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Abstract .  We introduce partly-consistent cuts, a mechanism analogous 
to causal cuts, defined in the context of object-oriented databases. A 
partly-consistent cut is a collection containing one or more copies of every 
page in a given database; the copies are made during the operation of the 
database, at different times. We consider four classes of partly-consistent 
cuts. Each class implies a different set of constraints imposed on the times 
when the copies are made. The consistency properties (i.e. the ability to 
correctly represent what happens in the actual execution of the database) 
of the cuts in each class are analyzed. One class, called GC-consistent 
cuts, can be used by a concurrent garbage collector to determine which 
objects to delete. 

1 I n t r o d u c t i o n  

In many situations, an observer needs to examine the current state of a complex 
system. For example, a bank employee may want to know how much money 
a given client has. This involves reading the balance of all the accounts held 
by the client; such accounts may be numerous, and may be stored in different 
computers. 

Normally, the observer needs to examine all parts of the system at once. Oth- 
erwise, incorrect information may be obtained: for example, if money is trans- 
fered from an account x to another account y, and the bank employee examines 
x before the transfer and y after the transfer, then the money transfered will be 
incorrectly counted twice. 

In many cases, however, it is complicated or costly to examine many differ- 
ent parts of a system at once. This difficulty generates a need for methods that 
make it possible to observe different parts of the system at different times, and 
still obtain correct information. One such method is known under the name of 
causal cuts. 1 Causal cuts are defined in asynchronous distributed systems, a class 
of distributed systems where information is transmitted between processes asyn- 
ehronously, in the form of messages in communication channels. Asynchronous 
distributed systems are a theoretical concept, created to study the facts about 
computations that do not depend on the actual time and the actual speed at 
which operations are performed. 

In this paper, we introduce partly-consistent cuts, a concept that  results 
from transposing the philosophy behind causal cuts to object-oriented databases 
(OODB). Partly-consistent cuts can be used to observe various properties of a 

1 Chandy and Lamport [3] introduced a "global-state recording algorithm" that im- 
plements one kind of causal cut; then, Mattern [6] defined causal cuts in the general 
case. Babaoglu and Marzullo [1] describe causal cuts in detail. 
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database, without accessing the whole database at once, and without interfering 
with its normal operation. 

We describe four different classes of partly-consistent cuts. Each class corre- 
sponds with a different consistency property, i.e. category of facts about  which 
the cuts are guaranteed to deliver correct information. Correlatively, each class 
follows a different set of timing constraints, i.e. of constraints on the times when 
different parts of the system are observed. 

Our results have an important  practical implication: they lead to a new 
method for concurrent garbage collection in OODB, i.e. to a method that  allows 
a garbage collector (GC) to perform its work without interrupting or disturbing 
the normal operation of the database. The method has been implemented in the 
commercial system 02; it is described elsewhere [8]. 

The paper is organized as follows. Section 2 describes the properties of OODB 
and the assumptions about OODB that  are used in this work. Section 3 defines 
partly-consistent cuts. Section 4 describes a consistency property shared by all 
partly-consistent cuts. In Sections 5-7, we describe the different classes of partly- 
consistent cuts, in a way that  shows how the consistency properties relate to the 
corresponding timing constraints. Section 8 summarizes our results. 

For the sake of brevity, we omit the proofs and we do not discuss the anal- 
ogy which exists between partly-consistent cuts and causal cuts (this analogy is 
strong, although nonobvious). Publication [7] contains the proofs of all the facts 
stated in this paper, and discusses the analogy. 

2 D e f i n i t i o n s  a n d  a s s u m p t i o n s  a b o u t  d a t a b a s e s  

P a r t s  and transactions in d a t a b a s e s .  We view data  in a database as being 
parti t ioned into parts numbered 0, ..., n - 1. Each object x belongs to exactly 
one part,  noted P(x). Usually, parts are database pages, but alternatively their 
rSle can be played by objects (in this case, P(x) = x) or by other entities. 

An execution of a database management system is divided into chunks called 
transactions. Each transaction locks the parts to which it has access. A lock 
permits a transaction either only to read or both to read and to write objects 
in the specified part. 

We assume that  transactions are atomic and serializable; see [4] for the def~ 
initions of these terms. These assumptions allow us to consider transactions as 
null-duration events that  take place in sequence. 

