
NC Approximation Algorithms
for 2-Connectivity Augmentation in a Graph *

Weifa Liangt$ George Havast

t School of Information Technology
The University of Queensland, Brisbane, QLD 4072, Australia

+ Department of Mathematics
The University of Queensland, Brisbane, QLD 4072, Australia

Abst rac t . Given an undirected graph G = (V, E0) with IVI-- n, and a
feasible set E of m weighted edges on V, the optimal 2-edge (2-vertex)
connectivity augmentation problem is to find a subset S* __ E such that
G(V, E0 U S*) is 2-edge (2-vertex) connected and the weighted sum of
edges in S* is minimized. We devise NC approximation algorithms for
the optimal 2-edge connectivity and the optimal 2-vertex connectivity
augmentation problems by delivering solutions within (1 + In no)(1 + e)
times optimum and within (1 + In nb)(1 + e)log nb times optimum when
G is connected, respectively, where nc is the number of 2-edge connected
components of G, nb is the number of biconnected components of G, and
e is a constant with 0 < e < 1. Consequently, we find an approximation
solution for the problem of the minimum 2-edge (biconnected) spanning
subgraph on a weighted 2-edge connected (biconnected) graph in the
same time and processor bounds.

1 I n t r o d u c t i o n

Augmenting the connectivity of communication networks is increasingly becom-
ing important to provide" reliable means of communication. In the following the
k-connectivity of~a graph refers to either k-edge connectivity or k-vertex connec-
tivity. A graph is k-edge (k-vertex) connected if there are k edge-disjoint (vertex-
disjoint) paths joining each pair of vertices in it. A 2-edge connected graph is
called bridge-connected graph, and a 2-vertex connected graph is called bicon-
nected. Given an undirected graph G = (V, E0) with]VI = n, and a feasible
set E of m weighted edges on V such that G(V, Eo [3 E) is k-edge (k-vertex)
connected, the optimal k-connectivity augmentation problem of G = (V, E0) is
to find a subset S* C_ E such that G(V, Eo t3 S*) is k-edge (k-vertex) con-
nected and the weighted sum of edges in S* is minimized. If the edges in the
feasible set E = E(K,~) - Eo are unweighted, where E(K,~) is the edge set of
the complete graph Kn on the vertex set V, it is already known that, for any
k < n, the exact solution for the optimal k-edge connectivity augmentation
problem can be obtained in polynomial time [5, 8, 12, 13]. However, when the

* Part of this work was done when the first author was associated with the Dept. of
Computer Science, Australian National University, Canberra, ACT 0200, Australia

431

edges in E are weighted, the situation is very different. In this case, we cannot
expect to find an exact solution S* for the optimal k-connectivity augmenta-
tion problem in polynomial time even for k = 2. Eswaran and Tarjan [3] first
showed that if G = (V, E0) is disconnected, the optimal 2-connectivity augmen-
tation problem is NP-complete. Frederickson and JgJ£ [4] further showed that
even if G = (V, E0) is connected, this problem is still NP-complete [4]. Instead,
Frederickson and J£J£ [4] presented an O(n 2) time approximation algorithm for
the optimal 2-connectivity augmentation problem, and the solution delivered by
their Mgorithm is not worse than twice the optimum if G is connected or 3 times
optimum otherwise. Recently Khuller and Thurimella [7] presented another sim-
ple algorithm for this problem. Their algorithm requires O(m + n logn) time,
and the solution delivered is also 2 or 3 times optimum depending on whether
G is connected or disconnected.

One closely related problem is to find a minimum k-edge (k-vertex) connected
spanning subgraph in a k-edge (k-vertex) weighted connected graph. This prob-
lem can be stated as follows. Given a k-edge (k-vertex) weighted connected
graph G(V, E) with k > 1, find a k-edge (k-vertex) connected spanning sub-
graph G1 = (V, El) such that G1 has the minimum weighted sum of edges,
where E1 C_ E. This problem is a speciM case of the augmentation problem with
E0 = 0. It is also NP-complete.

