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Abst rac t .  Given an undirected graph G = (V, E0) with IVI-- n, and a 
feasible set E of m weighted edges on V, the optimal 2-edge (2-vertex) 
connectivity augmentation problem is to find a subset S* __ E such that 
G(V, E0 U S*) is 2-edge (2-vertex) connected and the weighted sum of 
edges in S* is minimized. We devise NC approximation algorithms for 
the optimal 2-edge connectivity and the optimal 2-vertex connectivity 
augmentation problems by delivering solutions within (1 + In no)(1 + e) 
times optimum and within (1 + In nb)(1 + e)log nb times optimum when 
G is connected, respectively, where nc is the number of 2-edge connected 
components of G, nb is the number of biconnected components of G, and 
e is a constant with 0 < e < 1. Consequently, we find an approximation 
solution for the problem of the minimum 2-edge (biconnected) spanning 
subgraph on a weighted 2-edge connected (biconnected) graph in the 
same time and processor bounds. 

1 I n t r o d u c t i o n  

Augmenting the connectivity of communication networks is increasingly becom- 
ing important  to provide" reliable means of communication. In the following the 
k-connectivity of~a graph refers to either k-edge connectivity or k-vertex connec- 
tivity. A graph is k-edge (k-vertex) connected if there are k edge-disjoint (vertex- 
disjoint) paths joining each pair of vertices in it. A 2-edge connected graph is 
called bridge-connected graph, and a 2-vertex connected graph is called bicon- 
nected. Given an undirected graph G = (V, E0) with ]VI = n, and a feasible 
set E of m weighted edges on V such that  G(V, Eo [3 E) is k-edge (k-vertex) 
connected, the optimal k-connectivity augmentation problem of G = (V, E0) is 
to find a subset S* C_ E such that G(V, Eo t3 S*) is k-edge (k-vertex) con- 
nected and the weighted sum of edges in S* is minimized. If the edges in the 
feasible set E = E(K,~) - Eo are unweighted, where E(K,~) is the edge set of 
the complete graph Kn on the vertex set V, it is already known that,  for any 
k < n, the exact solution for the optimal k-edge connectivity augmentation 
problem can be obtained in polynomial time [5, 8, 12, 13]. However, when the 
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edges in E are weighted, the situation is very different. In this case, we cannot 
expect to find an exact solution S* for the optimal k-connectivity augmenta- 
tion problem in polynomial time even for k = 2. Eswaran and Tarjan [3] first 
showed that if G = (V, E0) is disconnected, the optimal 2-connectivity augmen- 
tation problem is NP-complete. Frederickson and JgJ£ [4] further showed that 
even if G = (V, E0) is connected, this problem is still NP-complete [4]. Instead, 
Frederickson and J£J£ [4] presented an O(n 2) time approximation algorithm for 
the optimal 2-connectivity augmentation problem, and the solution delivered by 
their Mgorithm is not worse than twice the optimum if G is connected or 3 times 
optimum otherwise. Recently Khuller and Thurimella [7] presented another sim- 
ple algorithm for this problem. Their algorithm requires O(m + n logn) time, 
and the solution delivered is also 2 or 3 times optimum depending on whether 
G is connected or disconnected. 

One closely related problem is to find a minimum k-edge (k-vertex) connected 
spanning subgraph in a k-edge (k-vertex) weighted connected graph. This prob- 
lem can be stated as follows. Given a k-edge (k-vertex) weighted connected 
graph G(V, E) with k > 1, find a k-edge (k-vertex) connected spanning sub- 
graph G1 = (V, El) such that G1 has the minimum weighted sum of edges, 
where E1 C_ E. This problem is a speciM case of the augmentation problem with 
E0 = 0. It is also NP-complete. 

