
A Relat ional A p p r o a c h to the Compi la t ion of
Sparse M a t r i x Programs *

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill

Computer Science Department, Cornell University
Ithaca, NY 14853, USA

{ vladimir, pingali ,stodghil} Ocs. cornell, edu

Abstract . We present a relational algebra based framework for compil-
ing efficient sparse matrix code from dense DO-ANY loops and a spec-
ification of the representation of the sparse matrix. We present experi-
mental data that demonstrates that the code generated by our compiler
achieves performance competitive with that of hand-written codes for
important computational kernels.

1 Introduction
Sparse matrix computations are ubiquitous in computational science. However,
the development of high-performance software for sparse matrix computations is
a tedious and error-prone task, for two reasons. First, there are no standard ways
of storing sparse matrices, since a variety of formats are used to avoid storing
zeros, and the best choice for the format is dependent on the problem and the
architecture. Second, for most algorithms, it takes a lot of code reorganization
to produce an efficient sparse program that is tuned to a particular format.
We illustrate these points by describing two formats - - a classical format called
Compressed Column Storage (CCS) [6] and a modern one used in the BlockSolve
library [7].

CCS format is illustrated in Fig. 2. The matrix is compressed along the
columns and is stored using three arrays: COLP, VALS and ROWIND. The array
section VALS(COLP(j)... (COLP(j + 1) -- 1)) stores the non-zero values of the j-th
column and the array section ROWIND(COLP(j)... (C0LP(j + 1) - 1)) stores the
row indices of the non-zero elements of the j - th column.

This is a very general and simple format. However, it does not exploit any
application specific structure in the matrix. The format used in the BlockSolve
library exploits structure present in sparse matrices that arise in the solution
of PDEs with multiple degrees of f~eedom. Such matrices often have groups of
rows with identical column structure called i-nodes ("identical nodes"). Non-zero
values for each i-node can be gathered into a dense matrix as shown in Fig. 3.
This helps reduce sparse storage overhead and improves performance by making
sparse matrix-vector products "rich" in dense matrix-vector products.

* This work was supported by NSF grant CCP~-9503199, ONR, grant N00014-93-I-0103,
and the Cornell Theory Center.

319

Fig. 1. A matrix Fig. 2. CCS Fig. 3. I-NODE storage

In both cases, computation has to be reorganized in order to exploit the
benefits of each format and to avoid inefficient searches. CCS format provides
for efficient access to individual columns, but access to rows requires expensive
searching. When using BlockSolve format, dense computations are exposed in
sparse matrix-vector products Y -- A . X by gathering for each i-node the values
of X into a small dense vector and then scattering the result of the dense product
into Y.

This demonstrates the difficulty of developing libraries of basic algebraic
primitives for sparse matrix computations. Even if we limit ourselves to the
formats shown in Tab. 1, we would still have to provide at 62 = 36 versions
of sparse matrix-matrix product (assuming that the result is stored in a single
format)! The lack of extensibility in such a "sparse BLAS" approach has been
addressed by object-oriented solver libraries, like the PETSC library from Ar-
gonne [2]. These libraries provide templates for a certain class of solvers (for
example, Krylov space iterative solvers) and allow a user to add new formats by
providing hooks for the implementations of some algebraic operations (such as
matrix-vector product). However, in many cases the implementations of matrix-
vector products themselves are quite tedious (as is the case in the BlockSolve
library). Also, these libraries are not very useful in developing new algorithms.

One possibility is to give the compiler a dense matrix program, declare that
some matrices are actually sparse, and make the compiler responsible for choos-
ing appropriate storage formats and for generating sparse matrix programs. This
idea has been explored by Bik and Wijshoff [3, 4], but their approach is limited
to simple sparse matrix formats that are not representative of those used in
high-performance codes. Intuitively, they trade the ability to handle a variety of
formats for the ability to compile arbitrary loop nests.