T h e  graphical notat ion and the transaction clock. We represent execu- 
tions of database systems as shown in Fig. 1. Time flows from left to right. Each 
part  is represented by a thin horizontal line. Each transaction is considered as 
an atomic null-duration event and represented by a thick black vertical line. If a 
transaction reads a part, the corresponding lines cross; if it also writes the part,  
an arrow is drawn at the crossing. For example, the leftmost transaction in the 
figure reads and writes part  0, reads part  1, and does not access part  2. 

When talking about a database execution, we use a special real-valued global 
clock called transaction clock. This clock takes value 0 at some time before the 
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Fig. 1. Example execution of a database. 

first transaction, then, in an execution including n transactions, it takes each 
integer value t E [1 .. n - 1] at some t ime between the t- th and the t + 1-th 
transaction. Value n is taken at some t ime after the n-th transaction. For every 
t, during the t - th t ransact ion the value of the clock is strictly included between 
t - 1 and t. (We do not assume tha t  the database system has access to the 
transaction clock; we only use the clock to talk about  the system.) 

Two elements in Fig. 1, namely cameras and very thick gray lines, will be 
explained later, respectively in Sections 3 and 5. 

Reachab i l i ty~  g a r b a g e ,  a n d  g a r b a g e  co l l ec t ion .  We use a classical model 
of teachability, based on the fact tha t  before accessing an object, a t ransact ion 
must first access a pointer to it. 

The database is assumed to contain a fixed set of indestructible objects called 
roots. Pointers to roots are system constants, to which all t ransactions have 
access. Every transact ion has access to the objects tha t  it has created. Outside 
of these two cases, an object can only be accessed by a transaction once this 
t ransaction has read a pointer to the object,  from a pointer field in another  
object present in the database.  There are no other possibilities for a transaction 
to obtain a pointer value (e.g. it is illegal to perform pointer ar i thmetic or to 
store pointers in places other t hanpo in t e r  fields of objects). 

This model is usually enforced in OODB. This is necessary for the garbage 
collection to operate correctly: without such a precise model, the GC could 
never ascertain that  a given object is unreachable, and could therefore not delete 
objects. 

An object, is said to be reachable at  a given t ime t if[ it exists at t ime t and 
the first t ransaction that  will take place after t can access it. According to the 
rules above, the following is a correct definition of reachability. 

D e f i n i t i o n  I ( t eachab i l i t y  in  da tabases ) .  The objects reachable in a data- 
base execution E at t ime t form the smallest set such that 

1. roots are reachable 
2. and 'if at time t object x is reachable and object y exists and x contains a 

pointer to y, then y is reachable at t ime t. 

An object that  exists but is not reachable is called garbage. I t  is the purpose 
of the garbage collector to delete garbage objects. 
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3 Cuts  in d a t a b a s e s  

T h e  de f in i t ion .  The copy of part  number i, taken at time t, is noted (i, t) and 
is called a snapshot. Since we consider transactions as atomic events, we only 
accept the possibility of taking snapshots between transactions, i.e. at integer 
times. On figures, snapshots are represented by cameras. For example, Fig. 1 
shows the snapshots (0, 3), (1, 0) and (2, 1). 

A set of snapshots containing at least one snapshot of each part  is called a 
cut. A cut is called simple iff it contains one and only one snapshot of each part; 
otherwise, it is called multiple. 

We define the time interval of a cut to be the interval from the time when the 
first snapshot in the cut is taken, to the time when the last snapshot is taken, 
inclusively. If an event happens during the time interval of a cut C, we say that  
it happens during C. 
R e a c h a b i l i t y  a n d  g a r b a g e  in cu t s .  Among others, cuts may be used to de- 
termine the teachability of objects. For this purpose, the following definitions 
are used. 
D e f i n i t i o n  2 (presence;  i n c o n s i s t e n t  presence ) .  Let C be a cut. An object 
x is present in C if] C contains a snapshot that contains a copy of x, i.e. a 
snapshot of P(x )  taken at a time when x exists; otherwise, x is absent from C. 
x is inconsistently present in C iff C contains both a snapshot of P(x )  taken 
when x exists, and a snapshot of P(x)  taken when x does not exist. 

D e f i n i t i o n  3 ( t eachab i l i t y  in  cu ts ) .  Let C be a cut. Objects reachable in C 
form the smallest set such that 

1. roots are reachable in C; 
2. objects inconsistently present in C are reachable in C; 
3. if object x is reachable in C and a copy of x present in C contains a pointer 

to object y and y is present in C, then y is reachable in C. 