We focus on the optimal 2-connectivity augmentation problem by presenting 
parallel approximation algorithms for it. Our approach is to reduce this problem 
to the minimum weighted set cover (MWSC) problem. Our contributions include 
(i) an NC approximation algorithm for the optimal 2-edge connectivity augmen- 
tation problem which delivers a solution within either (1 + In no)(1 + e) times 
optimum if G is connected, or (1 +ln no)(1 + c) + 1 times optimum otherwise; and 
(ii) an NC approximation algorithm for the optimal biconnectivity augmenta- 
tion problem which delivers a solution within either (1 +ln nb)(1 + e) log nb times 
optimum if G is connected, or within (1 + In nb)(1 + e) log nb+ 1 times optimum 
otherwise, where n, and nb are the number of 2-edge connected components 
and biconnected components of G(V, Eo) respectively, and e is a constant with 
0 < ¢ < 1 .  

2 P r e l i m i n a r i e s  

A vertex in a graph is an articulation point if the deletion of the vertex leaves 
the graph disconnected. An edge in a graph is a bridge if the deletion of the 
edge leaves the graph disconnected. Let K = (VK, EK) be an undirected simple 
graph. A vertex v dominates a vertex u on K if and only if (u,v) E EK. If 
there are two vertex disjoint sets .4 and B of VK, we say .4 dominates B if, for 
every vertex u E B, there is a vertex v E .4 such that u is dominated by v. Let 
T(V, ET) be a rooted tree and Z C V with Z ¢ O. The vertex LCA(Z) of T is 
defined as follows: if Z = {v}, then LCA(Z) :-- v; if Z = {u, v}, then LCA(Z) 
is the vertex which is the lowest common ancestor of u and v in T; otherwise, 
LCA(Z) :-- LCA(Z - {x, y} U {nCA(x, y)}). Note that LCA(Z) is well defined 
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and is a unique vertex o f t  for a given Z. An inverted tree T(V, ET) is a directed 
tree rooted at a specified vertex r E V such that  for each vertex v (v ¢ r) there 
is a pointer pointing to v's parent FT(V), directed edge (v, FT(V)) E ET, and 
FT(r) = r. Given a set system A _C 2 X and a weight function w : A -+ R, the 
minimum weighted set cover problem consists of finding a minimum subcollection 
A' C A such that  LJ A'  = X, which is NP-complete [6]. 

3 2 - E d g e  C o n n e c t i v i t y  A u g m e n t a t i o n  

Let G = (V, E0) be connected, and E be a feasible set with m weighted edges 
such that  G(V, EoUE) is 2-edge connected. We only need to show how to increase 
the edge connectivity of a tree due to the following facts. If G has nontrivial 2- 
edge connected components (2ECCs), then we contract the vertex sets of these 
components into single vertices, resulting in a tree whose edges are the bridges 
of G(V, Eo). Let E ~ C E be an edge set such that the edges in E to be kept in E' 
are the minimum edges that  connect the vertices of different 2ECCs of G(V, Eo). 
For convenience later, E ~ is also referred to as "superimposing" E on T. It is 
easy to show that  the computation of E ~ can be finished in O(log n) time using 
O(m) processors on a CREW PRAM provided all 2ECCs of G are given. From 
now on, we assume that the initial graph is a tree T rooted at r with n¢ vertices 
where r is a degree-one vertex and nc is the number of 2ECCs of G. A bipartite 
graph B(V1, V2, Eb) is constructed as follows. V1 is the set of all edges in E ~, and 
V2 is the edge set of T. There is an edge (el, e2) E Eb and el E V/, i = 1, 2, if, 
on adding el to T, e2 is on the cycle consisting of tree edges and el. That  is, e2 
is no longer a bridge after adding el to T. 

L e m m a  1. The bipartite graph B(V1, V2, Eb) defined above can be constructed 
in O(mnc) time, where IVll <_ m - nc + 1, IV2[ <_ no, and the weight of each 
vertex in V1 is the weight of the corresponding edge of G. 