We focus on the optimal 2-connectivity augmentation problem by presenting
parallel approximation algorithms for it. Our approach is to reduce this problem
to the minimum weighted set cover (MWSC) problem. Our contributions include
(i) an NC approximation algorithm for the optimal 2-edge connectivity augmen-
tation problem which delivers a solution within either (1 + In no)(1 + e) times
optimum if G is connected, or (1 +ln no)(1 + c) + 1 times optimum otherwise; and
(ii) an NC approximation algorithm for the optimal biconnectivity augmenta-
tion problem which delivers a solution within either (1 +ln nb)(1 + e) log nb times
optimum if G is connected, or within (1 + In nb)(1 + e) log nb+ 1 times optimum
otherwise, where n, and nb are the number of 2-edge connected components
and biconnected components of G(V, Eo) respectively, and e is a constant with
0 < ¢ < 1 .

2 P r e l i m i n a r i e s

A vertex in a graph is an articulation point if the deletion of the vertex leaves
the graph disconnected. An edge in a graph is a bridge if the deletion of the
edge leaves the graph disconnected. Let K = (VK, EK) be an undirected simple
graph. A vertex v dominates a vertex u on K if and only if (u,v) E EK. If
there are two vertex disjoint sets .4 and B of VK, we say .4 dominates B if, for
every vertex u E B, there is a vertex v E .4 such that u is dominated by v. Let
T(V, ET) be a rooted tree and Z C V with Z ¢ O. The vertex LCA(Z) of T is
defined as follows: if Z = {v}, then LCA(Z) :-- v; if Z = {u, v}, then LCA(Z)
is the vertex which is the lowest common ancestor of u and v in T; otherwise,
LCA(Z) :-- LCA(Z - {x, y} U {nCA(x, y)}). Note that LCA(Z) is well defined

432

and is a unique vertex o f t for a given Z. An inverted tree T(V, ET) is a directed
tree rooted at a specified vertex r E V such that for each vertex v (v ¢ r) there
is a pointer pointing to v's parent FT(V), directed edge (v, FT(V)) E ET, and
FT(r) = r. Given a set system A _C 2 X and a weight function w : A -+ R, the
minimum weighted set cover problem consists of finding a minimum subcollection
A' C A such that LJ A' = X, which is NP-complete [6].

3 2 - E d g e C o n n e c t i v i t y A u g m e n t a t i o n

Let G = (V, E0) be connected, and E be a feasible set with m weighted edges
such that G(V, EoUE) is 2-edge connected. We only need to show how to increase
the edge connectivity of a tree due to the following facts. If G has nontrivial 2-
edge connected components (2ECCs), then we contract the vertex sets of these
components into single vertices, resulting in a tree whose edges are the bridges
of G(V, Eo). Let E ~ C E be an edge set such that the edges in E to be kept in E'
are the minimum edges that connect the vertices of different 2ECCs of G(V, Eo).
For convenience later, E ~ is also referred to as "superimposing" E on T. It is
easy to show that the computation of E ~ can be finished in O(log n) time using
O(m) processors on a CREW PRAM provided all 2ECCs of G are given. From
now on, we assume that the initial graph is a tree T rooted at r with n¢ vertices
where r is a degree-one vertex and nc is the number of 2ECCs of G. A bipartite
graph B(V1, V2, Eb) is constructed as follows. V1 is the set of all edges in E ~, and
V2 is the edge set of T. There is an edge (el, e2) E Eb and el E V/, i = 1, 2, if,
on adding el to T, e2 is on the cycle consisting of tree edges and el. That is, e2
is no longer a bridge after adding el to T.

L e m m a 1. The bipartite graph B(V1, V2, Eb) defined above can be constructed
in O(mnc) time, where IVll <_ m - nc + 1, IV2[<_ no, and the weight of each
vertex in V1 is the weight of the corresponding edge of G.

