time. For some of them, variants of known protocols 
and their t ime analyses can be used. For other models we only present weak 
upper  bounds. It  seems tha t  such models require new types of protocols and 
new methods for their analysis. 

1.1 K n o w n  Resul ts  ( Synchronous  network mode l  ) 
Let G denote a network with N processors. The links are directed, each con- 
taining a buffer to store packets. In this paper  we focus on oblivious routing 
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strategies. This means that, for each pair i , j  of nodes of G, a shortest path 
Pij  is predefined along which each message from i to j has to travel. A rout- 
ing problem is described by a (multi-) set 74 of source-destination-pairs (i, j)  
of nodes of 6. For fixed 74, the congestion, i.e., the maximum number of paths 
Pi,j, (i ,j)  E 74, passing through the same edge, and the Dilation, i.e., the max- 
imum length of the pi,j's, (i,j) E 74, are well defined. G is levelled, if its nodes 
are partitioned into disjoint sets Vo,... , VD, such that edges only exist between 
V~ and V~+I, i = 0, . . .  , D - 1. In this case, packets are only routed from Vo to 
VD. (Thus the dilation is D.) 

Many theoretical results exist for the synchronous network model. Leighton, 
Maggs and Rao [LMR88] show that any oblivious routing problem can be routed 
off-line in time O(C + D), using constant-size link buffers. Their proof shows only 
the existence of the optimal schedule. In [LM95], Leighton and Maggs present 
an algorithm for finding the optimal schedule. Still the running time of the 
algorithm is polynomial in the number of packets and links, so it can not be 
applied to turn the off-line protocol into an efficient on-line protocol. 

Our results for asynchronous routing should be compared to the following 
results on (randomized) oblivious synchronous routing: 
R a n d o m  rank p ro toco l  [Lei92]. This protocol works in levelled networks with 
unbounded buffers. 
R a n a d e ' s  p ro toco l  [Ran91]. It can be applied on levelled networks with bounded 
buffers of size at least one. 
Growing  rank  p ro toco l  [MV95]. This protocol works in arbitrary networks 
with unbounded buffers. 

All protocols route messages according to the routing problem R in time not 
exceeding O (C+D+logN), with high probability. For their analysis, variations of 
the delay sequence argument, developed by [Ale82] and [Upf84], are used. 

It is known (compare e.g. [Lei92]) that the congestion can be very large in the 
worst case (~2(v/-N)) for permutation routing in any bounded degree network). 
On the other hand, for many important networks, the congestion is small for 
almost all routing problems (e.g., O(h.D) for almost all h-functions in symmetric 
bounded degree networks, see [MV95]). Using a trick proposed by Valiant (see 
[Lei92]), the above bounds on routing random routing problems can be turned 
into routing arbitrary routing problems, e.g., every h-relation can be routed on 
a bounded degree symmetric network in time not exceeding O(h. D), with high 
probability. 

1.2 K n o w n  resul ts  ( Asynchronous  ne twork  mode l  ) 

Most of the research in this area is focused on developing deadlock-free robust 
protocols, like the ones presented in [Dua93], [DS87]. The only time-complexity 
results that we were able to find are due to Mansour and Patt-Shamir [MP91]. 
Their notion of asynchrony is as follows: A link has an arbitrary transmission 
latency t, where 0 < t < 1. They present time complexity results and estima- 
tions about the throughput of the network for the synchronous network model 
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and show that  the proofs can be adapted for their asynchronous model. Several 
models have been proposed however for asynchronous shared memory machines, 
like the APRAM model [CZ89] or the Asynchronous Shared Memory Model 
[Lyn96]. Lynch, in [Lyn96], also proposes a model for asynchronous networks. 
The author proves the fairness and correctness of this model and presents also 
some time complexity results for several well-known algorithms adapted to work 
on an asynchronous network. 

2 M o d e l s  a n d  r e s u l t s  

2.1 R an d om latency model  

We model the latency of nodes by independent, identically distributed random 
variables with a known distribution. The intuition behind this is that  the nodes 
are identical. Thus their latency may vary, but in a simple way. 

In order to formalize this model we assume synchronous time steps and an 
idle probability p. This means: 

For each processor i and each time step t, i is inactive at time step t with 
probability p. If  it is active, it performs one atomic communication action. 

For the above model, we can apply modifications of the delay sequence ar- 
gument to prove the following theorem. 

T h e o r e m  1. Assume the random latency model with idle probability p. The ran- 
dom rank protocol, Ranade's protocol and the growing rank protocol need routing 
time 

1 
0((1 + ~ ) .  (C + D + log(N))), 

with high probability. 

The proofs are extensions of those for the respective synchronous protocols. 
The growing rank protocol and its analysis are presented in Section 3. All other 
proofs are omitted due to space limitations. 

2.2 A d v e r s a r i a l  models  

Usually, in the setting of deterministic asynchronous modelling, we assume that  
no two actions take place exactly at the same time. Thus, for asynchronous 
networks, we may assume that  processors are activated one after the other, in 
an order prescribed by an adversary. This adversary is considered to act as 
maliciously as possible, since it has full knowledge of the current configuration 
of the routing algorithm. 