Proof. We first select a degree-one vertex as the root of T, then traverse T, 
assigning each vertex v a pre-order numbering pre(v) and the number of descen- 
dents (including itself) rid(v) of v. This assignment can be done in O(log n) time 
using O(n) processors on an EREW PRAM. The construction of B is as follows. 
Consider a non-tree edge el = (x, y) in V1 and a tree edge e2 = (u, v) in ½.  If 
u is the parent of v in T, there is an edge connecting vertices el and e2 in B if 
one of the following two conditions holds: (i) pre(v) < pre(x) < pre(v) + nd(v), 
and either pre(y) < pre(v) or pre(y) > pre(v) + nd(v); (ii) pre(v) < pre(y) < 
pre(v) + nd(v), and either pre(x) < pre(v) or pre(x) >_ pre(v) + nd(v). There- 
fore B can be constructed in O(mn¢) t ime provided E I, T, and the pre-order 
numbering and the number of descendants for each vertex in T are given. [] 

L e m m a 2 .  Let G(V,E) be a connected undirected graph, and T(V, ET) be a 
spanning tree of G. Then G is 2-edge connected if and only if V 1 ( :  E - FIT) 
dominates V2 = ET in B, where the graph B(V1, V2, Eb) induced by the tree T 
and the edge set E - ET is defined as above. 
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Proof. If G is 2-edge connected, V1 must dominate V2 in B. Assume that VI does 
not dominate V2. Then there exists a vertex e2 E V2 which is not dominated by 
any vertex in V1. This means that e2 is not in any simple cycle formed by the 
tree edges and the non-edge tree edges, which is a contradiction. 

If V1 dominates V2 in B, each edge in T is included in a simple cycle at least. 
This means that the remaining graph is still connected after deleting any edge 
from G, i.e., there is no bridge in G. [] 

Now, for any subset S C_ V1, if S dominates V2 in B, then the edge set 
corresponding to S is a 2-edge connectivity augmentation of G. Let w(S)  be the 
weighted sum of the vertices in S. If such a S* C V1 with minimal w(S*) can be 
found, then S* is a solution of the problem. For simplicity of expression later, S* 
is called a minimum dominator set on B. Thus, the optimal 2-edge connectivity 
augmentation problem becomes to find S*, while the problem of finding S* is 
equivalent to an MWSC problem. Let X = V2. For each vertex v E V1, there is a 
corresponding set Av = { u : (u, v) E Eb, v e V1, u E V2}. The weight of My is 
the weight of the corresponding edge of v. Then to find S* on B becomes to find 
a subcollection of sets A~ such that U.4v = X and the weighted sum of these 
sets is minimized. For this latter problem, Berger et al. [1] have the following 
theorem. 

T h e o r e m 3 .  [1] Let H = (V,E) be a hypergraph with IVI -- n' and IEI = m'.  
For any 0 < e < 1, there is an NC algorithm for the minimum set cover problem 
that uses O(m' +n')  processors, runs in O(log 4 n' 1ogre' log~(n'm')/c 6) time, and 
produces a cover of weight at most (1 + c)(1 + In A)r*, where A is the maximum 
vertex degree and 7* is the optimal solution. D 

Recall that our approximation algorithm for the optimal 2-edge connectivity 
augmentation problem consists of three stages. In the first stage it generates a 
2ECC tree T if G is connected. Otherwise, adding the edges in the feasible set 
E t yields a minimum spanning tree (MST), and adding the tree edges into G 
produces T. In the second stage, it constructs a bipartite graph B. In the third 
stage it finds an approximate solution for the minimum dominator set on B. Now 
we give the parallel implementation details for these three stages. First, we show 
how to construct the 2ECC tree T. Given a graph G = (V, E0), finding M1 2ECCs 
and the bridges of G can be done by applying the biconnectivity algorithm 
of Tarjan and Vishkin [11]. That is, after finding all biconnected components 
(2VCCs), we identify those 2VCCs consisting of one edge only which are bridges 
of G, compute all connected components (CCs) of the remaining graph by deleting 
all bridges from G, construct a tree T in which the vertices are those CCs, and 
the edges are those bridges. If G is disconnected, we obtain a forest F rather than 
a tree T. We then add the edges in E ~ to G, produce an MST by the algorithm 
of Chin et al. [2], and yield T by adding some of the edges of the MST to F. 

The construction of B is straightforward. We only need to test the two con- 
ditions in the proof of Lemma 1. This can done easily given the tree T ~ and the 
pre-order numbering of vertices in T. Note that the degree of B is n~. Having 
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the graph B, we obtain an approximation solution for the minimum dominating 
set S* on B by applying the algorithm in [1]. 