Proof. We first select a degree-one vertex as the root of T, then traverse T,
assigning each vertex v a pre-order numbering pre(v) and the number of descen-
dents (including itself) rid(v) of v. This assignment can be done in O(log n) time
using O(n) processors on an EREW PRAM. The construction of B is as follows.
Consider a non-tree edge el = (x, y) in V1 and a tree edge e2 = (u, v) in ½. If
u is the parent of v in T, there is an edge connecting vertices el and e2 in B if
one of the following two conditions holds: (i) pre(v) < pre(x) < pre(v) + nd(v),
and either pre(y) < pre(v) or pre(y) > pre(v) + nd(v); (ii) pre(v) < pre(y) <
pre(v) + nd(v), and either pre(x) < pre(v) or pre(x) >_ pre(v) + nd(v). There-
fore B can be constructed in O(mn¢) t ime provided E I, T, and the pre-order
numbering and the number of descendants for each vertex in T are given. []

L e m m a 2 . Let G(V,E) be a connected undirected graph, and T(V, ET) be a
spanning tree of G. Then G is 2-edge connected if and only if V 1 (: E - FIT)
dominates V2 = ET in B, where the graph B(V1, V2, Eb) induced by the tree T
and the edge set E - ET is defined as above.

433

Proof. If G is 2-edge connected, V1 must dominate V2 in B. Assume that VI does
not dominate V2. Then there exists a vertex e2 E V2 which is not dominated by
any vertex in V1. This means that e2 is not in any simple cycle formed by the
tree edges and the non-edge tree edges, which is a contradiction.

If V1 dominates V2 in B, each edge in T is included in a simple cycle at least.
This means that the remaining graph is still connected after deleting any edge
from G, i.e., there is no bridge in G. []

Now, for any subset S C_ V1, if S dominates V2 in B, then the edge set
corresponding to S is a 2-edge connectivity augmentation of G. Let w(S) be the
weighted sum of the vertices in S. If such a S* C V1 with minimal w(S*) can be
found, then S* is a solution of the problem. For simplicity of expression later, S*
is called a minimum dominator set on B. Thus, the optimal 2-edge connectivity
augmentation problem becomes to find S*, while the problem of finding S* is
equivalent to an MWSC problem. Let X = V2. For each vertex v E V1, there is a
corresponding set Av = { u : (u, v) E Eb, v e V1, u E V2}. The weight of My is
the weight of the corresponding edge of v. Then to find S* on B becomes to find
a subcollection of sets A~ such that U.4v = X and the weighted sum of these
sets is minimized. For this latter problem, Berger et al. [1] have the following
theorem.

T h e o r e m 3 . [1] Let H = (V,E) be a hypergraph with IVI -- n' and IEI = m'.
For any 0 < e < 1, there is an NC algorithm for the minimum set cover problem
that uses O(m' +n') processors, runs in O(log 4 n' 1ogre' log~(n'm')/c 6) time, and
produces a cover of weight at most (1 + c)(1 + In A)r*, where A is the maximum
vertex degree and 7* is the optimal solution. D

Recall that our approximation algorithm for the optimal 2-edge connectivity
augmentation problem consists of three stages. In the first stage it generates a
2ECC tree T if G is connected. Otherwise, adding the edges in the feasible set
E t yields a minimum spanning tree (MST), and adding the tree edges into G
produces T. In the second stage, it constructs a bipartite graph B. In the third
stage it finds an approximate solution for the minimum dominator set on B. Now
we give the parallel implementation details for these three stages. First, we show
how to construct the 2ECC tree T. Given a graph G = (V, E0), finding M1 2ECCs
and the bridges of G can be done by applying the biconnectivity algorithm
of Tarjan and Vishkin [11]. That is, after finding all biconnected components
(2VCCs), we identify those 2VCCs consisting of one edge only which are bridges
of G, compute all connected components (CCs) of the remaining graph by deleting
all bridges from G, construct a tree T in which the vertices are those CCs, and
the edges are those bridges. If G is disconnected, we obtain a forest F rather than
a tree T. We then add the edges in E ~ to G, produce an MST by the algorithm
of Chin et al. [2], and yield T by adding some of the edges of the MST to F.