We consider the following notions of rounds, defining new time measures. 

• the global model: A round is over as soon as every processor is activated at 
least once. 
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• the path oriented model: A round for packet p is over as soon as every 
processor on p's path is activated at least once. 

• the message oriented model: A round for packet p is over when the node 
where p currently resides is activated. 

As far as the global round model is concerned, we can apply the delay se- 
quence argument, with slight modifications. This yields bounds for the running 
time similar to those for synchronous networks, for the random rank, growing 
rank and Ranade's protocol. 

For the path oriented model, the delay sequence argument does not work, 
because the delay path constructed is not a routing path for any of the packets. 
This suggests that  designing and analyzing routing protocols w.r.t, the path 
oriented model is much harder than for all previously mentioned models. 

In Section 4 we present the proof for the following result: 

T h e o r e m  2. For a routing problem R, we define the path congestion C(p) of a 
packet p as the number of different routing paths from R sharing an edge with the 
routing path of p. D(p) denotes the length of p's routing path. There is a protocol 
for the linear array such that any packet p is delivered within O(D(p)+C(p)) 
rounds, w.r.t, the path oriented model. 

Finally, in Section 5, we present an example showing a lower bound of $2(C.D) 
for routing w.r.t, the message oriented model. 

T h e o r e m  3. Routing m packets from the first to the last processor of a linear 
array of size N needs time $2(rn • N) w.r.t, the message oriented model. 

Note that  Theorems 1 and 2 show an O(m + N) time bound for this routing 
problem under all other models. Especially this shows a seperation between the 
path oriented and the message oriented model. 

3 Growing rank protocol analysis 

In this section we sketch a proof for Theorem 1 for the growing rank proto- 
col (presented in [MV95] for arbitrary synchronous networks with unbounded 
buffers) w.r.t, the random latency model with idle probability p. 

Suppose we are given a shortest paths routing problem with dilation D, 
congestion C, and size N on an arbitrary network G. Suppose R and m := ~ are 
suitably large integers. Initially each packet is assigned an integer rank chosen 
randomly, indepedently, and uniformly from the set {0, 1 , . . -  , R -  1}. Whenever 
a packet traverses a link its rank is increased by m. If two or more packets are 
contending to move forward along a link, then one of those with minimum rank 
is chosen. In order to break ties among packets with the same rank each packet 
p has a unique ident-number denoted by id(p). If there are several packets with 
the same minimum rank, then the one with the smallest ident-number is chosen. 
These ident numbers can be easily generated as follows: The ith packet starting 
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at the flh processor gets the ident-number i - n + j with n denoting the total  
number of processors. 

We extend the notion of delay sequence to include delays caused by inactive 
processors. A (s+d,1)-delay sequence consists of: 

i .  s + l  nodes u o , u l , . . .  ,us ( not necessarily distinct ) . 
2. s delay packets pt ,  P2, - . .  ,Ps such tha t  the pa th  for Pi crosses node u~ and 

the node u~_l in tha t  order, for 1 < i < s, and the pa th  ofpi  leaves the node 
u~ along the same edges as the pa th  of pi-1,  for 2 < i < s. 

3. s integers 11,12,... ,ls such that  li is the number of edges on the routing 
, ~ = 1  h < pa th  of packet pi from node ui to node ui_ 1 for 1 < i < s and s _ I. 

4. s integer keys r z , . . .  ,rs such tha t  0 < rs <_ rs-1 < . . .  <_ rl <_ 2R - 1. 
5. d inactive steps out of T = s + d + l total  t ime steps. 

The proofs for the following three lemmata  are similar to the proofs of Lem- 
m a t a  4, 5, 6 found in [MV95]. 

L e m m a 4 .  Suppose the routing takes T>_ 2D* or more rounds. Then a ( T -  
2D*, 2D* )-delay sequence is active. 

L e m m a  5. If the routing paths of the packets are shortest paths, then the delay 
packets in the above construction are pairwise distinct. 

L e m m a  6. The probability that an active delay sequence with s distinct delay 
packets exists is at most 

S N2~(2eC(s + R)) R_ s 
s 

T h e o r e m  7. The growing rank protocol delivers every packet in time 

1 
(1 + ~ ) O ( C  + l o g N  + D*), 

1 with high probability, i.e. with probability > 1 N" 

P r o o f :  From Lemm at a  4,5 we know that:  

P( rout ing  takes more than T = s + d + 2D* rounds) < 
< P ( a  (s + d, 2D*) - delay sequence with distinct delay packets is active) 

By assuming tha t  x > 12eC, R > s and x >_ 1 + 21ogN + 1 we get from 
Lemma  6 : 

1 
P ( a n  active delay sequence with x or more delay packets exists) < 

Thus we proved that ,  with high probability, there can be at  most 
max(12eC, 2D* + 2IogN + 1) delay packets in an active delay sequence. We wilt 
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now try to bound the expected number of inactive steps in any active delay 
sequence with a total of max(12eC, 2D* + 21ogN + 1) + 2D* active steps: 

