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Abst rac t .  A technique for mapping irregular sparse matrix computa- 
tions into regular parallel networks is proposed. It is based on regulariza- 
tion of the original irregular graph of an algorithm. For this aim, we use a 
mapping of an original index space corresponding to dense matrices into 
a new one, which corresponds to a chosen sparse-matrix storage scheme. 
This regularization is followed by space-time mappings, which transform 
the algorithm graph into resulting networks. The proposed approach is 
illustrated by the example of mapping matrix-vector multiplications. 

1 I n t r o d u c t i o n  

At present, there exist [1, 7, 10, 12] efficient methods for mapping regular 
computations into application-specific processor arrays. These arrays are [5, 7] 
VLSI-oriented regular processor architectures with primarily local interconnec- 
tions between processing elements (PEs). Using the existing mapping methods, 
efficient array architectures for solving linear algebraic operations over dense 
matrices have been designed [5, 7, 11]. 

In practice, however, matrices with zeros as their prevailing elements (or 
sparse matrices) are used very often (e.g., in solving finite element problems [2]). 
Using this feature of input /output  data, it is possible to improve the efficiency of 
large matrix computations radically [8]. However, the existing mapping methods 
can be used only for sparse matrices with a special structure (e.g. banded 
matrices), not allowing to deal with sparse matrices with a more general sparsity 
structure, which leads to irregular computations [6]. 

In the paper, we propose a technique for extending the capabilities of the 
existing mapping methods on irregular matrix computations. It is based on reg- 
ularization of the original irregular graph of a given algorithm. For this aim, we 
use a mapping of an original index space corresponding to dense matrices into 
a new index space which corresponds to a chosen sparse-matrix storage scheme. 
This regularization is followed by applying properly the well-known technique [5] 
of space-time mappings, which transform the algorithm graph into resulting ar- 
chitectures. The proposed approach allows us to derive regular processor arrays 
(PAs) with primarily local interconnections, providing parallel implementations 
of such important sparse matrix problems as, for example, matrix-matrix and 
matrix-vector multiplications, LU decomposition and solving linear systems. 
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2 M a p p i n g  R e g u l a r  C o m p u t a t i o n s  

PAs can be designed systematically by applying linear (or affine) mappings to 
algorithms that are expressed by systems of recursive equations or nested loops 
[5]. Basically, the design is composed of the following three components: an 
algorithm specifying the computation; an allocation mapping that maps com- 
putations to PEs; a schedule mapping specifying the execution time for each 
computation in the algorithm. 

Nested loops with regular dependencies can be represented [12] by regular or 
quasi-regular dependence graphs (DGs), or a composition of them. Each node 
of such a DG corresponds to a certain operator (or iteration) of the original 
algorithm, and is associated with an integer vector K = (kl, ..., k~)~; all the 
nodes are located in vertices K of a lattice K n C Z n, where K ~ is called the 
index space. Arcs between nodes of this DG (or dependencies between operators 
of the algorithm) are represented by a dependence matrix D, in which the i-th 
colunm is a dependence vector di. For a strictly regular DG, these vectors are 
independent of K E K ". For a quasi-regular DG, the matrix D splits into a 
regular D* and nonregular D** submatrices. For strictly regular DGs, D = D*. 

Def ini t ion 1 [12]. A structural scheme C of a processor array implementing 
the given algorithm AL with the DG G is a 3-tuple C = <  S ,T ,~ )  >, where 
S = < Vs,  E s  > is a directed graph called the array structure, T is the synchro- 
nization function specifying the computation time of nodes in the DG, and ~ is 
the set of PE operation algorithms. 

One of the most promising approaches to mapping recursive algorithms 
with regular dependencies into PAs consists in [10, 12, 13] finding first the set 
of all possible and nonequivalent allocation mappings Fs(K)  satisfying given 
constraints for links between PEs, which are located in vertices of a lattice 
K m C Z m. For each of network topologies S corresponding to this set, an opti- 
mal schedule mapping which implements the algorithm correctly (i.e. preserving 
all data dependencies without conflicts) is find then. This mapping is constructed 
as a linear (or affine) function FT with n unknown coefficients. 