The construction of B is straightforward. We only need to test the two con-
ditions in the proof of Lemma 1. This can done easily given the tree T ~ and the
pre-order numbering of vertices in T. Note that the degree of B is n~. Having

434

the graph B, we obtain an approximation solution for the minimum dominating
set S* on B by applying the algorithm in [1].

In case G = (V, E0) is disconnected, find an MST of G(V, EoUE) by assigning
the edges in E0 with weights 0 and the edges in E with their original weights,
add the edges of the MST to G(V, Eo), and generate T defined as before. For
this latter case we show that this leads to an approximation solution within
(1 + In no)(1 + c) + 1 times optimum, where nc is the numb er of 2 ECCs of G(V, E0)
and e is a small constant with 0 < e < 1. Let G* be a minimum 2-edge connected
graph produced by optimal augmentation to G, and let w(G*) be the associated
weight of G*. The proof proceeds as follows. We add all superimposing edges of
G* on T, then the edges in G* - T form a dominating set on B because G* is 2-
edge connected by Lemma 2. Therefore, the set of all edges in G* - T dominates
the edge set of T. Let w(T*) be the minimmn 2-edge augmentation on T such
that the resulting graph is 2-edge connected. Then w(T*) < w(G* - T) < w(G*).
Meanwhile, w(T) < w(G*) because the MST of G is a minimum connected
spanning graph. In summary, we have the following theorem.

T h e o r e m 4 . Given a weighted graph G = (V, Eo) and a feasible set E, there ex-
ists an NC approximation algorithm for the optimal 2-edge connectivity augmen-
tation problem which delivers a solution within either (1 +ln no)(1 + e) times op-
timum if G is connected or (l + l n n c) (l + e) + l times optimum otherwise. The al-
gorithm requires O(log 7 n/e 6) time and O(mnc) processors on a CRCW PRAM,
where nc is the number of 2ECCs of G and c is a constant with 0 < e < 1.

Proof. Now we analyze the computational complexity of the proposed NC ap-
proximation algorithm. The 2ECC tree T can be constructed in O(tog.n) time
using O(m + n) processors on a CRCW PRAM by the biconnectivity algorithm
of Tarjan and Vishkin. The construction of tree T ~ and the assignment of the
pre-ordering numbering to the vertices in T can be done in O(log n) time using
O(n) processors by Schieber and Vishkin's algorithm [10]. The graph B can be
constructed in O(1) time using O(mnc) processors on a CREW PRAM. Find-
ing an approximation solution for the MWSC problem induced by B can be
done in O(log 7 n/e 6) time using O(mn~) processors on a CRCW PRAM because
IEbl < mn~. The solution generated is within (1 + In no)(1 + e) times optimum
by Theorem 3, where n~ is the number of 2ECCs of G(V, Eo) and e is a constant
with 0 < ¢ < 1.

Corol la ryh . Given a weighted 2-edge connected graph G(V,E), finding a 2-
edge connected spanning subgraph whose weight is (1 A- in n)(1 -I- e) A- 1 times
the weight of the minimum, 2-edge connected spanning subgraph can be done in
O(log 7 n/e 6) time using O(mn) processors on a CRCW PRAM, where e is a
constant and 0 < e < 1.

4 B i e o n n e e t i v i t y A u g m e n t a t i o n

Assume that G = (V, E0) is connected. Our strategy for this problem is similar
to the one used in the previous section. That is, first obtain a block tree T of

