
Priority Queue Operations on EREW-PRAM

Mauricio Matin

PRG, Computing Laboratory, University of Oxford
Wolson Building, Parks Road, Oxford OX1 3QD, England, UK

E-mail: mmarin~comlab, ox. ac. uk

Abst rac t . Using EREW-PRAM algorithms on a tournament based com-
plete binary tree we implement the insert and extract-rain operations
with p = log N processors at costs O(1) and O(loglog N) respectively.
Previous solutions [4, 7] under the PRAM model and identical assump-
tions attain O(log log N) cost for both operations. We also improve on
constant factors the asymptotic bound for extract-rain since in it we re-
duce the use of communication demanding primitives. The tournament
tree enables the design of parallel algorithms that are noticeably simple.

1 T o u r n a m e n t t r e e s

Our data structure is a complete binary tree (CBT). Every item stored in the
tree consists of a priority value and an identifier. We associate every leaf of
the CBT with one item, and use the internal nodes to maintain a continuous
binary tournament among the items. A match, at internal node n, consists of
determining the item with higher priority (lesser numerical value) between the
two children of n and writing the identifier of the winner in n. The tournament
is made up of a set of matches played in every internal node located in each path
from the leaves to the root. Every time we change the priority associated with a
leaf l, the tournament is updated by performing matches along the unique path
between l and the root of the tree. We call this last operation update-cbt. The
operations extract-min and insert are implemented using update-cbt as a basic
primitive.

The CBT can be represented implicitly in an array of 2N - 1 tuples (i, x),
where i is an i tem identifier and x its associated priority. (N is the number of
items stored in the priority queue). A node at position n in the array CBT has
its children at positions 2n and 2n + 1. The parent of a node n is at position
[~J. All internal nodes are stored between positions 1 and N - 1 of the CBT.
We also use an array Leaf[1..N] of integers to map between items and leaves. To
enable dynamic reusing of item identifiers in the PQ, the array Leaf is also used
to maintain a single linked list of available item identifiers (initially this list is
empty) .

The results of every match performed in the internal nodes of the CBT are
written as (i, z) in every internal node n, namely in n it is written the i tem
identifier i in CBT[n].i and the priority x associated with i in CBT[n].x. The

418

highest priority in the PQ is given by CBT[1].x, its identifier is CBT[1].i, and
its associated leaf is at position Leaf[CBT[1].i].

Deletions in the CBT are performed by removing the child with lower priority
between the children of the parent of the rightmost leaf, and exchanging it
with the target leaf to be deleted. On the other hand, insertions are performed
by appending a new rightmost leaf and updating the CBT. This is done by
expanding in two leaves the first leaf of the tree.

2 Single operations in parallel

The cost of extract-rain and insertis constant except for the cost of update-cbt. So
we focus on the parallel implementation of update-cbe. We split this operation
into two: I-update-cbt which is executed by insert and E-update-cbt executed
by extract-rain. In the description of these operations we are going to assume
p = log N processors 1 .

During an insert(x) operation and after creating a new leaf at position L in
the CBT to hold the new item (i, x), the I-update-cbt(i, x, L) operation simulta-
neously compares x with all the priorities stored along the path from L to the
root. This is made as shown in Figure 1. Note that this operation takes O(1)
parallel t ime if we use log N processors. Then its cost is O(v) f o r p < l o g N .

procedure Lupdate-cbt(i,x, L)
h:= [log LJ ;
for p E {1...h} do in parallel

a:= L div 2h--p+l;
i f (CBT[a].x > x) then

CBT[a].i:--- i;
CBT[a].x:-- x;

end i f
endfor

end

Fig. 1. Pseudo-code for the parallel I-update-cbt operation.

The details for the extract-rain operation are as follows. Let us define j =
CBT[1].i, y= CBT[1].x, L= Leaf[j], and let (i, x) be the tuple selected to replace
(j, y) in leaf L. Before making effective this replacement and after broadcasting
(i ,x,L), the E-update-cbt operation proceeds in three main steps. Firstly, in
every internal node n along the path from leaf L till the root we write the

1 Note that, similar to [4], we are not considering here the O(logp) cost of broadcast-
ing the key to all the processors, in which case our insert operation has the same
asymptotic cost than [4] but with much simpler algorithms and without the cost of
additional broadcasts.

