
Dependence-Free Clustering of
Shift-Invariant Data Structures*

Matthias Besch, Hans Werner Pohl

RWCP Massively Parallel Systems GMD Laboratory
Rudower Chaussee 5, 12489 Berlin, Germany

*This work is supported by the Real World Comput ing Partnership, Japan

Abstract: Dependence-free clustering of data structures can be regarded
as a general form of alignment and addresses the problem of finding the
maximum amount of independent computation on non-connected data
sets. The paper presents a unified concept for modelling both data
spaces and affine dependence relations with the help of Abelian
subgroups of Z, n. This approach allows us to treat alignment at a very
high level of abstraction exploiting results of computational algebra.

1 Introduction

Data and code mapping is usually split into several steps which are a l i g n m e n t ,
d i s t r i b u t i o n and ass ignmen t . This paper focuses on a generalisation of alignment,
i.e. dependence-free clustering, and does not address aspects of partitioning and
assignment. Decoupling alignment has the advantage that load balancing issues
and data placement (assignment) optimization need not to be considered. Instead,
we can formulate alignment as a f a c t o r i z a t i o n of a set of data points with respect
to given dependences . An equiva lence class conta ins those points that are
directly or intermediately connected with each other (Figure 1).

~, ::~ i'~i • ~iill ~ " t~ ~ l l
~i~ ~i iil i~ iiil.i "

13

e q u i v a l e n c e c l a s s
w.r. t , t r a n s i t i v e c l o s u r e

Fig. 1. Alignment as a factorization problem.

Of course, in most practical situations, not all data and dependence structures of
some program phase can be aligned without causing a conf l ic t . Obviously, a con-
flict occurs if the alignment results in too few equivalence classes with respect to

339

the number of envisaged partitions. So, generally, there has to be found a proper
subset of data objects and dependence'relations.

In our approach both data and dependence structures are represented by sets
of integer tuples which we refer to as index spaces. So in particular, data domains
are not restricted to regular and dense arrays. Translating nested loop programs
using affine access functions into this world, data domains and dependence rela-
tions show regularities that characterize shifl-invariant structures.

Since alignment, or dependence-free clustering, only considers the structure
of index spaces, the evaluation of boundaries can be postponed to later mapping
steps. So, for the remainder of this paper, we restrict our discussion to aligning
index spaces in their infinite extensions. Therein, our approach is to derive the
clustering by means of a group-theoreticfactorization.

Obviously, we can only give a brief outline here, which we illustrate by way
of a single example. For the details concerning the relationship between index
spaces and groups, their use for modelling alignment, and various aspects of the
implementation using computational algebra, we refer to [2][3][1].

2 Shift-Invariant Data and Dependence Structures

The following simple example (see also Fig. 2) shows a loop nest, whose bound-
aries are ignored, such that the belonging iteration space is Z 2 .

forall i, j do
P[2i , 2 j] . x= f (L [2 i+ l , 2 j] , L[2i , 2j+1])
P[2i, 2j].y = g(V[i.j])

done

The access to the arrays P and L in the first statement is expressed by the affine

(2i, 2 j) = (i , j) . I20 ~1 for thetargetoperandand

(i , j) - - -) g l (i , j) = (2 i + 1 , 2 j) = (i , j) ' I ~ 0 2] + (1 , 0) forthefirstsource

argument of f0. Analogously, we define g2 for the second argument.
Obviously, the image domain of an affine function is always a coset of a sub-

group of Z n with respect to componentwise "+" (and vice versa). Therefore, it is
quite natural to describe the data spaces and dependence relations by means of
group-theoretic notions, i.e. in terms of groups and cosets:

V = Z , P = G1, L = G1 + {(1 ,0) , (0, 1)}, where G1 = {(2i, 2 j) } .
Here, G1 is a subgroup of Z 2, and L is the union of cosets represented by
(0, 1) and (1, 0). The dependence relations can be modelled the same way, such
that with G 2 = {(g, g)]g ~ G1} ={((2 i , 2j) , (2i, 2 j)) } we obtain

functions

(i, j) ~ g(i, j) =

340

DeL = G2 + {up, lef t} = G2 + {((0, 0), (1, 0)) , ((0, 0), (0, 1))} ,

Dev = Gev = {((2 i , 2 j) , i - j) } .
In general, we consider index spaces I (data-fields and dependences) which are
defined by a subgroup G c 7o n and a set of offsets S = {sl , . . . , s t} such that
1 = G + S. Note that I is invariant with respect to all shifts of the group G .

o L
[] P

V

Fig. 2. Index spaces and dependence relations of the example application.

