
A Technique for Mapping Sparse Matrix
Computations into Regular Processor Arrays

Roman Wyrzykowski 1 and Juri Kanevski 2

Dept. of Math. & Comp. Sci, Czestochowa Technical University,
Dabrowskiego 73, 42-200 Czestochowa, Poland

Dept. of Electronics, Technical University of Koszalin,
Partyzantow 17, 75-411 Koszalin, Poland

Abst rac t . A technique for mapping irregular sparse matrix computa-
tions into regular parallel networks is proposed. It is based on regulariza-
tion of the original irregular graph of an algorithm. For this aim, we use a
mapping of an original index space corresponding to dense matrices into
a new one, which corresponds to a chosen sparse-matrix storage scheme.
This regularization is followed by space-time mappings, which transform
the algorithm graph into resulting networks. The proposed approach is
illustrated by the example of mapping matrix-vector multiplications.

1 I n t r o d u c t i o n

At present, there exist [1, 7, 10, 12] efficient methods for mapping regular
computations into application-specific processor arrays. These arrays are [5, 7]
VLSI-oriented regular processor architectures with primarily local interconnec-
tions between processing elements (PEs). Using the existing mapping methods,
efficient array architectures for solving linear algebraic operations over dense
matrices have been designed [5, 7, 11].

In practice, however, matrices with zeros as their prevailing elements (or
sparse matrices) are used very often (e.g., in solving finite element problems [2]).
Using this feature of input /output data, it is possible to improve the efficiency of
large matrix computations radically [8]. However, the existing mapping methods
can be used only for sparse matrices with a special structure (e.g. banded
matrices), not allowing to deal with sparse matrices with a more general sparsity
structure, which leads to irregular computations [6].

In the paper, we propose a technique for extending the capabilities of the
existing mapping methods on irregular matrix computations. It is based on reg-
ularization of the original irregular graph of a given algorithm. For this aim, we
use a mapping of an original index space corresponding to dense matrices into
a new index space which corresponds to a chosen sparse-matrix storage scheme.
This regularization is followed by applying properly the well-known technique [5]
of space-time mappings, which transform the algorithm graph into resulting ar-
chitectures. The proposed approach allows us to derive regular processor arrays
(PAs) with primarily local interconnections, providing parallel implementations
of such important sparse matrix problems as, for example, matrix-matrix and
matrix-vector multiplications, LU decomposition and solving linear systems.

311

2 M a p p i n g R e g u l a r C o m p u t a t i o n s

PAs can be designed systematically by applying linear (or affine) mappings to
algorithms that are expressed by systems of recursive equations or nested loops
[5]. Basically, the design is composed of the following three components: an
algorithm specifying the computation; an allocation mapping that maps com-
putations to PEs; a schedule mapping specifying the execution time for each
computation in the algorithm.

Nested loops with regular dependencies can be represented [12] by regular or
quasi-regular dependence graphs (DGs), or a composition of them. Each node
of such a DG corresponds to a certain operator (or iteration) of the original
algorithm, and is associated with an integer vector K = (kl, ..., k~)~; all the
nodes are located in vertices K of a lattice K n C Z n, where K ~ is called the
index space. Arcs between nodes of this DG (or dependencies between operators
of the algorithm) are represented by a dependence matrix D, in which the i-th
colunm is a dependence vector di. For a strictly regular DG, these vectors are
independent of K E K ". For a quasi-regular DG, the matrix D splits into a
regular D* and nonregular D** submatrices. For strictly regular DGs, D = D*.

Def ini t ion 1 [12]. A structural scheme C of a processor array implementing
the given algorithm AL with the DG G is a 3-tuple C = < S ,T ,~) >, where
S = < Vs, E s > is a directed graph called the array structure, T is the synchro-
nization function specifying the computation time of nodes in the DG, and ~ is
the set of PE operation algorithms.

One of the most promising approaches to mapping recursive algorithms
with regular dependencies into PAs consists in [10, 12, 13] finding first the set
of all possible and nonequivalent allocation mappings Fs(K) satisfying given
constraints for links between PEs, which are located in vertices of a lattice
K m C Z m. For each of network topologies S corresponding to this set, an opti-
mal schedule mapping which implements the algorithm correctly (i.e. preserving
all data dependencies without conflicts) is find then. This mapping is constructed
as a linear (or affine) function FT with n unknown coefficients.

3 M a p p i n g S p a r s e M a t r i x C o m p u t a t i o n s

3.1 S torage Schemes for Sparse Mat r ices

~For sparse matrices, it is a common practice to store only the nonzero elements
wi~h ;~n~formation about their locations in a matrix [8]. A variety of storage
schemes are used [4, 8, 9] to store and process sparse matrices. These specialized
schemes not on.ly save storage., but also yield computational savings because
unnecessary multiplication and additions with zero can be avoided. There is no
single, best data structure for storing sparse matrices [4].