3 M a p p i n g  S p a r s e  M a t r i x  C o m p u t a t i o n s  

3.1 S torage  Schemes  for Sparse  Mat r ices  

~For sparse matrices, it is a common practice to store only the nonzero elements 
wi~h ;~n~formation about their locations in a matrix [8]. A variety of storage 
schemes are used [4, 8, 9] to store and process sparse matrices. These specialized 
schemes not on.ly save storage., but also yield computational savings because 
unnecessary multiplication and additions with zero can be avoided. There is no 
single, best data structure for storing sparse matrices [4]. 

Since computation overhead increases with increasing the complexity of sparse 
-matrix storage schemes, it seems reasonable to limit oneself to rather simple 
schemes (or formats) when implementing sparse matrix computation on proces- 
sor arrays. These schemes are as follows [4, 9]: 
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1. c o m p r e s s e d  s p a r s e  r ow  (CSR) or compressed sparse c o l u m n  (CSC) 
format, which uses one real and two integer arrays to store an n × n sparse 
matr ix  A with q nonzero elements; 

2. r o w w i s e  I T P A C K / E L L P A C K  (or shortly I / E  ) format, which uses the 
following two arrays: (a) an n × jma~ real array As contains the nonzero 
elements of the corresponding row of the sparse matr ix A, where jrnax is the 
maximum number of nonzeros in any row of A; (b) an n × jma~ integer array 
JA stores the column numbers of the corresponding entries in As; 

3. c o l u m n w i s e  I T P A C K / E L L P A C K  format; 
4. diagonal storage format; 
5. j a g g e d -  d i a g o n a l  format; 

The application range of scheme 5 is limited [9] to regularly stuctured matrices 
consisting of a few diagonals. In the case of parallel implementation, the last 
scheme needs [6] a complicated scheme of asynchronous synchronization to be 
involved. Tha t  is why, we leave only schemes 1-4 for the further consideration. 

3.2 Regularization of Sparse Matrix Computations 

In a resulting DG, which corresponds to the transition to one of the above- 
described storage schemes, some variables of the original algorithm will be prop- 
agated between nodes of the DG in a nonregular and nonlocal way. This is 
illustrated in Fig.lb, where the DG of a sparse matrix-vector multiplication of 
the form A x  = y is shown. Here we assume that the input N x N matr ix  A 
is represented (see Fig.la) in the columnwise I /E  format. In the DG, the input 
variable x is propagated in a strictly local and regular way, which is described 
by the dependence vector d x  = (1, 0) t. However, the generation of the output  
variable y is carried out in a fully nonregular and nonlocal way. Consequently, 
this generation should be regularized and localized. 

We will distinguish the following three forms (or ways) of regularization (and 
thereby localization) of propagating indexed variables of an algorithm between 
nodes of its DG. 

Definition 2. The first way of regularization of propagating a certain in- 
dexed variable of an algorithm consists in introducing a minimally necessary 
amount of redundant nodes into the original DG, in order that  the resulting 
propagation is described by a fixed vector d of the regular component D* of the 
dependence matr ix  D. 

For linear algebraic algorithms, the introduction of redundant nodes can be 
interpreted as a process of appearing some redundant operations with zero. 

Definition 3. The second way of regularization consists in choosing such an 
allocation mapping Fs  that  all the transfers of a certain indexed variable of an 
algorithm are carried out within fixed PEs, i.e. satisfying the following condition: 

F s  d = 0 (1) 

where d = K.., - K t  is a dependence vector describing the propagation of the 
variable between nodes of the DG. 
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Fig. 1. Synthesis of PAs for sparse matrix-vector multiplications, using the columnwise 
I/E format: (a) sparse representation of original matrix; (b) original DG; (e) its node 

D e f i n i t i o n  4. The third way of regularization of propagating a certain input 
variable consists in preloading all the elements of the corresponding input data  
arrays into local memories of PEs, from where these elements are fetch when 
necessary. In the case of an output  variable, the intermediate values of all the 
entries in the corresponding data  arrays are computed within fixed PEs, from 
where these entries are unloaded using their pipelining propagation between PEs; 
this propagation also enables generating the final values of these entries. 