In case G = (V, E0) is disconnected, find an MST of G(V, EoUE) by assigning 
the edges in E0 with weights 0 and the edges in E with their original weights, 
add the edges of the MST to G(V, Eo), and generate T defined as before. For 
this latter case we show that this leads to an approximation solution within 
(1 + In no)( 1 + c) + 1 times optimum, where nc is the numb er of 2 ECCs of G(V, E0) 
and e is a small constant with 0 < e < 1. Let G* be a minimum 2-edge connected 
graph produced by optimal augmentation to G, and let w(G*) be the associated 
weight of G*. The proof proceeds as follows. We add all superimposing edges of 
G* on T, then the edges in G* - T form a dominating set on B because G* is 2- 
edge connected by Lemma 2. Therefore, the set of all edges in G* - T dominates 
the edge set of T. Let w(T*) be the minimmn 2-edge augmentation on T such 
that the resulting graph is 2-edge connected. Then w(T*) < w(G* - T )  < w(G*). 
Meanwhile, w(T) < w(G*) because the MST of G is a minimum connected 
spanning graph. In summary, we have the following theorem. 

T h e o r e m 4 .  Given a weighted graph G = (V, Eo) and a feasible set E, there ex- 
ists an NC approximation algorithm for the optimal 2-edge connectivity augmen- 
tation problem which delivers a solution within either (1 +ln no)(1 + e) times op- 
timum if G is connected or ( l + l n n c ) ( l + e ) + l  times optimum otherwise. The al- 
gorithm requires O(log 7 n/e 6) time and O(mnc) processors on a CRCW PRAM, 
where nc is the number of 2ECCs of G and c is a constant with 0 < e < 1. 

Proof. Now we analyze the computational complexity of the proposed NC ap- 
proximation algorithm. The 2ECC tree T can be constructed in O(tog.n) time 
using O(m + n) processors on a CRCW PRAM by the biconnectivity algorithm 
of Tarjan and Vishkin. The construction of tree T ~ and the assignment of the 
pre-ordering numbering to the vertices in T can be done in O(log n) time using 
O(n) processors by Schieber and Vishkin's algorithm [10]. The graph B can be 
constructed in O(1) time using O(mnc) processors on a CREW PRAM. Find- 
ing an approximation solution for the MWSC problem induced by B can be 
done in O(log 7 n/e 6) time using O(mn~) processors on a CRCW PRAM because 
IEbl < mn~. The solution generated is within (1 + In no)(1 + e) times optimum 
by Theorem 3, where n~ is the number of 2ECCs of G(V, Eo) and e is a constant 
with 0 < ¢ < 1. 

Corol la ryh .  Given a weighted 2-edge connected graph G(V,E), finding a 2- 
edge connected spanning subgraph whose weight is (1 A- in n)(1 -I- e) A- 1 times 
the weight of the minimum, 2-edge connected spanning subgraph can be done in 
O(log 7 n/e 6) time using O(mn) processors on a CRCW PRAM, where e is a 
constant and 0 < e < 1. 

4 B i e o n n e e t i v i t y  A u g m e n t a t i o n  

Assume that G = (V, E0) is connected. Our strategy for this problem is similar 
to the one used in the previous section. That is, first obtain a block tree T of 



435 

the biconnected components (2VCCs) of G, which is defined as follows. The 
vertex set of T is Va W Vb, where V~ is the set by all articulation points of G, 
and Vb is the set by all 2VCCs of G. The edge set E(T) of T consists of edge 
(a~, bj), where a~ e V~, bj e Vb, and ai is included in bj. In the following, by 
superimposing an edge (z, y) E E on T, we mean adding an edge between ai 
and bj, where z is either an articulation point (x = a~) or z is included in the 
2VCC ai, and y is either an articulation point (y = bj) or y is included in the 
2VCC bj. If there are multiple edges between two vertices in T, we just keep 
the edge with the minimum weight, and remove all the other edges. Let the 
remaining edge set be E ' ,  then [E'[ < IE] < m. In the rest we only consider 
adding some edges in E '  to make G biconnected. Then the construction of the 
bipartite graph B(V1, V2, Eb) is as follows. V1 is the set of the edges in E ', and 
V~ is the set of the 2VCCs of G. There is an edge (vl,v~) E Eb and vi E ~ ,  
i = 1, 2, if adding the corresponding edge e = (z, y) of vl to T, v2 is in the cycle 
consisting of the tree edges and e. Third,  we find an approximation solution 
S~ of the MWSC problem induced by B~, where Bi is obtained from B~-I and 