Since computation overhead increases with increasing the complexity of sparse
-matrix storage schemes, it seems reasonable to limit oneself to rather simple
schemes (or formats) when implementing sparse matrix computation on proces-
sor arrays. These schemes are as follows [4, 9]:

312

1. c o m p r e s s e d s p a r s e r ow (CSR) or compressed sparse c o l u m n (CSC)
format, which uses one real and two integer arrays to store an n × n sparse
matr ix A with q nonzero elements;

2. r o w w i s e I T P A C K / E L L P A C K (or shortly I / E) format, which uses the
following two arrays: (a) an n × jma~ real array As contains the nonzero
elements of the corresponding row of the sparse matr ix A, where jrnax is the
maximum number of nonzeros in any row of A; (b) an n × jma~ integer array
JA stores the column numbers of the corresponding entries in As;

3. c o l u m n w i s e I T P A C K / E L L P A C K format;
4. diagonal storage format;
5. j a g g e d - d i a g o n a l format;

The application range of scheme 5 is limited [9] to regularly stuctured matrices
consisting of a few diagonals. In the case of parallel implementation, the last
scheme needs [6] a complicated scheme of asynchronous synchronization to be
involved. Tha t is why, we leave only schemes 1-4 for the further consideration.

3.2 Regularization of Sparse Matrix Computations

In a resulting DG, which corresponds to the transition to one of the above-
described storage schemes, some variables of the original algorithm will be prop-
agated between nodes of the DG in a nonregular and nonlocal way. This is
illustrated in Fig.lb, where the DG of a sparse matrix-vector multiplication of
the form A x = y is shown. Here we assume that the input N x N matr ix A
is represented (see Fig.la) in the columnwise I /E format. In the DG, the input
variable x is propagated in a strictly local and regular way, which is described
by the dependence vector d x = (1, 0) t. However, the generation of the output
variable y is carried out in a fully nonregular and nonlocal way. Consequently,
this generation should be regularized and localized.

We will distinguish the following three forms (or ways) of regularization (and
thereby localization) of propagating indexed variables of an algorithm between
nodes of its DG.

Definition 2. The first way of regularization of propagating a certain in-
dexed variable of an algorithm consists in introducing a minimally necessary
amount of redundant nodes into the original DG, in order that the resulting
propagation is described by a fixed vector d of the regular component D* of the
dependence matr ix D.

For linear algebraic algorithms, the introduction of redundant nodes can be
interpreted as a process of appearing some redundant operations with zero.

Definition 3. The second way of regularization consists in choosing such an
allocation mapping Fs that all the transfers of a certain indexed variable of an
algorithm are carried out within fixed PEs, i.e. satisfying the following condition:

F s d = 0 (1)

where d = K.., - K t is a dependence vector describing the propagation of the
variable between nodes of the DG.

313

a)

As=

a~ a=2 ass al, a~ a~
a=~ as= a= 82, a=5 a=
a:j--o o -a.- 0

0 0 0 a~, 0 0
- - ~ j

is ! XI Y2

> .~ Y,

Y4 ~
J

~__~X~n C)
l gin ~
i s \ . .

~sJ

)~ Xs

>

f Y'

I
i

7-*
X6
74.

l
Fig. 1. Synthesis of PAs for sparse matrix-vector multiplications, using the columnwise
I/E format: (a) sparse representation of original matrix; (b) original DG; (e) its node

D e f i n i t i o n 4. The third way of regularization of propagating a certain input
variable consists in preloading all the elements of the corresponding input data
arrays into local memories of PEs, from where these elements are fetch when
necessary. In the case of an output variable, the intermediate values of all the
entries in the corresponding data arrays are computed within fixed PEs, from
where these entries are unloaded using their pipelining propagation between PEs;
this propagation also enables generating the final values of these entries.

Like the first form, the third one also needs to introduce some additional
nodes into the DG of an algorithm. These nodes together with new arcs, which
are responsible for the pipelining propagation of variables between PEs, provide
I /O of these variables. At the same time, the process of either fetching elements
of the input data arrays from local memories or computing intermediate values
of entries in the output arrays within fixed PEs will be described by vectors d
satisfying condition (1). Therefore, the second form, unlike the rest of them, is
orienl~ed on regularizing not the DG of an algorithm, but the resultant graph
giving an array structure S. Moreover, for all these forms, it is not necessary to
localize variable transfers between nodes of the DG. This localization should be
provided only on the level of structures S.