To understand this definition, let us first assume that  the cut C is simple. Under 
this assumption, no objects are inconsistently present in C, and rule 2 in the 
definition is not applied. Then, the definition implements the idea that  a cut 
should be treated as if it represented a state of an execution, copied at some 
time (in reality, a cut is usually not such a state, because different snapshots are 
taken at different times). In the context of simple cuts, Definition 3 is indeed 
equivalent to what we would obtain by substituting the words "at t ime t" with 
words "in cut C" in Definition 1, which defines reachability in databases. 

Now, consider the case of multiple cuts. In this case, rule 2 in the definition 
applies. To explain the rationale of the rule, let us observe that  an object x 
may only be inconsistently present in C if it has been created or deleted during 
C. This, in turn, implies that  some transaction had access to x during C. x 
was therefore reachable at some time during C, and, for C to be a faithful 
representation of what happened in the actual system, it should be reachable in 
C. 

An object x that  is present in a cut C and not reachable in C is said to be 
garbage in C. 
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Fig. 2. Object X is reachable in the execution, and garbage in the cut (R0 and R1 are 
roots; X is not a root). 

4 A r b i t r a r y  c u t s  

Theorem 4 (preservation of  garbage). Every object that is constantly gar- 
bage in a database execution E during a cut C of this execution, is garbage in 
C. 

(Let us recall tha t  the proofs of all theorems can be found in [7].) 
The converse of this theorem is not true: from the counterexample shown 

in Fig. 2~ it results tha t  an object that  is constantly reachable in an execution 
while a cut is being taken may be garbage in the cut. 

The theorem goes against the common-sense idea tha t  no reliable informa- 
tion can be obtained by observing different parts  in a database at arbi t rary  
times, with no effort to guarantee consistency. It  implies, for example, tha t  by 
examining different objects in the system at arbi t rary  times, we can est imate the 
number and the total  size of garbage objects, with no risk of underestimation. 

5 G C - c o n s i s t e n t  c u t s  

Defini t ion 5 (path). Let E be a database execution, comprising n transactions; 
we assume that the database contains m parts. A path  in E is a function H that 
goes from the set of integer times of the transaction clock to the set of parts 
5n symbols: H :  {0, ..., n} -+ {0, ..., m - 1}) and that satisfies, for every t > 0 
belonging to its domain, one of the following conditions: 

1. H(t) = H ( t -  1) 
2. or the transaction that takes place between times t -  1 and t locks part H ( t -  1) 

for reading or writing, and part H(t) for writing. 

A path  represents the way in which a pointer present at t ime n in some 
part  i may have been successively copied during E in order to reach this part .  
According to the definition, H ( t -  1) and H(t) either are equal (this corresponds 
with the situation where a pointer value is not copied) or are chosen so tha t  the 
transaction tha t  happens between times t - 1 and t has the possibility to copy a 
pointer from par t  H(t - 1) to part  H(t). The lat ter  means tha t  the transaction 
locks par t  H(t - 1) for reading or writing, and par t  H(t) for writing. 
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In Fig. 1, two example paths are represented by very thick gray lines (other 
paths exist in this execution). The lower one is straight. This corresponds with a 
constant p a t h - - a  path that  stays in the same part  during the whole execution. 
The upper one shows that  a pointer value located in part 1 at time 3 might be 
there because between times 2 and 3 it was copied there from part  0, after being 
copied from part  1 to part  0 between times 0 and 1. 
Defini t ion 6 (GC-consis tent  cut).  Let E be a database execution. A cut C 
of E is GC-consistent if] it crosses every path, i.e. iff for each path H in E there 
exists some time t satisfying (H(t) ,  t) E C. 

Theorem 7 (absence of false garbage). Let C be a GC-eonsistent cut of a 
database execution E. Then, an object can be garbage in C only if it is garbage 
in E, at some time during C. 

The theorem implies that  an anomaly similar to the one in Fig. 2 cannot 
occur with a GC-consistent cut. 

A GC-consistent cut can be used for garbage detection in a concurrent GC: 
instead of looking at the real system (whose content cannot be examined in 
a simple way, because it can change at any time and in arbitrary ways), the 
GC examines a GC-consistent cut of the system, and determines which objects 
are garbage in the cut. These objects are then deleted from the system. This 
method does not jeopardize the safety of the GC, because according to Theorem 
7, only objects that  are actually garbage in the system can be garbage in the cut. 
Similarly, it results from Theorem 4 that  the use of a GC-consistent cut does not 
jeopardise the liveness of the GC: the objects which are garbage in the system 
during the operation of the GC are also garbage in the cut, and are therefore 
deleted by the GC. 