Like the first form, the third one also needs to introduce some additional 
nodes into the DG of an algorithm. These nodes together with new arcs, which 
are responsible for the pipelining propagation of variables between PEs, provide 
I /O  of these variables. At the same time, the process of either fetching elements 
of the input data  arrays from local memories or computing intermediate values 
of entries in the output  arrays within fixed PEs will be described by vectors d 
satisfying condition (1). Therefore, the second form, unlike the rest of them, is 
orienl~ed on regularizing not the DG of an algorithm, but the resultant graph 
giving an array structure S. Moreover, for all these forms, it is not necessary to 
localize variable transfers between nodes of the DG. This localization should be 
provided only on the level of structures S. 
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3.3 M a p p i n g  P r o c e d u r e  

Let us assume that a numeric algorithm corresponds to processing sparse matrices 
represented in one of the storage schemes 1-4 chosen in Section 3.1. Based on 
the above-defined forms of graph regularization, and the previously proposed 
[10, 12, 13] methods for the synthesis of allocation/schedule mappings {Fs, FT}, 
the following procedure for deriving the set of permissible structural schemes 
C = <  S, T, 4i > of PAs implementing the algorithm is formulated: 

1. Based on the basic DG GB of the algorithm, divide all the indexed variables 
of the algorithm into the following two groups: (a) the first group contains 
variables characterized by their regular propagation between nodes of the 
DG; (b) tile rest of indexed variables are included into the second group. 

2. From dependence vectors d describing the propgation of variables belonging 
to the firs1; group, create a regular component D* of the matrix D. 

3. Using the method proposed in work [13], determine the set of all the permis- 
sible allocation mappings Fs,  where any mapping must satisfy the locality 
condition for those interprocessor links which correspond to the matrix D*. 
For each permissible mapping Fs,  perform steps 4-7. 

4. Determine a partial structure S* corresponding to the mapping Fs  and 
component D*. 

5. From the second group, exclude variables not satisfying condition (1). 
6. Using the first and third ways of regularization, perform the regularization 

for the remaining variables of the second group. 
7. For a regularized DG GR obtained in this way, determine first the resulting 

structure ,~ which corresponds to Fs.  Then using, for example, the method 
proposed in work [10], find an optimal schedule mapping FT (and thereby 
the synchronization function T). Finally, based on the graph GR and the 
couple {Fs, FT},  find a set #i of operation algorithms of PEs. 

The proposed procedure is specified in the constructive proofs of Theorems 
1 and 2. These theorems deal with so called coordinate DGs whose dependence 
matrices D are given by the identity matrices In, where n = 2, 3. This case is 
very important from the practical point of view because it enables us to cope 
with such important sparse matrix problems as, for example, matrix-matrix and 
matrix-vector multiplications, LU decomposition and solving linear systems. 

T h e o r e m l .  Let us assume that in the case of processing dense matrices, a 
numeric algorithm is described by a 2-D coordinate DG with D = I2. I f  this 
algorithm is determined over sparse matrices represented in the columnwise or 
rowwise 1/E format, then the use of the proposed mapping procedure enables us 
to obtain an l-D processor array with O(im~=) or O(jma=) PEs, respectively, 
where imax or jmax is the maximum number of nonzeros in any column or row 
of the input matrix A ,  respectively. 

Proof. Let an input matrix A is represented in the columnwise I / E  format (the 
proof for the rowwise variant is similar). In this case, nodes of the basic graph 
GB, which corresponds to processing the matrix As,  will be located ~n ~ vertices of 
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Fig. 2. Synthesis of PAs for sparse matrix-vector multiplications, using the columnwise 
I/E format: (a) DG after reg~arization; (b) resulting array structure. 

the integer lattice K 2 = {K = ( i s , j )  : 1 < is  < vs  = O(ima~:); 1 < j < O(N)}.  
Moreover, the mapping procedure proposed above turns into the following one: 

1. In the graph GB, there are two independent indexed variables. The fully 
local propagation of the first variable (along columns of As )  is given by 
dl  = (1, 0) t, while the second variable is propagated in a fully nonregular 
and nonlocal way, along rows of A s  (see Fig.lc). Consequently, D* = [dl]. 

2. After completing the locality condition (constructed for links correspond- 
ing to D*) by the requirements of minimizing the number of PEs, a single 
permissible allocation mapping given by F s  = [1,0] is obtained. 

3. The partial structure S* consists of vs PEs, which are connected through a 
single unidirectional channel for propagating the first variable. 