314

3.3 M a p p i n g P r o c e d u r e

Let us assume that a numeric algorithm corresponds to processing sparse matrices
represented in one of the storage schemes 1-4 chosen in Section 3.1. Based on
the above-defined forms of graph regularization, and the previously proposed
[10, 12, 13] methods for the synthesis of allocation/schedule mappings {Fs, FT},
the following procedure for deriving the set of permissible structural schemes
C = < S, T, 4i > of PAs implementing the algorithm is formulated:

1. Based on the basic DG GB of the algorithm, divide all the indexed variables
of the algorithm into the following two groups: (a) the first group contains
variables characterized by their regular propagation between nodes of the
DG; (b) tile rest of indexed variables are included into the second group.

2. From dependence vectors d describing the propgation of variables belonging
to the firs1; group, create a regular component D* of the matrix D.

3. Using the method proposed in work [13], determine the set of all the permis-
sible allocation mappings Fs, where any mapping must satisfy the locality
condition for those interprocessor links which correspond to the matrix D*.
For each permissible mapping Fs, perform steps 4-7.

4. Determine a partial structure S* corresponding to the mapping Fs and
component D*.

5. From the second group, exclude variables not satisfying condition (1).
6. Using the first and third ways of regularization, perform the regularization

for the remaining variables of the second group.
7. For a regularized DG GR obtained in this way, determine first the resulting

structure ,~ which corresponds to Fs. Then using, for example, the method
proposed in work [10], find an optimal schedule mapping FT (and thereby
the synchronization function T). Finally, based on the graph GR and the
couple {Fs, FT}, find a set #i of operation algorithms of PEs.

The proposed procedure is specified in the constructive proofs of Theorems
1 and 2. These theorems deal with so called coordinate DGs whose dependence
matrices D are given by the identity matrices In, where n = 2, 3. This case is
very important from the practical point of view because it enables us to cope
with such important sparse matrix problems as, for example, matrix-matrix and
matrix-vector multiplications, LU decomposition and solving linear systems.

T h e o r e m l . Let us assume that in the case of processing dense matrices, a
numeric algorithm is described by a 2-D coordinate DG with D = I2. I f this
algorithm is determined over sparse matrices represented in the columnwise or
rowwise 1/E format, then the use of the proposed mapping procedure enables us
to obtain an l-D processor array with O(im~=) or O(jma=) PEs, respectively,
where imax or jmax is the maximum number of nonzeros in any column or row
of the input matrix A , respectively.

Proof. Let an input matrix A is represented in the columnwise I / E format (the
proof for the rowwise variant is similar). In this case, nodes of the basic graph
GB, which corresponds to processing the matrix As, will be located ~n ~ vertices of

315

4
$" $" i
• n •

m~o m~o m~O

computing final values of output vector

i~ 1->¢ Y, [$
• • • N U N

,t ?o ; ;y, ¢,y, ¢,,y,
• mkO m~, 0 U

ilo oll

u u n

J, ,t $
[] n n .¢,,. !,,. ,,..¢

0
Y ,~

Fig. 2. Synthesis of PAs for sparse matrix-vector multiplications, using the columnwise
I/E format: (a) DG after reg~arization; (b) resulting array structure.

the integer lattice K 2 = {K = (i s , j) : 1 < is < vs = O(ima~:); 1 < j < O(N)}.
Moreover, the mapping procedure proposed above turns into the following one:

1. In the graph GB, there are two independent indexed variables. The fully
local propagation of the first variable (along columns of As) is given by
dl = (1, 0) t, while the second variable is propagated in a fully nonregular
and nonlocal way, along rows of A s (see Fig.lc). Consequently, D* = [dl].

2. After completing the locality condition (constructed for links correspond-
ing to D*) by the requirements of minimizing the number of PEs, a single
permissible allocation mapping given by F s = [1,0] is obtained.

3. The partial structure S* consists of vs PEs, which are connected through a
single unidirectional channel for propagating the first variable.

4. The propagation of the second indexed variable is regularized in the third
way. For the 2-D coordinate DG, such a regularization is always possible.
As a result, some new arcs given by vectors d* = dl appear in the DG (see
Fig.2a). They are responsible for the pipelining propagation of the second
variable between PEs. Vectors d** = (0, dj) t, which satisfy constraint (1),
correspond to the "circulation" of the second variable within fixed PEs.

5. 3?he resulting structure S corresponding to the graph Gtt obtained after
regularization, as before contains vs = O(jr~a~) PEs. They are connected
through an additional unidirectional channel for either input (see Fig.2a)
or output of the second variable. Based on the matrix D = [dl d**], the
schedule mapping given by FT = [I 1] is derived as giving the minimum
total execution time of the algorithm. Since A T = FT D = [1 (~**], the both
variables of the algorithm are transferred between PEs with the time-delay
of one cycle.

316

Fig. 3. Internal structure of PEs shown in Fig.2 (R, RAM, M, Z or x stands for register,
random access memory, multiplexer, adder or multiplier, respectively).

