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Abstract: Dependence-free clustering of data structures can be regarded 
as a general form of alignment and addresses the problem of finding the 
maximum amount of independent computation on non-connected data 
sets. The paper presents a unified concept for modelling both data 
spaces and affine dependence relations with the help of Abelian 
subgroups of Z, n. This approach allows us to treat alignment at a very 
high level of abstraction exploiting results of computational algebra. 

1 Introduction 

Data and code mapping is usually split into several steps which are a l i g n m e n t ,  
d i s t r i b u t i o n  and ass ignmen t .  This paper focuses on a generalisation of  alignment, 
i.e. dependence-free clustering, and does not address aspects of  partitioning and 
assignment. Decoupling alignment has the advantage that load balancing issues 
and data placement (assignment) optimization need not to be considered. Instead, 
we can formulate alignment as a f a c t o r i z a t i o n  of a set of data points with respect 
to given dependences .  An equiva lence  class conta ins  those points  that  are 
directly or intermediately connected with each other (Figure 1). 
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Fig. 1. Alignment as a factorization problem. 

Of course, in most practical situations, not all data and dependence structures of  
some program phase can be aligned without causing a conf l ic t .  Obviously, a con- 
flict occurs if the alignment results in too few equivalence classes with respect to 
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the number of envisaged partitions. So, generally, there has to be found a proper 
subset of data objects and dependence'relations. 

In our approach both data and dependence structures are represented by sets 
of integer tuples which we refer to as index spaces. So in particular, data domains 
are not restricted to regular and dense arrays. Translating nested loop programs 
using affine access functions into this world, data domains and dependence rela- 
tions show regularities that characterize shifl-invariant structures. 

Since alignment, or dependence-free clustering, only considers the structure 
of index spaces, the evaluation of boundaries can be postponed to later mapping 
steps. So, for the remainder of this paper, we restrict our discussion to aligning 
index spaces in their infinite extensions. Therein, our approach is to derive the 
clustering by means of a group-theoreticfactorization. 

Obviously, we can only give a brief outline here, which we illustrate by way 
of a single example. For the details concerning the relationship between index 
spaces and groups, their use for modelling alignment, and various aspects of the 
implementation using computational algebra, we refer to [2][3][1]. 

2 Shift-Invariant Data and Dependence Structures 

The following simple example (see also Fig. 2) shows a loop nest, whose bound- 
aries are ignored, such that the belonging iteration space is Z 2 . 

forall i, j do 
P[2i ,  2 j ] . x= f (L [2 i+ l  , 2 j ] ,  L[2i ,  2j+1 ] )  
P[ 2i, 2j ].y = g( V[ i.j] ) 

done 

The access to the arrays P and L in the first statement is expressed by the affine 

(2i, 2 j )  = ( i , j ) .  I20 ~1 for thetargetoperandand 

( i , j ) - - - ) g l ( i , j )  = ( 2 i + 1 , 2 j )  = ( i , j ) ' I ~ 0 2 ] + ( 1 , 0 )  forthefirstsource 

argument of f0. Analogously, we define g2 for the second argument. 
Obviously, the image domain of an affine function is always a coset of  a sub- 

group of  Z n with respect to componentwise "+" (and vice versa). Therefore, it is 
quite natural to describe the data spaces and dependence relations by means of 
group-theoretic notions, i.e. in terms of groups and cosets: 

V = Z ,  P = G1,  L = G1 + {(1 ,0) ,  (0, 1)},  where G1 = {(2i, 2 j ) } .  
Here, G1 is a subgroup of Z 2, and L is the union of cosets represented by 
(0, 1) and (1, 0). The dependence relations can be modelled the same way, such 
that with G 2 =  {(g, g)]g  ~ G1} ={((2 i ,  2j) ,  (2i, 2 j ) ) }  we obtain 

functions 

( i, j )  ~ g(  i, j )  = 
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DeL = G2 + {up, lef t}  = G2 + {((0,  0), (1, 0)) ,  ((0,  0), (0, 1 ) )} ,  

Dev = Gev = {( (2 i ,  2 j ) , i - j ) } .  
In general, we consider index spaces I (data-fields and dependences) which are 
defined by a subgroup G c 7o n and a set of  offsets S = {sl ,  . . . ,  s t}  such that 
1 = G + S.  Note that I is invariant with respect to all shifts of  the group G .  
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Fig. 2. Index spaces and dependence relations of the example application. 

3 Alignment by Group Factorization 

The central  idea of  group- theore t ic  clustering is e lementary.  For the lack of  
space we only consider  here the dependence Dev = Gev which is already a 
group. The problem is to find an appropriate subgroup A c Gpv that serves as a 
cluster prototype. Intuit ion suggests to take into account all points of  the first 
index space that are dependent on the zero element of  the second space, and vice 
versa. More precisely, we define the groups 

Ap= {PI(P, 0) e Gpv}= {(2i ,  2i)}, Av = {v l ( (0 ,  0), v) e Gpv } = {0}, 
and construct A as their direct sum A = Ap @A v = {((2i ,  2i),  0)}.  In Fig. 2, 
A e and A v are marked in black. 

We can now compute the intended factorization by 

G e v / A  = { { ( ( 2 j  + 2i, 2 j ) ,  i )[ j  e Z}li e z }  
which indeed describes the expected alignment classes. 

4 Results 

In realistic situations, more than one data dependence is to take into account. In 
addit ion,  a dependence  is usual ly  not a group but, for example ,  a union of  
cosets .  In this case,  a n u m b e r  o f  t r a n s f o r m a t i o n  s teps  are neces sa ry  (see  
[1][2][3]). First, the selected index spaces and dependences can be naturally 
decomposed into cosets. Then, an overall space F = G + S is constructed that 
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extends over all data spaces under consideration. In case b' has more than one 
element the transformation G + S ~ (G + (S  - { s} ) )  + {s} is computed, with 
an arbitrary s ~ S.  ( S -  {s})  denotes the group generated by S -  { s} .  The 
resul t  is the least  coset  compr i s ing  G +  S. Genera l ly ,  we can not  assume 
G + ( S -  {s})  to be transitive, such that we must compute its transitive closure. 
The concept of transitivity of groups is strongly related to the transitivity of the 
corresponding (dependence) relations [1]. Since we now have a single coset of a 

, G* transitive group, G* + {s} we can apply the factorization to following the 
scheme described in the last section. The result is then shifted back according to 
the offset s .  Considering all dependences of our example, following these trans- 
formation steps reults in a facrization that also incorporates the grey points in 
Fig. 2. 

The backbone for an implementation of the alignment process is the unique 
representation of subgroups of Z" by means of matrices in so-called Hermite 
Normal Form [4][1][3]. Since in practice, the embedding dimension of the index 
spaces is rather small (less than ten), there are very efficient operations for the 
manipulation of  groups, such as sum, intersection, projection, test for inclusion, 
or the computation of cosets. For dealing with the boundaries we use methods of 
integer linear programming [5]. 
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