,~i - lq ,  0 < i < [loglV21]- 1. Initially B0 = B and S = 0. Let E "  be S = v j = l ~ , j ,  

' [l°gW2N-1S~. Finally adding all edges in E '~ to the corresponding edge set of ui= 0 
G makes it biconnected. 

L e m m a 6 .  Given the block tree T and E ~, the graph B(V1, V2, Eb) can be con- 
structed in O(mrtb) lime, where ~i=1,2 I~] <- m +  rib, IV2] < rib. 

Proof. Given T, construct an auxiliary tree T ' such that  the LCA query of 
two vertices in T can be answered in O(1) time. The construction of T t can 
be done in O(n) t ime by Schieber and Vishkin's algorithm [10]. Now we con- 
struct the graph B as follows. Let the corresponding edge of vertex vl E V1 
be e = (x,y), and t = LCA({x,y})  be the lowest common ancestor of x 
and y in T. Then there is an edge between vl and v2 E V2 if either one of 
the following conditions holds: (i) LCA({x,  v2}) = x and nCA({v2,y}) = v2 
when t = z; (it) LCA({z,v~}) = v2 and nCA({v2, y}) = y when t = y; (iii) 
either nCA({t ,  v2}) : t and LCA({v2,x}) = v2, or LCA({t, v2)) = t and 
LCA({v2,y}) : v2 when t # x and t # y. Obviously B can be obtained in 
O(IEbl) = O(mnb) time. [] 

Denote by Gs[X U Y] a subgraph of B(V~, V2, Eb) consisting of the vertices 
in X U Y and the edges between these vertices, where X U Y C V1 U V2. Then we 
have the following lemma which is very important  to construct our algorithm. 

L e m m a  7. Let a subset S C V1 dominate ~he set V2. Then lhe graph formed by 
adding the corresponding edges of vertices in S to G is biconnected if and only 
ff GB[S U V2] is connecled. 

Proof. Let S C V1 and S dominate Vz. Suppose G is not biconnected. We first 
show that  if GB[S U V~] is disconnected, G(V, Eo U S) is not biconnected. We 
then show that  if Gs[SU V2] is connecled, the graph formed by adding the edges 
in S to G is biconnected. 
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Assume that  GB[SU V2] is disconnected, and has k CCs with k > 1. Let A 
and B be two CCs among these k CCs, and V(A) and V(B) be the vertex sets 
of A and B respectively. Let b(A) = V(A) N V2 and b(B) = V(B) n V2. Denote by 
a = LCA(b(A)) and ~ = LCA(b(B)) on T. Then there exists a unique pa th  ~-~p 
between a and t3 on T. Note that  it is possible that  ~r~ z consists of one vertex 
only. We further assume that  ~r~Z contains no vertices belonging to other CCs 
except A and B. The problem now is divided into the following three cases: (i) 
a ¢ fl and neither one is the ancestor of another in T. Then ~'~Z contains more 
than one vertex, and at least one vertex v among these vertices is an articulation 
point of G by the property of T. So, deleting v will leave the vertices in b(A) 
and the vertices in b(B) in different CCs. Therefore, v is still an articulation 
point of G(V, Eo U S). (ii) a = t 3. In this case we further classify whether a is an 
articulation point of G. If  it is, then deletion of a will leave the vertices in b(A) 
and the vertices in b(B) in different CCs. Therefore, o~ is still an articulation 
point of G(V, Eo U S). Otherwise, a is a 2VCC vertex, which is impossible. If  a 
is a 2VCC vertex, it must  be included in V(A). For the same reason, it must  be 
included in V(B) also, then A and B should be the same CC rather than two 
distinguished CCs, contradicting our initial assumption. Therefore, a is not a 
2VCC vertex. (iii) a ¢ / ? ,  and one is the ancestor of another in T. Assume that  
/~ is the ancestor of o~. Let T~ be a subtree of T rooted at a including all vertices 
in b(A). By the same argument as case (ii), we can show that  a is an articulation 
point of G only. Meanwhile, we also note that  there are not any edges between 
a vertex other than a in T~ and a vertex in V~ U Vb -- V(Tc~) except the edges 
incident to a,  which means that  the deletion of a will leave the vertices in T~ 
and the other vertices of T separated. Therefore, G(V, Eo US) is not biconnected. 