An industrial GC has been built according to this principle, and is part  of 
the commercial OODB management system 02. 2 

6 A consistency property of simple GC-consistent cuts 
Simple GC-consistent cuts (that is, cuts that  are both simple and GC-consistent) 
can be used to solve the problem described in the introduction to this paper, 
i.e. to compute the total balance of several bank accounts stored in a database. 
Let us describe this problem formally. If v is a variable stored in the database, 
then the value of v at time t is noted v t. The value of v present in the simple 
cut C is noted v c .  (This makes sense because C is a simple cut, and therefore 
contains one and only one copy of v. We do not define v C in the case where C 
is a multiple cut.) 

Consider an execution E of a database containing integer variables v0,..., vl. 
We assume that  each variable represents a bank account. Money can be trans- 
fered between the accounts, but  the total balance remains constant: the value 

2 See [8] for a description of the garbage collector, and [2] for a description of 02. For 
general information about garbage collection and for a description of other methods 
for concurrent garbage collection, see Wilson [9] or Jones and Lins [5]. For references 
about garbage collection in databases, see also [7]. 
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Defined in theorem number 
Causal cuts 
Simple GC-consistent cuts 
GC-consistent cuts 
Arbitrary cuts 

Preservation Absence of Sum of Dangling 
of garbage false garbage bank accounts pointers 

4 7 8 10 
X X X 

X X X 

X X 

X 

Table 1. Consistency criteria and classes of cuts. 

1 t does not depend on t. The following theorem implies that  s can be S = ~-~.j=O Vj  
computed using a simple GC-consistent cut of E.  

T h e o r e m  8 ( s u m  o f  bank accounts ) .  Let E be an execution of a database 
that contains several integer variables vo, ..., vt. We assume that the sum of the 
variables remains constant over time, and is equal to s. Then, for any simple 

t c GC-eonsistent cut C of E,  we have s = ~ j=o  v) . 

There is no equivalent to this theorem for GC-consistent cuts in general, i.e. there 
is no general method to compute the value s using a GC-consistent cut of E: a 
counterexample quoted in [7] shows that  the same multiple GC-consistent cut 
may correspond with two different executions, where the values s are different. 

7 C a u s a l  c u t s  o f  d a t a b a s e s  

In this section, we introduce causal cuts of databases (not to be confused with 
the unqualified "causal cuts"). 

D e f i n i t i o n  9 (causal  cut  in  a database) .  A cut C of a database execution 
E is causal if] it crosses every path H o r E  in exactly one point, i.e. i f f for  every 
path H,  there is one and only one time t such that (H( t ) , t )  E C. 

It results from this definition that  every causal cut of a database execution is 
also a simple GC-consistent cut of this execution. 

Let us exhibit a consistency property of causal cuts of databases, that  simple 
GC-consistent cuts do not have. We say that  a pointer is dangling in a database 
execution at time t if, at time t, it points to an object that  currently does not 
exist. In a cut C, a pointer is dangling iff it is present in C, but the pointed-to 
object is not present in C. 

A simple GC-consistent cut may contain a dangling pointer even if such 
pointers never appear in the underlying execution, and even if no objects are 
deleted during the execution (to understand why we quote the latter condition, 
compare this sentence with Theorem 10 below). An example illustrating this 
possibility is quoted in [7]. The situation is different for causal cuts: 
T h e o r e m  10. Let E be a database execution in which no pointer is ever dangling 
and during which no objects are deleted. Then, no pointer is dangling in a causal 
cut of E.  
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The theorem implies that  in a system tha t  does not delete objects, we can use 
causal cuts to detect dangling pointers in an execution, and no false alarms will 
be issued (although, conversely, some dangling pointers may remain undetected). 
Simple GC-consistent cuts cannot be used for this purpose. 

8 S u m m a r y  

We have introduced partly-consistent cuts, a principle tha t  can be used to obtain 
meaningful information about  the state of a database by observing different 
parts  of the database at different times. We have studied four classes of part ly-  
consistent cuts. The classes are ordered by strict inclusion, as follows: arbi t rary  
cuts of databases (this is the biggest class), GC-consistent cuts, simple GC- 
consistent cuts, and causal cuts of databases.  

Table 1 summarizes the consistency criteria that  are met  by the different 
classes of cuts. Each criterion is described with a reference to the theorem where 
it is first used, and with a name. A cross in the table means tha t  all the cuts in 
a class meet a criterion. Conversely, for every cross missing, we know tha t  some 
cuts in the class fail to satisfy the criterion. 

A garbage collector based on cuts has been developed in 02, a commercial 
OODB management  system. 
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