
Partly-Consistent Cuts of Databases

Marcin Skubiszewski and Nicolas Porteix

INRIA and 02 Technology

Abstract . We introduce partly-consistent cuts, a mechanism analogous
to causal cuts, defined in the context of object-oriented databases. A
partly-consistent cut is a collection containing one or more copies of every
page in a given database; the copies are made during the operation of the
database, at different times. We consider four classes of partly-consistent
cuts. Each class implies a different set of constraints imposed on the times
when the copies are made. The consistency properties (i.e. the ability to
correctly represent what happens in the actual execution of the database)
of the cuts in each class are analyzed. One class, called GC-consistent
cuts, can be used by a concurrent garbage collector to determine which
objects to delete.

1 I n t r o d u c t i o n

In many situations, an observer needs to examine the current state of a complex
system. For example, a bank employee may want to know how much money
a given client has. This involves reading the balance of all the accounts held
by the client; such accounts may be numerous, and may be stored in different
computers.

Normally, the observer needs to examine all parts of the system at once. Oth-
erwise, incorrect information may be obtained: for example, if money is trans-
fered from an account x to another account y, and the bank employee examines
x before the transfer and y after the transfer, then the money transfered will be
incorrectly counted twice.

In many cases, however, it is complicated or costly to examine many differ-
ent parts of a system at once. This difficulty generates a need for methods that
make it possible to observe different parts of the system at different times, and
still obtain correct information. One such method is known under the name of
causal cuts. 1 Causal cuts are defined in asynchronous distributed systems, a class
of distributed systems where information is transmitted between processes asyn-
ehronously, in the form of messages in communication channels. Asynchronous
distributed systems are a theoretical concept, created to study the facts about
computations that do not depend on the actual time and the actual speed at
which operations are performed.

In this paper, we introduce partly-consistent cuts, a concept that results
from transposing the philosophy behind causal cuts to object-oriented databases
(OODB). Partly-consistent cuts can be used to observe various properties of a

1 Chandy and Lamport [3] introduced a "global-state recording algorithm" that im-
plements one kind of causal cut; then, Mattern [6] defined causal cuts in the general
case. Babaoglu and Marzullo [1] describe causal cuts in detail.

489

database, without accessing the whole database at once, and without interfering
with its normal operation.

We describe four different classes of partly-consistent cuts. Each class corre-
sponds with a different consistency property, i.e. category of facts about which
the cuts are guaranteed to deliver correct information. Correlatively, each class
follows a different set of timing constraints, i.e. of constraints on the times when
different parts of the system are observed.

Our results have an important practical implication: they lead to a new
method for concurrent garbage collection in OODB, i.e. to a method that allows
a garbage collector (GC) to perform its work without interrupting or disturbing
the normal operation of the database. The method has been implemented in the
commercial system 02; it is described elsewhere [8].

The paper is organized as follows. Section 2 describes the properties of OODB
and the assumptions about OODB that are used in this work. Section 3 defines
partly-consistent cuts. Section 4 describes a consistency property shared by all
partly-consistent cuts. In Sections 5-7, we describe the different classes of partly-
consistent cuts, in a way that shows how the consistency properties relate to the
corresponding timing constraints. Section 8 summarizes our results.

For the sake of brevity, we omit the proofs and we do not discuss the anal-
ogy which exists between partly-consistent cuts and causal cuts (this analogy is
strong, although nonobvious). Publication [7] contains the proofs of all the facts
stated in this paper, and discusses the analogy.

2 D e f i n i t i o n s a n d a s s u m p t i o n s a b o u t d a t a b a s e s

P a r t s and transactions in d a t a b a s e s . We view data in a database as being
parti t ioned into parts numbered 0, ..., n - 1. Each object x belongs to exactly
one part, noted P(x). Usually, parts are database pages, but alternatively their
rSle can be played by objects (in this case, P(x) = x) or by other entities.

An execution of a database management system is divided into chunks called
transactions. Each transaction locks the parts to which it has access. A lock
permits a transaction either only to read or both to read and to write objects
in the specified part.

We assume that transactions are atomic and serializable; see [4] for the def~
initions of these terms. These assumptions allow us to consider transactions as
null-duration events that take place in sequence.

T h e graphical notat ion and the transaction clock. We represent execu-
tions of database systems as shown in Fig. 1. Time flows from left to right. Each
part is represented by a thin horizontal line. Each transaction is considered as
an atomic null-duration event and represented by a thick black vertical line. If a
transaction reads a part, the corresponding lines cross; if it also writes the part,
an arrow is drawn at the crossing. For example, the leftmost transaction in the
figure reads and writes part 0, reads part 1, and does not access part 2.