4. The propagation of the second indexed variable is regularized in the third 
way. For the 2-D coordinate DG, such a regularization is always possible. 
As a result, some new arcs given by vectors d* = dl  appear in the DG (see 
Fig.2a). They are responsible for the pipelining propagation of the second 
variable between PEs. Vectors d** = (0, dj) t, which satisfy constraint (1), 
correspond to the "circulation" of the second variable within fixed PEs. 

5. 3?he resulting structure S corresponding to the graph Gtt obtained after 
regularization, as before contains vs = O(jr~a~) PEs. They are connected 
through an additional unidirectional channel for either input (see Fig.2a) 
or output  of the second variable. Based on the matrix D = [dl d**], the 
schedule mapping given by FT = [I 1] is derived as giving the minimum 
total execution time of the algorithm. Since A T = FT D = [1 (~**], the both 
variables of the algorithm are transferred between PEs with the time-delay 
of one cycle. 
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Fig. 3. Internal structure of PEs shown in Fig.2 (R, RAM, M, Z or x stands for register, 
random access memory, multiplexer, adder or multiplier, respectively). 

T h e o r e m 2 .  Let us assume that in the case of processing dense matrices, an 
original numeric algorithm is described by a 3-D coordinate DG with D = I3. If 
this algorithm is determined over sparse matrices represented in the compressed 
sparse row C.~R or column CSC format, then the use of the proposed mapping 
procedure enables us to obtain 1-D processor arrays containing O(Np ) PEs and 
providing the execution of the algorithm in T -=- kq + O(Np) time steps (without 
taking into account input/output operations), where Np is one of sizes of matrices 
being processed, and kq is the number of nonzero entries in one of these matrices. 

4 M a p p i n g  S p a r s e  M a t r i x - V e c t o r  M u l t i p l i c a t i o n s  

The design of PAs for sparse matrix-vector multiplications is carried out in 
accordance with the proof of Theorem 1. Depending on if columnwise or rowwise 
I /E  format is used, a couple of dual arrays are derived. The structures S for the 
first array is shown in Fig.2b, while the internal structures of PEs in this array 
is presented in Fig.3. 

To provide the implementation of the algorithm on a fixed number K < 
i,~a~,j,~a~ of PEs, a decomposition of the matrix As  can be applied. This de- 
composition consists in splitting As  into either s =]imax/K[ horizontal strips 
(see Fig.lb) or s =]jma,/K[ vertical strips, which are processed sequentially. 
Such an approach also allows us to decrease the number of redundant nodes 
considerably. In fact, assuming the columnwise I /E  format, for the j t h  column 
of As  it becomes possible to avoid executing those redundant operations which 
correspond to zero entries of As  with row indices is satisfying the following 
inequality: is > K , ] N j / K [ ,  where Nj is the number of nonzeros in the j t h  
column of A. As a result, for the columnwise format, the algorithm will be 
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N executed on K PEs in TM = E j = I  ]Nj/K[ + (N + K) t ime steps. Here the first 
component corresponds to the accumulation of intermediate values of elements 
of the vector y within fixed PEs, while the second one corresponds to comput- 
ing and unloading final values of these elements, with the duration of any step 
determined by time required for a scalar multiplication. 

In many applications, for example, when solving linear systems by an iterative 
method, a number of matrix-vector multiplications is performed sequentially. In 
this mode, the asymptotic execution time T ~  for a single multiplication (or block 
pipelining period [5]) can be made less than TM. For the columnwise format, 
such a decrease results from the possibility of overlapping the computat ion of 
final values of entries in the output  vector y for a current iteration with the 
accumulation of intermediate values of entries in the output  vector for the next 

N iteration. As a result, we have T ~  = ~ / = 1  ]Nj /K[  + K t ime steps. 
This overlapping requires a relatively small hardware overhead. Only RAM 

y and adder, or RAM x are duplicated for the columnwise or rowwise format, 
respectively. At this cost, the processor utilization ~/~ is improved considerably: 

k a K2) = a/(T  K) = kA/(k  + 
Here kA is the number of nonzero entries in A. Assuming that  kA > >  K ~, we 
obtain 7/~ ~ 1. This value confirms the high efficiency of the proposed parallel 
architectures when implementing iterative computations. 
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