We have taken a different approach. We focus on the problem of generating
efficient sparse given user-defined storage formats. In this paper we solve this
problem for DOALL loops and loops with reductions. Our approach is based
on viewing arrays as relations, and the execution of loop nests as evaluation
of relational queries. Our method of describing storage formats through access
methods is general enough to specify a variety of formats, yet specific enough
to allow important optimizations. Since the class of "DOANY ~' loops covers
not only matrix-vector and matrix-matrix products, but also important ker-
nels within high-performance implementations of direct solvers and incomplete
preconditioners, this allows us to address the needs of a number of important
applications. One can think of our sparse code generator as providing an emen-

320

D O i = I , Ny= { 1 < i < N A I < _ j < N
DO j(i) l , N A(i, j, a) A X(j, x) ^ Y(i, y)

= Y (i) + A (i , j) . X (j) a ~ O A z - ~ O

Fig. 4. Matrix-vector product Fig. 5. Iteration set constraints

sible set of sparse BLAS codes, which can be used to implement a variety of
applications, just like dense BLAS routines!

1.1 Outline of our approach

Consider the loop nest for matrix-vector product Y = A • X shown in Fig. 4.
Suppose that the matrix A and the vector X are sparse, and that the vector Y is
dense. Moreover, the matrix is stored in the CCS format using the arrays COLP,
RONIND and VALS. To execute this code efficiently, it is necessary to perform
only those iterations (i,j) for which A(i,j) and X(j) are not zero. This set of
iterations can be described by the set of constraints shown in Fig. 5. The first
row represents the loop bounds. The constraints in the second row associate
values with array indices: for example, the predicate A(i, j, a) constraints a to
be the value of A(i,j). Finally, the constraints in the third row specify which
iterations update Y with non-zero values. Our problem is to compute an efficient
enumeration of the set of iterations specified by these constraints. For these
iterations, we need efficient access to the corresponding entries in the matrices
and vectors. Since the constraints are not linear and the sets being computed
are not convex, we cannot use methods based on polyhedral algebra, such as
Fourier-Motzkin elimination [1], to efficiently enumerate these sets.

Our approach is based on relational algebra, and models A, X and Y as
relations (tables) that hold tuples of array indices and values. Conceptually,
the relation corresponding to a sparse matrix contains both zero and non-zero
values. We view the iteration space of the loop as a relation I of (i,j) tuples.
To test if elements of sparse arrays A and X are non-zero, we use predicates
NZ(A(i, j)) and NZ(X(j)) . Notice tha t because Y is dense, NZ(Y(i)) evaluates
to true for all array indices 1 < i < N. If we define the sparsity predicate
7) de=f NZ(A(i,j)) A NZ(X(j)) , then the constraints in Fig. 5 can be rewritten
as the relational query:

Q s p a ~ s e = O ' ~ (I (i , j) ~ A (i , j , a) ~ Z (j , x) ~ Y (i , y)) (1)

This query is the formalization of the simple statement: "From all the array
indices and values that satisfy the array access functions, select the array values
and indices that satisfy the sparsity predicate ."

We have now reduced the problem of efficiently enumerating the iterations
that satisfy the system of constraints in Fig. 5 to the problem of efficiently
computing a relational query involving selections and joins. This problem in
turn is solved by determining an efficient order in which the joins in (1) should
be performed and determining how each of the joins should be implemented.
These decisions depend on the storage formats used for the sparse arrays.

321

In summary, there are four problems that we must address. The first problem
is to describe the structure of storage formats to the compiler. We outline this
in Section 2 (details are in [8]). The second problem is to formulate relational
queries (Section 3.1), and discover joins. In our example, this step was easy be-
cause all array subscripts are loop variables. When array subscripts are general
affine functions of loop variables, discovering joins requires computing the eche-
lon form of certain matrices (Section 3.2). The third problem is to determine the
most efficient join order, exploiting structure wherever possible (Section 3.3).
The final problem is to select the implementations of each join (Section 3.3). To
demonstrate that these techniques axe practical, we present experimental results
in Section 4.