Now we show the second part .  Our approach is to show that  every articulation 
point of G is no longer an articulation point of the resulting graph after adding 
the edges in S to G. Let v be an arbi trary articulation point of G, and v be 
contained in l 2VCCs bl, b2 , . . . ,  bz. Then v is an adjacent vertex of these l vertices 
in T. We need to prove that ,  if GB[S U V2] is connected, then all 2VCCs sharing 
v should become a 2VCC of G(V, Eo U S). We start  by finding all shortest paths 
between bl and bj in GB [SUV2], where 2 < j ___ l. Note that  these paths definitely 
exist in GB[SUV~] because it is connected. Let the shortest pa th  between bl and 
bk, denoted by Pbl,bk, be the shortest among these 1 - 1  shortest paths, 2 < k < 1. 
Assuming that  the vertex sequence of Pbl,b~ is bl, el, cl, e2, c2, . . . ,  ep, bk, ei E V1, 
cj E V2, where 1 < i < p, 1 < j < p -  1, and Pbl,b~ does not contain any other 
bj for j ¢ k. If  IPbl,bk I = 1, by the definition of B, bl and bk are on the cycle of 
tree edges of T and the edge el. We merge all 2VCCs on this cycle into a 2VCC. 
As a result, bl and bk are merged into a 2VCC b'. Now v is still an articulation 
point of the augmented graph shared by l -  1 2VCCs b ~, b2, • •., bk- 1, bk+l, • . . ,  bt. 
We follow the method above and continue merging. Finally all initial 2VCCs 
sharing v are merged into one 2VCC, and v is no longer an articulation point of 
G(V, EoUS). If IPbl,bk I = P and p > 1, then all vertices bj for j ¢ 1 and j ¢ k do 
not appear  on this path.  By induction on p, it is easy to prove that  all 2VCCs on 
this path can be merged into one 2VCC. Tha t  means, after merging all 2VCCs 
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on Pbl,bk, bl and b~ are merged into a 2VCC b', and v now is an articulation 
point shared by l - 1 2VCCs. We apply the method above again to merge all 
the remaining 2VCCs sharing v. As a result, all bi for 1 < i < l are merged into 
a 2VCC, and v is no longer an articulation point of G(V, Eo to S). [] 

Having the lemma above, we now assign to each vertex in V1 the correspond- 
ing edge's weight. Let S* be a S defined above with the minimum weighted sum. 
Then the remaining task is to find such a S*. Obviously this is an NP-complete 
problem again. Instead we look for an approximation solution for it. The basic 
idea of our approximation solution is to reduce this problem to a series of MWSC 
problems induced by B~(V (~), V(i),E~0), 0 < i < [loglV2 H - 1. The bipartite 
graph Bi(V (0, V(i),E~ i)) is constructed as follows. Given B~-I and aset  S C V1, 
Initially Bo(V (°), V (°) , E~ °)) := B(V1, V2, Eb) and S := @. we compute all CCs of 
GB[Sto V2] first. Then a vertex v C V (~-I) is included in V (0  if and only if there 
exists at least two edges (v,x),(v,y) e E~ i-1) such that  x and y are in different 
CCs of GB[S to V2]. V (0  is the set consisting of all CCs of GB[S to V2]. The edge 
set E~ ~) includes all edges (v, c) and (v, d), where c is the CC containing z, d is 
the CC containing y, c # d, and (v, x), (v,y) • E~ i-1). If there is more than one 
edge between two vertices in Bi, we delete all duplicate edges between them but 
one. An approximation algorithm for finding S in Lemma 7 is as follows. 

s : =  : =  vl;  := v2; := Eb; 

W h i l e  GB [S tO V2] is disconnected do  
Find the minimum dominator set S~ which dominates V2 (~) in Bi; 
S := StO Si; 
Compute all connected components of graph GB IS tO V2]; 
Construct the bipartite graph Bi+l; 
i : = i + 1  

E n d w h i l e .  