435

the biconnected components (2VCCs) of G, which is defined as follows. The
vertex set of T is Va W Vb, where V~ is the set by all articulation points of G,
and Vb is the set by all 2VCCs of G. The edge set E(T) of T consists of edge
(a~, bj), where a~ e V~, bj e Vb, and ai is included in bj. In the following, by
superimposing an edge (z, y) E E on T, we mean adding an edge between ai
and bj, where z is either an articulation point (x = a~) or z is included in the
2VCC ai, and y is either an articulation point (y = bj) or y is included in the
2VCC bj. If there are multiple edges between two vertices in T, we just keep
the edge with the minimum weight, and remove all the other edges. Let the
remaining edge set be E ' , then [E'[< IE] < m. In the rest we only consider
adding some edges in E ' to make G biconnected. Then the construction of the
bipartite graph B(V1, V2, Eb) is as follows. V1 is the set of the edges in E ', and
V~ is the set of the 2VCCs of G. There is an edge (vl,v~) E Eb and vi E ~ ,
i = 1, 2, if adding the corresponding edge e = (z, y) of vl to T, v2 is in the cycle
consisting of the tree edges and e. Third, we find an approximation solution
S~ of the MWSC problem induced by B~, where Bi is obtained from B~-I and

,~i - lq , 0 < i < [loglV21]- 1. Initially B0 = B and S = 0. Let E " be S = v j = l ~ , j ,

' [l°gW2N-1S~. Finally adding all edges in E '~ to the corresponding edge set of ui= 0
G makes it biconnected.

L e m m a 6 . Given the block tree T and E ~, the graph B(V1, V2, Eb) can be con-
structed in O(mrtb) lime, where ~i=1,2 I~] <- m + rib, IV2] < rib.

Proof. Given T, construct an auxiliary tree T ' such that the LCA query of
two vertices in T can be answered in O(1) time. The construction of T t can
be done in O(n) t ime by Schieber and Vishkin's algorithm [10]. Now we con-
struct the graph B as follows. Let the corresponding edge of vertex vl E V1
be e = (x,y), and t = LCA({x,y}) be the lowest common ancestor of x
and y in T. Then there is an edge between vl and v2 E V2 if either one of
the following conditions holds: (i) LCA({x, v2}) = x and nCA({v2,y}) = v2
when t = z; (it) LCA({z,v~}) = v2 and nCA({v2, y}) = y when t = y; (iii)
either nCA({t , v2}) : t and LCA({v2,x}) = v2, or LCA({t, v2)) = t and
LCA({v2,y}) : v2 when t # x and t # y. Obviously B can be obtained in
O(IEbl) = O(mnb) time. []

Denote by Gs[X U Y] a subgraph of B(V~, V2, Eb) consisting of the vertices
in X U Y and the edges between these vertices, where X U Y C V1 U V2. Then we
have the following lemma which is very important to construct our algorithm.

L e m m a 7. Let a subset S C V1 dominate ~he set V2. Then lhe graph formed by
adding the corresponding edges of vertices in S to G is biconnected if and only
ff GB[S U V2] is connecled.

Proof. Let S C V1 and S dominate Vz. Suppose G is not biconnected. We first
show that if GB[S U V~] is disconnected, G(V, Eo U S) is not biconnected. We
then show that if Gs[SU V2] is connecled, the graph formed by adding the edges
in S to G is biconnected.

436

Assume that GB[SU V2] is disconnected, and has k CCs with k > 1. Let A
and B be two CCs among these k CCs, and V(A) and V(B) be the vertex sets
of A and B respectively. Let b(A) = V(A) N V2 and b(B) = V(B) n V2. Denote by
a = LCA(b(A)) and ~ = LCA(b(B)) on T. Then there exists a unique pa th ~-~p
between a and t3 on T. Note that it is possible that ~r~ z consists of one vertex
only. We further assume that ~r~Z contains no vertices belonging to other CCs
except A and B. The problem now is divided into the following three cases: (i)
a ¢ fl and neither one is the ancestor of another in T. Then ~'~Z contains more
than one vertex, and at least one vertex v among these vertices is an articulation
point of G by the property of T. So, deleting v will leave the vertices in b(A)
and the vertices in b(B) in different CCs. Therefore, v is still an articulation
point of G(V, Eo U S). (ii) a = t 3. In this case we further classify whether a is an
articulation point of G. If it is, then deletion of a will leave the vertices in b(A)
and the vertices in b(B) in different CCs. Therefore, o~ is still an articulation
point of G(V, Eo U S). Otherwise, a is a 2VCC vertex, which is impossible. If a
is a 2VCC vertex, it must be included in V(A). For the same reason, it must be
included in V(B) also, then A and B should be the same CC rather than two
distinguished CCs, contradicting our initial assumption. Therefore, a is not a
2VCC vertex. (iii) a ¢ / ? , and one is the ancestor of another in T. Assume that
/~ is the ancestor of o~. Let T~ be a subtree of T rooted at a including all vertices
in b(A). By the same argument as case (ii), we can show that a is an articulation
point of G only. Meanwhile, we also note that there are not any edges between
a vertex other than a in T~ and a vertex in V~ U Vb -- V(Tc~) except the edges
incident to a, which means that the deletion of a will leave the vertices in T~
and the other vertices of T separated. Therefore, G(V, Eo US) is not biconnected.