When talking about a database execution, we use a special real-valued global
clock called transaction clock. This clock takes value 0 at some time before the

490

t , , 1 i , ,

P ° A ] 1 ... : [...................................... ?11 L.
P' ; J r
p2 :, :T:~ .. tr ~ , I I

0 1 t ime 2 3

Fig. 1. Example execution of a database.

first transaction, then, in an execution including n transactions, it takes each
integer value t E [1 .. n - 1] at some t ime between the t- th and the t + 1-th
transaction. Value n is taken at some t ime after the n-th transaction. For every
t, during the t - th t ransact ion the value of the clock is strictly included between
t - 1 and t. (We do not assume tha t the database system has access to the
transaction clock; we only use the clock to talk about the system.)

Two elements in Fig. 1, namely cameras and very thick gray lines, will be
explained later, respectively in Sections 3 and 5.

Reachab i l i ty~ g a r b a g e , a n d g a r b a g e co l l ec t ion . We use a classical model
of teachability, based on the fact tha t before accessing an object, a t ransact ion
must first access a pointer to it.

The database is assumed to contain a fixed set of indestructible objects called
roots. Pointers to roots are system constants, to which all t ransactions have
access. Every transact ion has access to the objects tha t it has created. Outside
of these two cases, an object can only be accessed by a transaction once this
t ransaction has read a pointer to the object, from a pointer field in another
object present in the database. There are no other possibilities for a transaction
to obtain a pointer value (e.g. it is illegal to perform pointer ar i thmetic or to
store pointers in places other t hanpo in t e r fields of objects).

This model is usually enforced in OODB. This is necessary for the garbage
collection to operate correctly: without such a precise model, the GC could
never ascertain that a given object is unreachable, and could therefore not delete
objects.

An object, is said to be reachable at a given t ime t if[it exists at t ime t and
the first t ransaction that will take place after t can access it. According to the
rules above, the following is a correct definition of reachability.

D e f i n i t i o n I (t eachab i l i t y in da tabases) . The objects reachable in a data-
base execution E at t ime t form the smallest set such that

1. roots are reachable
2. and 'if at time t object x is reachable and object y exists and x contains a

pointer to y, then y is reachable at t ime t.

An object that exists but is not reachable is called garbage. I t is the purpose
of the garbage collector to delete garbage objects.

491

3 Cuts in d a t a b a s e s

T h e de f in i t ion . The copy of part number i, taken at time t, is noted (i, t) and
is called a snapshot. Since we consider transactions as atomic events, we only
accept the possibility of taking snapshots between transactions, i.e. at integer
times. On figures, snapshots are represented by cameras. For example, Fig. 1
shows the snapshots (0, 3), (1, 0) and (2, 1).

A set of snapshots containing at least one snapshot of each part is called a
cut. A cut is called simple iff it contains one and only one snapshot of each part;
otherwise, it is called multiple.

We define the time interval of a cut to be the interval from the time when the
first snapshot in the cut is taken, to the time when the last snapshot is taken,
inclusively. If an event happens during the time interval of a cut C, we say that
it happens during C.
R e a c h a b i l i t y a n d g a r b a g e in cu t s . Among others, cuts may be used to de-
termine the teachability of objects. For this purpose, the following definitions
are used.
D e f i n i t i o n 2 (presence; i n c o n s i s t e n t presence) . Let C be a cut. An object
x is present in C if] C contains a snapshot that contains a copy of x, i.e. a
snapshot of P(x) taken at a time when x exists; otherwise, x is absent from C.
x is inconsistently present in C iff C contains both a snapshot of P(x) taken
when x exists, and a snapshot of P(x) taken when x does not exist.

D e f i n i t i o n 3 (t eachab i l i t y in cu ts) . Let C be a cut. Objects reachable in C
form the smallest set such that

1. roots are reachable in C;
2. objects inconsistently present in C are reachable in C;
3. if object x is reachable in C and a copy of x present in C contains a pointer

to object y and y is present in C, then y is reachable in C.

To understand this definition, let us first assume that the cut C is simple. Under
this assumption, no objects are inconsistently present in C, and rule 2 in the
definition is not applied. Then, the definition implements the idea that a cut
should be treated as if it represented a state of an execution, copied at some
time (in reality, a cut is usually not such a state, because different snapshots are
taken at different times). In the context of simple cuts, Definition 3 is indeed
equivalent to what we would obtain by substituting the words "at t ime t" with
words "in cut C" in Definition 1, which defines reachability in databases.

Now, consider the case of multiple cuts. In this case, rule 2 in the definition
applies. To explain the rationale of the rule, let us observe that an object x
may only be inconsistently present in C if it has been created or deleted during
C. This, in turn, implies that some transaction had access to x during C. x
was therefore reachable at some time during C, and, for C to be a faithful
representation of what happened in the actual system, it should be reachable in
C.