Note that  Si in the algorithm cannot be obtained in polynomial time unless 
P=NP. However an approximation solution for Si can be found by solving an 
MWSC problem induced on Bi. Let S~ be an approximation solution of Si by 
the algorithm due to Berger et al. [1], then this solution is (1 + In nb) (1 + e) times 
optimum where nb is the number of 2VCCs of G(V, E0) and e is a constant with 
0 < c < 1. Therefore, we have the following lemma. 

L e m m a  8. Given B is defined as above, lel S' C V1 dominate V2 and GB[S'tOV2] 
be connected. Then we can find an approximation solution S' which is (1 + 
In nb)(1 + c) log nb limes optimum, where nb is the number of 2VCCs in a con- 
nected graph G(V, Eo). 

Proof. Assume that  S* C V1 has the minimum weighted sum such that  S* dom- 
inates V2, and GB[S* tO V2] is connected. From the algorithm above, it is obvious 
that  w(Si) < w(S*) because Si is such a vertex set with the minimum weighted 
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sum that dominates V2, while the vertex set S*, in addition to satisfying all 
properties of Si, has an additional restriction that GB[S* l.) V2] is connected. 
The other important observation is that the edges incident to each vertex in V1 
connect at least two vertices in V2, therefore, the number of vertices in P~ is re- 
duced by at least one half from Bi to Bi+l. However IV2[ < nb initially. Thus after 
[log nb] times repetitions of the while  loop, all vertices in V~ are merged into the 
same CC. The approximation solution obtained has weight ~-~logjy:H-1 w(S~) 

~=[l°giV:ll-1 Innb)(1 e)w(Si) < -< (I + + Flog nbl (1 + In rib)(1 + c)max{w(Si)} 
< [log nb](1 + In nb)(1 + e)w(S*). [] 

Now we present the parallel implementation details for the optimal biconnec- 
tivity augmentation problem. The approach adopted is similar to that for the op- 
timal 2-edge connectivity augmentation problem. The block tree T is constructed 
as follows. Apply the biconnectivity algorithm of Tarj an and Vishkin [11] to find 
all 2VCCs of G, and identify all articulation points of G. Note that a vertex is 
an articulation point if it appears in more than one 2VCC. After that, construct 
an adjacency matrix of T, and run the algorithm for computing the CCs of T 
due to Chin et al. [2] to establish the inverted tree T. 

L e m m a 9 .  The block tree T (stored as an inverted tree) can be constructed in 
O(log2 n) time using O(n2/ logn)  processors on a CRCW PRAM. 

Proof. The algorithm for finding all biconnected components requires O(log n) 
time and O(m ~ + n) processors if G has m' edges and n vertices on a CRCW 
PRAM [11]. The adjacency matrix o f t  can be constructed in O(log n) time using 
O(n 2) processors on a CREW PRAM. The inverted tree T can be obtained in 
O(log 2 n) time using O(n2/log n) processors on a CREW PRAM. [] 

The feasible set E'  can be generated in O(logn) time using IEI < n 2 pro- 
cessors on a CRCW PRAM. The details are as follows: assign to the endpoints 
of every edge in E their labels (articulation points or 2VCC identifications) in 
T; sort these edges by their endpoint labels as the first key and by their as- 
sociated weights as the second key; delete all other edges with the same labels 
but keep one with the minimum weight by applying prefix computation. So, the 
total computation can be finished in O(log n) time using O(n 2) processors on a 
CRCW PRAM. The computation of CCs of GB [S U V~] can be done by Chin et 
al's [2] algorithm which requires O(log 2 n) time and O(mnb) processors. 