Now we show the second part . Our approach is to show that every articulation
point of G is no longer an articulation point of the resulting graph after adding
the edges in S to G. Let v be an arbi trary articulation point of G, and v be
contained in l 2VCCs bl, b2 , . . . , bz. Then v is an adjacent vertex of these l vertices
in T. We need to prove that , if GB[S U V2] is connected, then all 2VCCs sharing
v should become a 2VCC of G(V, Eo U S). We start by finding all shortest paths
between bl and bj in GB [SUV2], where 2 < j ___ l. Note that these paths definitely
exist in GB[SUV~] because it is connected. Let the shortest pa th between bl and
bk, denoted by Pbl,bk, be the shortest among these 1 - 1 shortest paths, 2 < k < 1.
Assuming that the vertex sequence of Pbl,b~ is bl, el, cl, e2, c2, . . . , ep, bk, ei E V1,
cj E V2, where 1 < i < p, 1 < j < p - 1, and Pbl,b~ does not contain any other
bj for j ¢ k. If IPbl,bk I = 1, by the definition of B, bl and bk are on the cycle of
tree edges of T and the edge el. We merge all 2VCCs on this cycle into a 2VCC.
As a result, bl and bk are merged into a 2VCC b'. Now v is still an articulation
point of the augmented graph shared by l - 1 2VCCs b ~, b2, • •., bk- 1, bk+l, • . . , bt.
We follow the method above and continue merging. Finally all initial 2VCCs
sharing v are merged into one 2VCC, and v is no longer an articulation point of
G(V, EoUS). If IPbl,bk I = P and p > 1, then all vertices bj for j ¢ 1 and j ¢ k do
not appear on this path. By induction on p, it is easy to prove that all 2VCCs on
this path can be merged into one 2VCC. Tha t means, after merging all 2VCCs

437

on Pbl,bk, bl and b~ are merged into a 2VCC b', and v now is an articulation
point shared by l - 1 2VCCs. We apply the method above again to merge all
the remaining 2VCCs sharing v. As a result, all bi for 1 < i < l are merged into
a 2VCC, and v is no longer an articulation point of G(V, Eo to S). []

Having the lemma above, we now assign to each vertex in V1 the correspond-
ing edge's weight. Let S* be a S defined above with the minimum weighted sum.
Then the remaining task is to find such a S*. Obviously this is an NP-complete
problem again. Instead we look for an approximation solution for it. The basic
idea of our approximation solution is to reduce this problem to a series of MWSC
problems induced by B~(V (~), V(i),E~0), 0 < i < [loglV2 H - 1. The bipartite
graph Bi(V (0, V(i),E~ i)) is constructed as follows. Given B~-I and aset S C V1,
Initially Bo(V (°), V (°) , E~ °)) := B(V1, V2, Eb) and S := @. we compute all CCs of
GB[Sto V2] first. Then a vertex v C V (~-I) is included in V (0 if and only if there
exists at least two edges (v,x),(v,y) e E~ i-1) such that x and y are in different
CCs of GB[S to V2]. V (0 is the set consisting of all CCs of GB[S to V2]. The edge
set E~ ~) includes all edges (v, c) and (v, d), where c is the CC containing z, d is
the CC containing y, c # d, and (v, x), (v,y) • E~ i-1). If there is more than one
edge between two vertices in Bi, we delete all duplicate edges between them but
one. An approximation algorithm for finding S in Lemma 7 is as follows.