P(a  (T,1) delay sequence contains d or more inactive steps) < (Tdd)Pd < 2Tp d 

If we assume that  p < ¼ and set d = logN+T we get: 
- -  2 

1 P ( a  (s+d,1) delay seq. contains s + 1 + logN or more inactive steps) ~ 

We have shown that,  with probability > 1 - ~ ,  any active delay sequence 
containts at most max(12eC, 2D* +2logN+ 1) delay packets, and that  any delay 
sequence contains O(s + l + logN) inactive steps. Therefore the growing rank 
protocol delivers every packet with probability, > 1 - -~ within time: 

1 
T = O ( C + D + l o g N ) ,  if p <  4" 

If p > ¼, we can argue like in the analysis of the summation algorithm 
presented in [CZ95] to prove a delivery time of T = ( ~  + 1)0  (C + D + logN). 

4 R o u t i n g  u n d e r  t h e  p a t h  o r i e n t e d  m o d e l  

Consider the following protocol on a linear array of N processors with unbounded 
buffers and bidirectional links : We fix an ordering on the packets, such that  
packets starting in node i get smaller ranks than those in node i+ l .  Among 
packets that  are competing for the traversal of an edge, the one with highest 
rank advances. Packets use shortest paths and start moving at round 0. 

P r o t o c o l  ana lys i s  We only consider packets that  move from left to right. The 
other packets can be treated seperately in the same way. 

For ease of description we will identify packets with their ranks. Consider 
some packet u E {y , - . .  ,y + l} and some processors with indexes i and i+j, 
j C {0,-. • , D - 1}. We denote the set of processors { i , . . .  , i + j }  by I j .  Consider 
that  packet u started in I s. We say that  u leaves IS, if it has started in I s and 
either reaches its destination in I s or reaches processor i+j. Let dj,~ denote the 
number of packets starting in Ij, with rank larger than u. 

L e m m a 8 .  For each u C {y , . . .  , y + l }  and each j e {0, . . .  , D -  i}, u leaves I s 
after at most j + di,~ steps. 

P r o o f :  We proceed by induction on u = y + l ,y  + 1 - 1 , . . .  ,y. 
u = y + l: Consider any j such that  u starts in Ij.  Packet u is never delayed 
because it has the highest rank. Thus it leaves Ij after at most j rounds. 
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u < y + h Consider any j such that  u starts in Ij. Let u r be the last packet 
that  delays u, befores it leaves Ij. This happens in some round t at some node 
j~ < j .  Furthermore u ~ > u. Thus u '  leaves Ij, in step t. By induction hypothesis, 
t _< j '  + dy,,~, rounds. Note that  dj,,u _> dj,,u, + 1. Thus t _< jr + dy,u - 1. 

As u is never delayed between round t + l  and leaving Ij, it leaves I j  after at 
most  (t + 1) + j - j '  <_ j + dj,,u ~ J + dj,~ rounds. 

T h e o r e m  9. Consider a linear array with unbounded buffers and a routing prob- 
lem R, where packet p has path congestion Cr(p) and dilation D(p). Then, 
w.r.t, the path oriented model, the above protocol has delivered p after at most 
D(p) + C'(p) rounds. 

P r o o f :  Let p be a packet with rank u, that  has to travel from j to j+l .  Setting 
di,u = Cr(p) in Lemma 8 implies the theorem. 

5 M e s s a g e  o r i e n t e d  m o d e l  

We present the proof of Theorem 3 for the message oriented model. 
Suppose we have the following routing problem on a linear array of size 

N, with unbounded buffers: The leftmost node initially holds m > N packets, 
all destined to the rightmost node. Obviously the congestion of our problem is 
C = m and the dilation D = N.  

Now we assume that  the adversary activates the processors as follows: First 
only the leftmost node is activated m times. This means that  all packets will 
move to its right neighbour. Then we activate only this neighbour m consecutive 
times, and so on, until all packets reach the rightmost node of the array. 

Let us label the packets with numbers 1,. • • , m. We can formalize the routing 
process by constructing a m × N matrix. Every column i of the matr ix  contains 
a permuta t ion  of the numbers 1,- • • , m. For every contention resolution protocol 
tha t  we may use, such a matr ix  exists indicating the order in which the routing 
protocol allows packet to leave node i .  

1 

The above 3 × 2 matr ix  corresponds to an array of size 3, m=2.  First packet 
2 gets priority over packet 1, while at the next two nodes the opposite happens. 

It  is easy to see that ,  no mat te r  which routing protocol is used, i.e., what the 
above matr ix  looks like, some packet is delayed at least ~ times in each of at 

1 N 1 least N nodes. This yields a lower bound of ~m • gC - D. Y 

6 A c k n o w l e d g e m e n t  

Thanks to Bob Cypher who contributed to initial discussions on modelling asyn- 
chronous routing. 
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