L e m m a l 0 .  Given T and T ~ and feasible set E', the graph B can be constructed 
in O(1) time using O(mnb) processors on an CREW PRAM where nb is the 
number of 2VCCs in G. 

Proof. The vital step in the construction of B is to test the three conditions 
in the proof of Lemma 6, which can be done in O(1) time provided that E ~, 
T, and T' are given. Therefore the construction of B requires O(1) time and 
O(IEbl) -= O(mnb) processors on a CREW PRAM. [] 
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It remains to find an approximation solution S' C V1 of B such that (i) 
S' dominates V2; (it) GB[S' U V2] is connected; and (iii) w(S') <_ [lognb](1 + 
In nb)(1 +c)w(S*),  where nb is the number of 2VCCs in G(V, Eo) and c is a small 
constant with 0 < e < 1. This S ~ can be achieved by Lemma 8. Therefore, we 
have the following theorem. 

T h e o r e m  11. Given a weighted graph G = (V, E0) and a feasible set E ~, there 
exists an NC approximation algorithm for the optimal biconncctivity augmenta- 
tion problem which requires O(log7 n log nb/c 6) time and O(mnb) processors on 
a C R C W  PRAM. The solution delivered is either (1 + lnnb)(1 + e) lognb times 
optimum if G is connected, or (1 + In rib)(1 + e) log nb + 1 times optimum, where 
nb is the number of 2VCCs  in G and e is a constant with 0 < e < 1. 

C o r o l l a r y  l 2 .  Given a weighted biconnected graph G(V,E) ,  finding a bicon- 
nected spanning subgraph whose weight is ( l + l n  n ) ( l+e )  l o g n + l  times the weight 
of the minimum biconnecied spanning subgraph can be done in O(log s n / e  6) 
time using O(mn) processors on a C R C W  PRAM, where e is a constant with 
O < e < l .  

R e f e r e n c e s  

1. B. Berger, J. Rompel and P. W. Shor. Efficient NC algorithms for set cover with 
applications to learning and geometry. J. Comp. and Sys. Sci., 49, 1994, 454-477. 

2. F. Y. Chin, J. Lain and I -N Chen. Efficient parallel algorithms for some graph 
problems. Comm. ACM., 25, 1982, 659-665. 

3. K. P. Eswaran and R. E. Taxjan. Augmentation problems. SIAM J. Comput., 
5(4), 1976, 653-665. 

4. G. N. Frederickson and J. J£J£. Approximation algorithms for several graph aug- 
mentation problems. SIAM J. Comput., 10(2), 1981, 270-283. 

5. H. N. Gabow. A matroid approach to finding edge connectivity and packing ar- 
borescences. Proc. 32nd Annual ACM Syrup. on Theory of Comp., 1991, 112-122. 

6. R. Karp. Reducibility among combinatorial problems. Complexity and Computer 
Computations, R.E. Miller and J. W. Thatcher, Eds, Plenum, NY, 1975. 

7. S. Khuller and R. Thurimelta. Approximation algorithms for graph augmentation. 
Y. Algorithms, 14, 1993, 214-225. 

8. D. Naor, D. Gusfietd and C. Martel. A fast algorithm for optimally increasing the 
edge-connectivity. Proc. 31st Ann. IEEE Syrup. on Found. o] Comp. Sci., 1990, 
698-707. 

9. A. Rosenthal and A. Goldner. Smallest augmentations to biconnect a graph. SIAM 
J. Comput., 6(1), 1977, 55-66. 

10. B. Schieber and U. Vishkin. On finding lowest common ancestors: simplication 
and parallelization. SIAM Y. Comput., 17(6), 1988, 1253-1262. 

11. R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM 
J. Comput., 14, 1985, 862-874. 

12. T. ~¥atanabe and A. Nakamura. Edge-connectivity augmentation problem. J. 
Comput. Syst. Sci., 35(1), 1987, 96-144. 

13. T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of 
graph. Y. Comput. Syst. Sci., 46, 1993, 91-128. 