s : = : = vl; := v2; := Eb;

W h i l e GB [S tO V2] is disconnected do
Find the minimum dominator set S~ which dominates V2 (~) in Bi;
S := StO Si;
Compute all connected components of graph GB IS tO V2];
Construct the bipartite graph Bi+l;
i : = i + 1

E n d w h i l e .

Note that Si in the algorithm cannot be obtained in polynomial time unless
P=NP. However an approximation solution for Si can be found by solving an
MWSC problem induced on Bi. Let S~ be an approximation solution of Si by
the algorithm due to Berger et al. [1], then this solution is (1 + In nb) (1 + e) times
optimum where nb is the number of 2VCCs of G(V, E0) and e is a constant with
0 < c < 1. Therefore, we have the following lemma.

L e m m a 8. Given B is defined as above, lel S' C V1 dominate V2 and GB[S'tOV2]
be connected. Then we can find an approximation solution S' which is (1 +
In nb)(1 + c) log nb limes optimum, where nb is the number of 2VCCs in a con-
nected graph G(V, Eo).

Proof. Assume that S* C V1 has the minimum weighted sum such that S* dom-
inates V2, and GB[S* tO V2] is connected. From the algorithm above, it is obvious
that w(Si) < w(S*) because Si is such a vertex set with the minimum weighted

438

sum that dominates V2, while the vertex set S*, in addition to satisfying all
properties of Si, has an additional restriction that GB[S* l.) V2] is connected.
The other important observation is that the edges incident to each vertex in V1
connect at least two vertices in V2, therefore, the number of vertices in P~ is re-
duced by at least one half from Bi to Bi+l. However IV2[< nb initially. Thus after
[log nb] times repetitions of the while loop, all vertices in V~ are merged into the
same CC. The approximation solution obtained has weight ~-~logjy:H-1 w(S~)

~=[l°giV:ll-1 Innb)(1 e)w(Si) < -< (I + + Flog nbl (1 + In rib)(1 + c)max{w(Si)}
< [log nb](1 + In nb)(1 + e)w(S*). []

Now we present the parallel implementation details for the optimal biconnec-
tivity augmentation problem. The approach adopted is similar to that for the op-
timal 2-edge connectivity augmentation problem. The block tree T is constructed
as follows. Apply the biconnectivity algorithm of Tarj an and Vishkin [11] to find
all 2VCCs of G, and identify all articulation points of G. Note that a vertex is
an articulation point if it appears in more than one 2VCC. After that, construct
an adjacency matrix of T, and run the algorithm for computing the CCs of T
due to Chin et al. [2] to establish the inverted tree T.

L e m m a 9 . The block tree T (stored as an inverted tree) can be constructed in
O(log2 n) time using O(n2/ logn) processors on a CRCW PRAM.

Proof. The algorithm for finding all biconnected components requires O(log n)
time and O(m ~ + n) processors if G has m' edges and n vertices on a CRCW
PRAM [11]. The adjacency matrix o f t can be constructed in O(log n) time using
O(n 2) processors on a CREW PRAM. The inverted tree T can be obtained in
O(log 2 n) time using O(n2/log n) processors on a CREW PRAM. []

The feasible set E' can be generated in O(logn) time using IEI < n 2 pro-
cessors on a CRCW PRAM. The details are as follows: assign to the endpoints
of every edge in E their labels (articulation points or 2VCC identifications) in
T; sort these edges by their endpoint labels as the first key and by their as-
sociated weights as the second key; delete all other edges with the same labels
but keep one with the minimum weight by applying prefix computation. So, the
total computation can be finished in O(log n) time using O(n 2) processors on a
CRCW PRAM. The computation of CCs of GB [S U V~] can be done by Chin et
al's [2] algorithm which requires O(log 2 n) time and O(mnb) processors.