An object x that is present in a cut C and not reachable in C is said to be
garbage in C.

492

pO

pl

q l
0 1

~ Part 0

Part 1

System at time 0

Part 0

Part 1

Part 0 (time 1)

Part 1 (time O)

System at time I The Cut

Fig. 2. Object X is reachable in the execution, and garbage in the cut (R0 and R1 are
roots; X is not a root).

4 A r b i t r a r y c u t s

Theorem 4 (preservation of garbage). Every object that is constantly gar-
bage in a database execution E during a cut C of this execution, is garbage in
C.

(Let us recall tha t the proofs of all theorems can be found in [7].)
The converse of this theorem is not true: from the counterexample shown

in Fig. 2~ it results tha t an object that is constantly reachable in an execution
while a cut is being taken may be garbage in the cut.

The theorem goes against the common-sense idea tha t no reliable informa-
tion can be obtained by observing different parts in a database at arbi t rary
times, with no effort to guarantee consistency. It implies, for example, tha t by
examining different objects in the system at arbi t rary times, we can est imate the
number and the total size of garbage objects, with no risk of underestimation.

5 G C - c o n s i s t e n t c u t s

Defini t ion 5 (path). Let E be a database execution, comprising n transactions;
we assume that the database contains m parts. A path in E is a function H that
goes from the set of integer times of the transaction clock to the set of parts
5n symbols: H : {0, ..., n} -+ {0, ..., m - 1}) and that satisfies, for every t > 0
belonging to its domain, one of the following conditions:

1. H(t) = H (t - 1)
2. or the transaction that takes place between times t - 1 and t locks part H (t - 1)

for reading or writing, and part H(t) for writing.

A path represents the way in which a pointer present at t ime n in some
part i may have been successively copied during E in order to reach this part .
According to the definition, H (t - 1) and H(t) either are equal (this corresponds
with the situation where a pointer value is not copied) or are chosen so tha t the
transaction tha t happens between times t - 1 and t has the possibility to copy a
pointer from par t H(t - 1) to part H(t). The lat ter means tha t the transaction
locks par t H(t - 1) for reading or writing, and par t H(t) for writing.

493

In Fig. 1, two example paths are represented by very thick gray lines (other
paths exist in this execution). The lower one is straight. This corresponds with a
constant p a t h - - a path that stays in the same part during the whole execution.
The upper one shows that a pointer value located in part 1 at time 3 might be
there because between times 2 and 3 it was copied there from part 0, after being
copied from part 1 to part 0 between times 0 and 1.
Defini t ion 6 (GC-consis tent cut). Let E be a database execution. A cut C
of E is GC-consistent if] it crosses every path, i.e. iff for each path H in E there
exists some time t satisfying (H(t) , t) E C.

Theorem 7 (absence of false garbage). Let C be a GC-eonsistent cut of a
database execution E. Then, an object can be garbage in C only if it is garbage
in E, at some time during C.

The theorem implies that an anomaly similar to the one in Fig. 2 cannot
occur with a GC-consistent cut.

A GC-consistent cut can be used for garbage detection in a concurrent GC:
instead of looking at the real system (whose content cannot be examined in
a simple way, because it can change at any time and in arbitrary ways), the
GC examines a GC-consistent cut of the system, and determines which objects
are garbage in the cut. These objects are then deleted from the system. This
method does not jeopardize the safety of the GC, because according to Theorem
7, only objects that are actually garbage in the system can be garbage in the cut.
Similarly, it results from Theorem 4 that the use of a GC-consistent cut does not
jeopardise the liveness of the GC: the objects which are garbage in the system
during the operation of the GC are also garbage in the cut, and are therefore
deleted by the GC.

An industrial GC has been built according to this principle, and is part of
the commercial OODB management system 02. 2

6 A consistency property of simple GC-consistent cuts
Simple GC-consistent cuts (that is, cuts that are both simple and GC-consistent)
can be used to solve the problem described in the introduction to this paper,
i.e. to compute the total balance of several bank accounts stored in a database.
Let us describe this problem formally. If v is a variable stored in the database,
then the value of v at time t is noted v t. The value of v present in the simple
cut C is noted v c . (This makes sense because C is a simple cut, and therefore
contains one and only one copy of v. We do not define v C in the case where C
is a multiple cut.)

Consider an execution E of a database containing integer variables v0,..., vl.
We assume that each variable represents a bank account. Money can be trans-
fered between the accounts, but the total balance remains constant: the value

2 See [8] for a description of the garbage collector, and [2] for a description of 02. For
general information about garbage collection and for a description of other methods
for concurrent garbage collection, see Wilson [9] or Jones and Lins [5]. For references
about garbage collection in databases, see also [7].