Our approach has the following advantages:
- Most of the compilation approach is independent of the details of sparse stor-

age formats. The compiler needs to know which access methods are available
and their properties, but not how they are implemented.

- The access method abstraction is general enough to be able to describe a
variety of data structures to the compiler, yet it is specific enough to enable
some important optimizations.

- By considering different implementation strategies for the joins, we are able
to explore a wider spectrum of t ime/space tradeoffs than is possible with
existing techniques.

2 Describing data structures to the compiler

Since our compiler does not have a fixed set of formats "hard-wired" into it, it is
necessary to present an abstraction of storage formats to the compiler for use in
query optimization and code generation. We require the user to specify (i) the
hierarchical structure of indices, and (ii) the methods for searching and enumer-
ating these indices. To enable the compiler to choose between alternative code
strategies, the cost of these searches and enumerations must also be specified.
We restrict attention to two-dimensional matrices for simplicity.

2 . 1 H i e r a r c h i c a l S t r u c t u r e o f Ind ices

Assume that the dense matrix is a relation with three fields named I, J and V
where the I field corresponds to rows, the J field corresponds to columns and the
V field is the value. Table 1 illustrates specification of the hierarchy of indices
for a variety of formats.

In this notation the ~- operator is used to indicate the nesting of the fields
within the structure. For example, [>- J >- V in the Compressed Row Storage
(CRS) format [10] indicates that we have to access a particular row before we
can enumerate the column indices and values; and that within a row, we can
search on the column index to find a particular value. The notation (I, J) in the
specification of the coordinate storage indicates that the matrLx is stored as a
"flat" collection of tuples.

The x operator indicates that the indices can be enumerated independently,
as in the dense storage format.

322

Name Type
CRS
COS
COORDINATE
DENSE
INODE
ELEMENT

Tcas = I ~ J ~ V
TcRc = J ~- I ~ V
Tcoord - - ~ (I, J) ~- V
T d e n s e = I x J ~ V
~-node ~--- I N O D E >.-¢ (I x J) ~- V
TF~ = E ~-+ (I x J) ~- V

Table 1. Hierarchy of indices for various formats

What is the structure of the i-node storage format (Fig. 3)? The problem
here is that a new I N O D E field is introduced in addition to the row and column
fields. Fields like inode number which are not present in the dense array are
called external fields. An important property that we need to convey is that
inodes partition the matrix into disjoint pieces. We denote it by the ¢ symbol
subscript in Ti-node. This will differentiate the i-node storage format from the
format often used in Finite Element analysis [12]. In this format the matrix is
represented as a sum of element matrices. The element matrices are stored just
like the inodes, and the overall type for this format is TFE in Tab. 1, where
E is the field of element numbers. Our compiler is able to recognize the cases
when the matrix is used in additive fashion and does not have to be explicitly
constructed.

Some formats can be seen as providing several alternative index hierarchies.
This is denoted by T U T rule in the grammar for building specifications of index
hierarchies:

=:=, I I I = I CF, = I=u=
(2)

where the terminal V indicates an array value field, and F indicates an array
index field.

2.2 Access Methods
For each level of the index hierarchy (such as I and (J, V) is the case of CRS stor-
age), access methods for searching and enumerating the indices must be provided
to the compiler, as described in [8].

This set of access methods does not specify how non-zero elements (fill) axe
inserted. It is relatively easy to come up with insertion schemes for simple formats
like CRS and CCS which insert entries at a very fine level - for example, for
inserting into a row or column as it is being enumerated (this is the approach
taken by Bik and Wijshoff [3, 4]). More complicated formats, like BlockSolve,
are more difficult to handle: the BlockSolve library [7] analyzes and reorders
the whole matrix in order to discover inodes.

At this point, we have taken the following position: each data structure should
provide a method to pack it from a hash table. This is enough for DO-ANY loops,
since we can insert elements into the hash table as they are generated, and pack
them later into the sparse data structure.