3 Alignment by Group Factorization

The central idea of group- theore t ic clustering is e lementary. For the lack of
space we only consider here the dependence Dev = Gev which is already a
group. The problem is to find an appropriate subgroup A c Gpv that serves as a
cluster prototype. Intuit ion suggests to take into account all points of the first
index space that are dependent on the zero element of the second space, and vice
versa. More precisely, we define the groups

Ap= {PI(P, 0) e Gpv}= {(2i , 2i)}, Av = {v l ((0 , 0), v) e Gpv } = {0},
and construct A as their direct sum A = Ap @A v = {((2i , 2i), 0)}. In Fig. 2,
A e and A v are marked in black.

We can now compute the intended factorization by

G e v / A = { { ((2 j + 2i, 2 j) , i)[j e Z}li e z }
which indeed describes the expected alignment classes.

4 Results

In realistic situations, more than one data dependence is to take into account. In
addit ion, a dependence is usual ly not a group but, for example , a union of
cosets . In this case, a n u m b e r o f t r a n s f o r m a t i o n s teps are neces sa ry (see
[1][2][3]). First, the selected index spaces and dependences can be naturally
decomposed into cosets. Then, an overall space F = G + S is constructed that

341

extends over all data spaces under consideration. In case b' has more than one
element the transformation G + S ~ (G + (S - { s})) + {s} is computed, with
an arbitrary s ~ S. (S - {s}) denotes the group generated by S - { s} . The
resul t is the least coset compr i s ing G + S. Genera l ly , we can not assume
G + (S - {s}) to be transitive, such that we must compute its transitive closure.
The concept of transitivity of groups is strongly related to the transitivity of the
corresponding (dependence) relations [1]. Since we now have a single coset of a

, G* transitive group, G* + {s} we can apply the factorization to following the
scheme described in the last section. The result is then shifted back according to
the offset s . Considering all dependences of our example, following these trans-
formation steps reults in a facrization that also incorporates the grey points in
Fig. 2.

The backbone for an implementation of the alignment process is the unique
representation of subgroups of Z" by means of matrices in so-called Hermite
Normal Form [4][1][3]. Since in practice, the embedding dimension of the index
spaces is rather small (less than ten), there are very efficient operations for the
manipulation of groups, such as sum, intersection, projection, test for inclusion,
or the computation of cosets. For dealing with the boundaries we use methods of
integer linear programming [5].

R e f e r e n c e s

1. M. Besch, H. W. Pohl: Communication-Driven Alignment of Sparse Data Structures -
An Approach Towards Algebraic Mapping, RWCP Technical Report TR-96014, Japan,
http:/Iwww.first.gmd.delpromoterlpapersl, 1996

2. M. Besch, H. W. Pohl: Dependence-Free Structured Decomposition of Group-Based Index
Spaces, RWCP Technical Report, Japan, http://www.first.gmd.de/promoter/papers/,
1996

3. M. Besch, H. W. Pohl: On Using Group-Based Structures for Modelling and Mapping
Data Parallel Programs, Proc. Conf. on Parallel and Distributed Computing and
Systems (PDCS'97), Washington, D.C., U.S.A., October 1997

4. H. Cohen: A Course in Computational Algebraic Number Theory, Graduate Texts in
Mathematics, Springer, 1993

5. P. Feautrier: Parametric Integer Programming, Recherche operationelle / Operations
Research, vol. 22, no. 3, 1988