419

tuple (k, z) stored in one of the children of n so that k # j (recall that item
j is duplicated along all this path). Secondly, a parallel prefix operation (with
operator @ = rain) is performed among all the nodes in the path from L to
the root in order to re-establish the binary tournament invariant (similar to
[4] this operation calculates all the prefixes ai = al • a2 @ a 3 " " " ~3 ai for each
i = 1, 2 , - . . , h where h is the height of the CBT). Finally, an at tempt for storing
(i, x) in each node n in the path from L to the root is made as we do in Figure 1,
and then the replacement of (j, y) by (i, x) is performed in the leaf at L. The
E-update-cbt(i, x, L) operation is described in Figure 2 (similar to [4] we use two
auxiliary arrays, I and X, of size log N to perform the parallel prefix operation).

Then the cost of this operation is dominated by the cost of parallel prefix
which is O(log log N) when we use p = log N processors. Then the cost of extract-
min is O (~ + loglog N) with p < logN.

procedure E-update-cbt(i,x, L)
h:= [log L J;
for p E {1...h} do in parallel

a:= L div 2h-P+1; j:= CBT[a].i;
i f (CBT[2 a].i ¢ j) then b:= 2 a;

else b:= 2 a + 1;
I[p]:= CBT[b].i; Zip]:= CBT[b].x;

endfor
ALL-PREFIX-MIN(I, X, h);
for p E {1...h} do in parallel

if (X[p] > x) then
X[p]:= x; I[p]:= i;

endif
endfor
for p E {1...h} do in parallel

a:= L div 2h--P't'l;
CBT[a].i:= I[p]; CBT[a].x:= X[p];

endfor
end

Fig. 2. Pseudo-code for the parallel E-update-cbt operation.

Similar to other approaches [1, 3, 4, 5, 7], the construction of the CBT from
a set of N priority values takes O(N + log N) parallel time: in parallel each
processor takes a subset of N elements, and then level by level from leaves to p
root the matches are simultaneously performed in the internal nodes.

420

3 F i n a l c o m m e n t s

We have described parallel algorithms for speeding up single-item priority queue
operations on a p-processor EREW-PRAM. Our results improve previous solu-
tions. This improvement comes from the use of a tournament based complete
binary tree (CBT) rather than variations to the standard implicit heap. This
data structure has also enabled improved implementations of multiple-item pri-
ority queue operations on the PRAM and BSP models [2].

As we showed in this paper, the CBT enables a more efficient implementation
of the extract-rain and insert operations with the additional advantage that the
algorithms involved are noticeably simpler than the ones proposed in previous
approaches. One disvantage of the CBT, however, is its higher requirement in
memory used. In particular, for a PQ with N items we needed to use an array
of 2N - 1 tuples (i, x) which is equivalent to duplicate the number of items in
the PQ. Nevertheless, this memory overhead might be reduced by, for example,
halving the number of leaves in the tree since the winner between two leaves can
be actually maintained in their common father.

R e f e r e n c e s

1. C. Luchetti and M.C. Pinotti. "Some comments on building heaps in parallel". In].
Proc. Letters, 47:145-148, 1993.

2. M. Matin. "Binary tournaments and priority queues: PRAM and BSP". Technical
report PRG-TR-7-97, Oxford University, Jan. 1997.

3. S. Olariu and Z. Wen. "Optimal parallel initialization algorithms for a class of
priority queues". IEEE Trans. Parallel Distrib. Systems, 2:423-429, 1991.

4. M.C. Pinotti and G. Pucci. "Parallel algorithms for priority queue operations". In
SWAT'92 LNCS 621, pages 130-139, 1992.

5. N.S. Rao and W. Zhang. "Building heaps in parallel". In]. Proc. Letters, 37:355-
358, 1991.

6. V.N. Rao and V. Kumar. "Concurrent access of priority queues". IEEE Trans.
Comput., 37(12):1657-1665, 1988.

7. W. Zhang and R. Korf. "Parallel heap operations on EREW PRAM'. In 6th Int.
Parallel Processing Symposium, pages 315-318, 1992.