323

3 O r g a n i z a t i o n o f t h e C o m p i l e r

3.1 Obta in ing re la t iona l quer ies
Suppose we have a perfectly nested loop with a single statement:

D O i E B
S : A0(Foi + f0) = . . . Ak(Fki + fk)

where i is the vector of loop indices and B are the loop bounds. We make the
usual assumption that the loop bounds are polyhedral, and that the arrays Ak,
k = 0 . . . N, are addressed using arlene access functions. Ao is the array being
written into. Since we deal only with DO-ALL loops in this paper, we assume
that the iterations of the loop nest can be arbitrarily reordered.

If some of the arrays are sparse, then some of the iterations of the loop
nest will execute "simpler" versions of the original statement S. In most cases,
the simpler version is just a NOP. Bik and Wijshoff [3, 4] describe an attribute
grammar for computing guards, called sparsity predicates, that determine when
non-trivial computations must be performed in the loop body. If :P is the sparsity
predicate, the resulting program is the following.

D O i E B
IF ~ THEN

S' : Ao(F0i + fo) Ak(F~i + fk)

The predicate P is a boolean expression in terms of individual NZ(A~ (Fki +
fk)) predicates, where the predicate NZ(Ak (Fki + f~)) evaluates to true if and
only if the array element in question is explicitly stored.

To generate the relational query for computing the set of sparse loop itera-
tions, it is useful to define the following vectors and matrices.

Fo fo
H = a = f = (3)

r t

Following [9], the matrix H is called a data access matrix. Notice that the fol-
lowing data access equation holds:

a - f + H i (4)

Furthermore, we view the arrays Ak as relations with the following at-
tributes:

- ak, which stands for the vector of array indices
- vk, which is the value of Ak(ak)

In that case, the sparse loop nest can be thought of as an enumeration of
the tuples that satisfy the following relational query (Rr is the iteration space
relation):

O'pO'(a=f+Hi) (RI x . . . x Ak(ak, vk) x . . .) (5)

324

Permutations and linear index t ransformat ion are easily incorporated in our
framework. Linear transformations on array indices can be folded into the data
access equation (4). This issue of handl ing various da ta structure orientations
has also been previously addressed by Bik and Wijshoff. Matrices that are per-
muted by rows and/or columns can be represented by relational queries. We can
view a permutation as a relation P(i, i~), where i ~ is the permuted index. Then
P(i, i') ~i A(i, j, a) represents the mat r ix A permuted by rows. This expression
can then be used in the query (5).

3.2 Discovering joins

The key to efficient evaluation of relational queries like (5) is to perform equijoins
rather than cross products followed by selections. Intuitively, this involves "push-
ing" the selections C7(a=f+Hi) through the cross-products to expose joins. In the
matrix-vector product example discussed in Section 1, the joins were simple
equijoins of the form a = b. More generally, array subscripts are affine functions
of loop variables, and we should look for affine joins of the form a = c~b + ~/for
some constants a and ~.

It is useful to look at this in terms of the da ta access equation. Let a 1, f j and
h T be the j - th element of a, the element of f and the row of H, respectively.
The following result tells us when ar ray dimensions aj and ak are related by an
affine equality:

(6)

This suggests that we look for rows of H which are multiples of each other.
Consider the variation on matrix-vector product shown in Fig. 6, where X and
A are sparse, and Y is dense. The d a t a access equation for this loop is shown
in Fig. 7. In this equation, s and t are the row and column indices for accessing
A, while iy and jx are the indices for accessing X. One equi-join is clear from
this data access equation: i = iy. It seems tha t we are left with two more joins:
s (a trivial join of one variable) and t = jx = j . However, for any fixed value of
i = io, we get s = i0 - j . This is an affine join on s and j! In other words, we can
exploit the order in which variables are bound by joins to join more variables
than is evident in the data access matr ix.