T h e o r e m 2 . Let us assume that in the case of processing dense matrices, an
original numeric algorithm is described by a 3-D coordinate DG with D = I3. If
this algorithm is determined over sparse matrices represented in the compressed
sparse row C.~R or column CSC format, then the use of the proposed mapping
procedure enables us to obtain 1-D processor arrays containing O(Np) PEs and
providing the execution of the algorithm in T -=- kq + O(Np) time steps (without
taking into account input/output operations), where Np is one of sizes of matrices
being processed, and kq is the number of nonzero entries in one of these matrices.

4 M a p p i n g S p a r s e M a t r i x - V e c t o r M u l t i p l i c a t i o n s

The design of PAs for sparse matrix-vector multiplications is carried out in
accordance with the proof of Theorem 1. Depending on if columnwise or rowwise
I /E format is used, a couple of dual arrays are derived. The structures S for the
first array is shown in Fig.2b, while the internal structures of PEs in this array
is presented in Fig.3.

To provide the implementation of the algorithm on a fixed number K <
i,~a~,j,~a~ of PEs, a decomposition of the matrix As can be applied. This de-
composition consists in splitting As into either s =]imax/K[horizontal strips
(see Fig.lb) or s =]jma,/K[vertical strips, which are processed sequentially.
Such an approach also allows us to decrease the number of redundant nodes
considerably. In fact, assuming the columnwise I /E format, for the j t h column
of As it becomes possible to avoid executing those redundant operations which
correspond to zero entries of As with row indices is satisfying the following
inequality: is > K ,] N j / K [, where Nj is the number of nonzeros in the j t h
column of A. As a result, for the columnwise format, the algorithm will be

317

N executed on K PEs in TM = E j = I]Nj/K[+ (N + K) t ime steps. Here the first
component corresponds to the accumulation of intermediate values of elements
of the vector y within fixed PEs, while the second one corresponds to comput-
ing and unloading final values of these elements, with the duration of any step
determined by time required for a scalar multiplication.

In many applications, for example, when solving linear systems by an iterative
method, a number of matrix-vector multiplications is performed sequentially. In
this mode, the asymptotic execution time T ~ for a single multiplication (or block
pipelining period [5]) can be made less than TM. For the columnwise format,
such a decrease results from the possibility of overlapping the computat ion of
final values of entries in the output vector y for a current iteration with the
accumulation of intermediate values of entries in the output vector for the next

N iteration. As a result, we have T ~ = ~ / = 1]Nj /K[+ K t ime steps.
This overlapping requires a relatively small hardware overhead. Only RAM

y and adder, or RAM x are duplicated for the columnwise or rowwise format,
respectively. At this cost, the processor utilization ~/~ is improved considerably:

k a K2) = a/(T K) = kA/(k +
Here kA is the number of nonzero entries in A. Assuming that kA > > K ~, we
obtain 7/~ ~ 1. This value confirms the high efficiency of the proposed parallel
architectures when implementing iterative computations.

R e f e r e n c e s
1. Darte, A., Robert, Y.: Mapping uniform loop nests onto distributed memory ar-

ctfitectures. Parallel Computing 20 (1994) 679-710
2. Hammond, S.W., Law, K.H.: Architecture and operation of a systolic engine for

finite element computations. Computers and Structures 30 (1988) 365-374
3. Jennings, A., McKeown, J.J.: Matrix computation. J. WiUey & Sons, 1992
4. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to parallel computing.

Benjamin/Cummings Publish. Comp., 1994
5. Kung,.Y.: VLSI array processors. Prentice-Hall, Engiewood Cliffs, 1988
6. Melhem, R.: Solution of linear systems with striped sparse matrices. Parallel Com-

put. 6 (1988) 165-184
7. Moreno, J.H., Lang, T.: Matrix computations on systolic-type arrays. Kluwer, 1992
8. Pissanetzky, Z.: Sparse matrix technology. Academic Press, London, 1984
9. Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Star. Com-

put. 16 (1989) 1200-1232
10. Shang, W., Fortes, J.A.B.: On time mapping of uniform dependence algorithms

into lower dimensional processor arrays. IEEE Trans. Parallel and Distr. Systems
3 (1992) 350-363

11. Wyrzykowski, R.: Processor arrays for matrix triangularisation with partial pivot-
ing. IEE Proc. E, Comput. Digit. Tech. 139 (1992) 165-169

12. Wyrzykowski, R., Kanevski, J., Maslennikov, O.: Mapping recursive algorithms
into processor arrays, in Proc. Int. Workshop Parallel Numerics'94, M. Vajtersic
and P. Zinterhof eds., Bratislava, 1994, 169-191

13. Zhong, X., Rajopadhye, S., Wong, I.: Systematic generation of linear allocation
functions in systolic array design. J. VLSI Signal Processing 4 (1992), 279-293