L e m m a l 0 . Given T and T ~ and feasible set E', the graph B can be constructed
in O(1) time using O(mnb) processors on an CREW PRAM where nb is the
number of 2VCCs in G.

Proof. The vital step in the construction of B is to test the three conditions
in the proof of Lemma 6, which can be done in O(1) time provided that E ~,
T, and T' are given. Therefore the construction of B requires O(1) time and
O(IEbl) -= O(mnb) processors on a CREW PRAM. []

439

It remains to find an approximation solution S' C V1 of B such that (i)
S' dominates V2; (it) GB[S' U V2] is connected; and (iii) w(S') <_ [lognb](1 +
In nb)(1 +c)w(S*), where nb is the number of 2VCCs in G(V, Eo) and c is a small
constant with 0 < e < 1. This S ~ can be achieved by Lemma 8. Therefore, we
have the following theorem.

T h e o r e m 11. Given a weighted graph G = (V, E0) and a feasible set E ~, there
exists an NC approximation algorithm for the optimal biconncctivity augmenta-
tion problem which requires O(log7 n log nb/c 6) time and O(mnb) processors on
a C R C W PRAM. The solution delivered is either (1 + lnnb)(1 + e) lognb times
optimum if G is connected, or (1 + In rib)(1 + e) log nb + 1 times optimum, where
nb is the number of 2VCCs in G and e is a constant with 0 < e < 1.

C o r o l l a r y l 2 . Given a weighted biconnected graph G(V,E) , finding a bicon-
nected spanning subgraph whose weight is (l + l n n) (l+e) l o g n + l times the weight
of the minimum biconnecied spanning subgraph can be done in O(log s n / e 6)
time using O(mn) processors on a C R C W PRAM, where e is a constant with
O < e < l .

R e f e r e n c e s

1. B. Berger, J. Rompel and P. W. Shor. Efficient NC algorithms for set cover with
applications to learning and geometry. J. Comp. and Sys. Sci., 49, 1994, 454-477.

2. F. Y. Chin, J. Lain and I -N Chen. Efficient parallel algorithms for some graph
problems. Comm. ACM., 25, 1982, 659-665.

3. K. P. Eswaran and R. E. Taxjan. Augmentation problems. SIAM J. Comput.,
5(4), 1976, 653-665.

4. G. N. Frederickson and J. J£J£. Approximation algorithms for several graph aug-
mentation problems. SIAM J. Comput., 10(2), 1981, 270-283.

5. H. N. Gabow. A matroid approach to finding edge connectivity and packing ar-
borescences. Proc. 32nd Annual ACM Syrup. on Theory of Comp., 1991, 112-122.

6. R. Karp. Reducibility among combinatorial problems. Complexity and Computer
Computations, R.E. Miller and J. W. Thatcher, Eds, Plenum, NY, 1975.

7. S. Khuller and R. Thurimelta. Approximation algorithms for graph augmentation.
Y. Algorithms, 14, 1993, 214-225.

8. D. Naor, D. Gusfietd and C. Martel. A fast algorithm for optimally increasing the
edge-connectivity. Proc. 31st Ann. IEEE Syrup. on Found. o] Comp. Sci., 1990,
698-707.

9. A. Rosenthal and A. Goldner. Smallest augmentations to biconnect a graph. SIAM
J. Comput., 6(1), 1977, 55-66.

10. B. Schieber and U. Vishkin. On finding lowest common ancestors: simplication
and parallelization. SIAM Y. Comput., 17(6), 1988, 1253-1262.

11. R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM
J. Comput., 14, 1985, 862-874.

12. T. ~¥atanabe and A. Nakamura. Edge-connectivity augmentation problem. J.
Comput. Syst. Sci., 35(1), 1987, 96-144.

13. T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of
graph. Y. Comput. Syst. Sci., 46, 1993, 91-128.