To do this systematically, suppose tha t the da ta access matrix is in the block
form shown in Fig. 9, where all entries in the column vectors cl, c2 etc are non-
zero. It is trivial to read off affine joins: there is an affine join corresponding to
each column c~ of this matrix. The entries in L~ are the coefficients in the affine
joins of variables bound by previous joins.

It is easy to show that we can get a general da ta access equation into this
form in two steps.

1. Apply column operations to reduce the da ta access matrix to column echelon
form. This is equivalent to mult iplying the matrix H on the right by a
unimodular matrix U, which can be found using standard algorithms [5].

325

DO i = 1, n
D O j = 1,n

Y (i) = Y (i) + A(i - j , j) * X (j)

Fig. 6. The loop nest

{/ (ii/ ,, : (:) (:) : 00 (j)

Fig. 8. Echelon form for s >- t hierarchy

• _ 7 - ' , 0)

re:)
Fig. 7. Data access equation

" !L~ "'" c~ t

Fig. 9. Block structure of the
echelon form

2. Apply row permutations as needed. This is equivalent to multiplying the
matr ix produced in the previous step by a permutat ion matrix P.
Formally, we have H ' = P H U . If H has rank r, then H ' can be partitioned

into blocks L,~ for m = 1 , . . . , r , such tha t in each block L,~ the coblmns after
m are all zero and the m- th column (c,~) is all non-zero: (:1)

H ' = Lm = (L" 0) (7)

Define j = U - l i and b = P (a - f) . Then the da ta access equation (4) is trans-
formed into: b = H ' j . Now if we par t i t ion b according to the partition (7) of
H ' , then for each m = 1 , . . . , r we get: b m = L , , j = L'mj(1 : m - 1) + c,~ . j (m)

In the generated code, j (m) corresponds to the ruth loop variable. Since the
values j(1 : m - 1) are enumera ted by the outer loops, the affine joins for this
loop are defined by the following equations: b m = invariant + cm *j (m) .

3.3 Ordering and Implementing J o i n s

The final permutation of the rows of the da ta access matr ix gives us the nesting
order of the enumeration of the a t t r ibu tes of the arrays. We would like this order
to be consistent with the index hierarchy. Suppose that in our example the matr ix
is stored using CRS format. Then we would like the enumeration of s to be nested
before the enumeration of t. One such ordering and the corresponding echelon
form is shown in Fig. 8. In the resulting loop nest the loop variable u runs over
the first join, which is just the enumera t ion of s E A. The second variable v joins
the rest of the variables for a fixed u -- uo: v = i - uo = j --- i v - u0 = j~ = t.

326

DO / = 1, n
DO (VA, v~, j) E A(i, *) ~ X

y (i) = Y (i) + va * v~

Fig. 10. MVM for CRS format

10 x 10 x 10
17 x 17 x 17
25 x 25 x 25

DO (j ,v~) E A ~ X
DO (i, vA) E A(*,j)

Y(i) = Y(i) + VA * v~:
Fig. 11. MVM for CCS format

4.16)4.65 3 16.43/17.55
14.15/4.40 16.24/17.32
4.22/4.40 16.19/17.14

5 I 7
23.03/24.23 28.04/28.89
23.52/24.26 26.21/27.00
22.85/23.05. - - / - -

Table 2. Hand-writtea/Compiler-generated (Mflops)

In general, we build a precedence graph for the nesting order of attributes
out of the specification of the index structure of the arrays. Our compiler heuris-
tically tries to find a permutation which would satisfy as many constraints as
possible. Of course, if the precedence graph is cyclic, then searches are unavoid-
able. Figures 10 and 11 are examples of join orderings produced by this step.

Once we have found the nesting order of the joins, we have to select an
algorithm for performing each of the joins. The basic algorithms for perform-
ing joins can be found in database literature [11, 13]. Our compiler selects an
appropriate algorithm based on the properties of access methods of the joined
relations. It is at this point that the sparsity predicate is "folded" into join im-
plementations in order to produce enumerations over a correct combination of
zeros and non-zeros. This way we can treat disjunctive predicates (as in vector
addition) as well as conjunctive predicates (as in vector inner products). Also,
the basic algorithms for performing two-relation joins can be easily generalized
to many-relation joins, and to affine joins. For lack of space, we omit the details.