494

Defined in theorem number
Causal cuts
Simple GC-consistent cuts
GC-consistent cuts
Arbitrary cuts

Preservation Absence of Sum of Dangling
of garbage false garbage bank accounts pointers

4 7 8 10
X X X

X X X

X X

X

Table 1. Consistency criteria and classes of cuts.

1 t does not depend on t. The following theorem implies that s can be S = ~-~.j=O Vj
computed using a simple GC-consistent cut of E.

T h e o r e m 8 (s u m o f bank accounts) . Let E be an execution of a database
that contains several integer variables vo, ..., vt. We assume that the sum of the
variables remains constant over time, and is equal to s. Then, for any simple

t c GC-eonsistent cut C of E, we have s = ~ j=o v) .

There is no equivalent to this theorem for GC-consistent cuts in general, i.e. there
is no general method to compute the value s using a GC-consistent cut of E: a
counterexample quoted in [7] shows that the same multiple GC-consistent cut
may correspond with two different executions, where the values s are different.

7 C a u s a l c u t s o f d a t a b a s e s

In this section, we introduce causal cuts of databases (not to be confused with
the unqualified "causal cuts").

D e f i n i t i o n 9 (causal cut in a database) . A cut C of a database execution
E is causal if] it crosses every path H o r E in exactly one point, i.e. i f f for every
path H, there is one and only one time t such that (H(t) , t) E C.

It results from this definition that every causal cut of a database execution is
also a simple GC-consistent cut of this execution.

Let us exhibit a consistency property of causal cuts of databases, that simple
GC-consistent cuts do not have. We say that a pointer is dangling in a database
execution at time t if, at time t, it points to an object that currently does not
exist. In a cut C, a pointer is dangling iff it is present in C, but the pointed-to
object is not present in C.

A simple GC-consistent cut may contain a dangling pointer even if such
pointers never appear in the underlying execution, and even if no objects are
deleted during the execution (to understand why we quote the latter condition,
compare this sentence with Theorem 10 below). An example illustrating this
possibility is quoted in [7]. The situation is different for causal cuts:
T h e o r e m 10. Let E be a database execution in which no pointer is ever dangling
and during which no objects are deleted. Then, no pointer is dangling in a causal
cut of E.

495

The theorem implies that in a system tha t does not delete objects, we can use
causal cuts to detect dangling pointers in an execution, and no false alarms will
be issued (although, conversely, some dangling pointers may remain undetected).
Simple GC-consistent cuts cannot be used for this purpose.

8 S u m m a r y

We have introduced partly-consistent cuts, a principle tha t can be used to obtain
meaningful information about the state of a database by observing different
parts of the database at different times. We have studied four classes of part ly-
consistent cuts. The classes are ordered by strict inclusion, as follows: arbi t rary
cuts of databases (this is the biggest class), GC-consistent cuts, simple GC-
consistent cuts, and causal cuts of databases.

Table 1 summarizes the consistency criteria that are met by the different
classes of cuts. Each criterion is described with a reference to the theorem where
it is first used, and with a name. A cross in the table means tha t all the cuts in
a class meet a criterion. Conversely, for every cross missing, we know tha t some
cuts in the class fail to satisfy the criterion.

A garbage collector based on cuts has been developed in 02, a commercial
OODB management system.

R e f e r e n c e s

1. Ozalp Babaoglu and Keith Marzullo. Consistent global states of distributed sys-
tems: Fundamental concepts and mechanisms. In Sape Mullender, editor, Dis-
tributed Systems, pages 55-96, chapter 4. Addison-Wesley, 1993, second edition.

2. Francois Bancilhon, Claude Delobel, and Paris Kannellakis. Building an Object-
Oriented Database: the 02 Story. Morgan Kaufmann, 1991.

3. K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. A CM Transactions on Computer Systems, 3(1):63-75,
February 1985.

4. Jim Gray and Andreas Reuter. Transaction processing: Concepts and Techniques.
Morgan-Kaufmann, 1993.

5. Richard Jones and Rafael Lins. Garbage Collection. Wiley, 1996.
6. Friedmann Mattern. Virtual time and global states of distributed systems. In

Parallel and Distributed Algorithms, pages 215-226. Elsevier Science Publishers B.V.
(North-Holland), 1989.

7. Marcia Skubiszewski and Nicolas Porteix. GC=consistent cuts of databases. Re-
search Report 2681, INRIA, April 1996. Available from
ftp ://ftp. inria, fr/INKIA/publication/KK/KR-2681, ps. gz.

8. Marcia Skubiszewski and Patrick Valduriez. Concurrent garbage collection in O2.
In International Conference on Very Large Data Bases (to appear), 1997.

9. Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int. Workshop
on Memory Management, number 637 in Lecture Notes in Computer Science, Saint-
Malo (France), September 1992. Springer-Verlag.