4 Experiments

4.1 Different jo in implementa t ions

We have claimed in the introduction that different implementations of joins have
different time/space tradeoffs. We have compared the performance of hash-join
(scatter) and merge-join implemetations of a dot product of two sparse vectors
with 50 non-zeros each. We have run our experiments on a single (thin) node
of an IBM SP-2. Merge-join has outperformed hash-join by 10-30%. However, if
the cost of hashing (scattering) is amortized over many iterations of an enclosing
loop, then hash-join outperforms merge-join by an order of magnitude. These
results suggest that using merge join is advantageous when memory is limited
and when there is no opportunity to hoist hashing outside of an enclosing loop.
Unlike Bik and Wijshoff, we are able to explore this alternative to hash join in
our compiler.

4.2 BlockSolve
Table 2 shows the performance of the MV:vl code from the BlockSolve library
and code generated by our compiler, for 12 matrices. Each matrix was stored in
the clique/inode storage format used by the BlockSolve library and was formed

327

from a 3d grid with a 27 point stencil with a varying number of unknowns, or
components, associated with each grid point. The grid sizes are given along the
left-hand side of the table; the number of components is given across the top.
The left number of each pair is the performance of the BlockSolve library; the
right is the performance of the compiler generated code. The computations were
performed on a thin-node of an SP-2. These results indicate that the performance
of the compiler-generated code is comparable with the hand-written code, even
for as complex a data structure as BlockSolve storage format.

5 Conclusions and f u t u r e w o r k
We have presented a novel approach to compiling sparse codes: we view sparse
data structures as database relations and the execution of sparse DO-ANY loops
as relational query evaluation. By abstract ing the details of sparse formats as
access methods, we are able to generate efficient sparse code for a variety of data
structures.

References
1. Corinne Ancourt and Franois Irigoin. Scanning polyhedra with do loops. In Prin-

ciple and Practice of Parallel Programming, pages 39-50, April 1991.
2. Argonne National Laboratory. PETSc, the Portable, Ez2ensible Toolkit for Scien-

tific Computation. http://vcww.mcs.anl.gov/petsc/petsc.html.
3. Aart J.C. Bik and Harry A.G. Wijshoff. Advanced compiler optimizations for

sparse computations. Journal of Parallel and Distributed Computing, 31:14-24,
1995.

4. Aart J.C. Bik and Harry A.G. Wijshoff. Automatic data structure selection and
transformation for sparse matrix computations. IEEE Transactions on Parallel
and Distributed Systems, 7(2):109 - 126, 1996.

5. Henri Cohen. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics. Springer-Verlag, 1995.

6. Alan George and Joseph W-H Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice Hall, Inc., 1981.

7. Mark T. Jones and Paul E. Plassmann. BlockSolve95 users manual: Scalable library
software for the parallel solution of sparse linear systems. Technical Report ANL-
95/48, Argonne National Laboratory, December 1995.

8. Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. Compiling parallel sparse
code for user-defined data structures. In Proceedings of Eights SIAM Conference
on Parallel Processing for Scientific Computing, March 1997. Available as Cornell
Computer Science Technical Report from http://cs-tr.cs.cornell.edu.

9. Wei Li and Keshav Pingaii. Access Normalization: Loop restructuring for NUMA
compilers. ACM Transactions on Computer Systems, 11(4):353-375, November
1993.

10. Sergio Pissantezky. Sparse Matrix Technology. Academic Press, London, 1984.
11. Raghu Ramakrishnan. Database Management Systems. College Custom Series.

McGraw-Hill, Inc, beta edition, 1996.
12. Gilbert Strang. Introduction to applied mathematics. Wellesley-Cambridge Press,

1986.
13. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, v. I and

II. Computer Science Press, 1988.

