
A Quality Design Solution for Object
Synchronization

Ant6nio Rito Silva

INESC/IST Technical University of Lisbon, Rua Alves Redol n°9, 1000 Lisboa,
PORTUGAL

A b s t r a c t . This paper presents a quality design solution, the Customiz-
able Object Synchronization pattern, for object synchronization which
decouples object synchronization from object concurrency and object
functionality (sequential part). The solution described by this pattern
provides encapsulation, extensibility, modularity and reuse of synchro-
nization policies.

1 Introduction

This paper describes a quality object-oriented design solution for object syn-
chronization by identifying the components and interactions which provide the
desired characteristics: synchronization is enforced at the object side and it is
encapsulated by an interface object; generic class specialization provides several
synchronization policies; and the synchronization-specific classes are decoupled
from sequential classes.

The solution is described as an object-oriented design pattern which em-
phasizes its qualities and shows how they are achieved. This description is free
of implementation details. Particular pattern implementations can be applied
in the construction of object-oriented frameworks or included in composition
systems as reflective systems.

2 Customizable Object Synchronization Pattern

The design pattern is described using an extension to the format in [1]. The ex-
tension, Objectives and Assessment, emphasizes the design quality. Objectives
defines the goals to be achieved by the design, e.g. design qualities or efficien-
cy. Assessment describes how the pattern objectives are accomplished by the
solution.

Intent. The Customizable Object Synchronization pattern abstracts several ob-
ject synchronization policies. It decouples object synchronization from object
concurrency and object functionality (sequential part).

577

Objectives. An object-oriented solution for the object synchronization problem
must have the qualities: encapsula t ion requires the synchronization part of an
object to be placed within the object itself rather than spread out among its
clients; extens ibi l i ty requires abstraction of synchronization policies; m o d u -
larity requires separation of obj ect synchronization from object concurrency and
object functionality (sequential part); and reusabi l i ty requires separate reuse
of sequential and synchronization code.

Structure and Participants. The Booch class diagram in Figure la illustrates
the structure of the Customizable Object Synchronization pattern.

sp=cons(Sxnchronization Predicate)'~
sync->pret.ontrol(sp) /
sobj->m' 0 | k sync->postContro (sp)]

-Synchronizaf io~ ' ' so l i i , , Sequential r
r Interface. - , ~ - - - - ' ~ . Object)

" . m0" ; - 2' " m'O - - . '

• ~ t" Object t
t Synehromzer n hr niza i n , _ _ ~ "~yc o t o :

tl preControlO t ~. Data
, postControl 0 ~ " ? - ~ - - - .

' O , " - ' - ~ / - - - ,

" ' " ~ t S ynchronizatio n ~
• Predicate

N ' , i • status
, require() ',

/ ~ prgGuardO ,
pending [' postGuardO i

I ' pre 0 j
\ ', execO ,

postO ,
commit() , . . ¢ y _ o ,,

CREATE
SYNCHRONIZATION
PREDICATE

VERIFY STATE

VERIFY GUARD

IF CONTINUE

IF ERROR

VERIFY GUARD

IF DELAY

IF CONTINUE

IF ERROR

:Synchronization :Synchronizer :Synchronization
Interface Predicate

i i i

t i i i
preControl(pred) . ~ require() . ~

U
I postControl(pred)> r t ~ ~,

i i i

a) b)

Fig. 1. a) Structure. b) Collaborations

The main participants in the Customizable Object Synchronization pattern
a r e :

- Sequent ia l Obj ec t . Contains the sequential code and data, where accesses
should be synchronized.

- Synchronizat ion Inter face . Is responsible for the synchronization of in-
vocations to the Sequent ia l Object using the services provided by the
Synchronizer. It invokes preControl before invocation proceeds on the
Sequential Object and postControl after.

- Synchronizer. It decides whether an invocation may continue, stop or
should be delayed (returns values CONTINUE, ERROR and DELAY). Operations
preControl and postControl control the order of invocations. The former
enforces pessimistic policies while the latter enforces optimistic policies.

578

- Synchronizat ion Pred ica te . Identifies the invocation and contains its
current status which can be: pre-pending, executing, post-pending, com-
mitted and aborted (attribute s t a tu s with values PRE, EXEC, POST, COMMIT
and ABORT). Contains a queue of pending invocations pending. Defines the
synchronization semantics of an invocation through operations require ,
preGuard and postGuard. Operations pre, exec, post, commit and abort
update synchronization data.

- Object Synchronizat ion Data. Provides the global object synchroniza-
tion data. It may use the Sequent ia l Object to get the synchronization
data, e.g. the number of items in a bounded buffer.

Collaborations. When method m is invoked, a Synchronization Predicate ob-
ject is created by the Synchronizat ion I n t e r f a c e (first phase in Figure lb).
Afterwards, it invokes preControl (second phase in Figure lb) and postControl
(third phase in Figure lb) on the Synchronizer, respectively, before and after
method ra" is executed on the Sequent ia l Object. preControl synchronizes
an invocation before execution and an error may be returned, preventing in-
vocation execution, otherwise access is delayed or resumed, postControl veri-
fies if an invocation already done is correctly synchronized with terminated in-
vocations. To evaluate synchronization conditions (operations preControl and
postControl) the Synchronizer interacts with Synchronizat ion Predicate .
The Synchronizat ion Predica te may use the synchronization data in other
pending invocations or in the Object Synchronizat ion Data.

Sample Code. This section presents the implementation of a pessimistic read-
ers/writers policy. Two categories of methods are considered: read and write.
Invocations to read methods are delayed whenever a write method is executing,
while invocations to write methods are delayed whenever read or write methods
are executing.

Below it is shown the implementation of a pessimistic synchronizer. Note that
post control phase always return CONTINUE since invocations are synchronized
before access by preControZ method. Identifier names have been shortened.

// Pessimistic Synchronizer preControl
X_Status Pess_Synchronizer::
preControl(Sync_Pred *pred)
{

X_Status xStatus;
// compatible state
xStatus = pred->requireO;
// conflicting invocations
if (xStatus == CONTINUE)

xStatus = pred->preGuard();
// update predicate sync data
if (xStatus == CONTINUE)

pred->exec();
else if (xStatus == ERRDR)

pred->abortO;
// returns result
return xStatus;

/ / Pessimist ic Synchronizer postControl
X_Status Pess_Synchronizer::
postControl(Sync_Pred *pred)
{

/ / update predicate sync data
pred->commit();
/ / returns r e su l t
return CDNTINUE;

}

579

Two synchronization predicates, Read_Prod and Write_Pred, are defined for,
respectively, read and write invocations. Their super-class, RW_Sync_Pred, defines
the two categories, READ and WRITE. Read and write predicates are shown below.
They verify the status of predicates in the pending_ queue. Since synchronization
does not depend on object state, r equ i r e operations return CONTINUE.
/ / confl icts with executing writes
X.Status Read_Pred::preGuard()
{

/i i te ra tor for pending predicates
Iterator iter(pending_);
RW_Sync_Pred *plod;
while (prod = iter,next(), prod != O)

// there are write invocations executing
if ((pred->getStatus() == EXEC) ~

(pred->getCatO == WRITE))
/[conflict
return DELAY;

/ / no conflict
return CONTINUE;

// conflicts with executing reads and writes
X_Status Write_Pred::preGuardO
{

// iterator for pending predicates
Iterator iter(pending_);
EW_Sync_Pred *prod;
while (prod = iter.nextO, prod != O)

// there are invocations executing
if (pred->getStatusO == EXEC)

/ / conflict
return DELAY;

11 no conflict
return CONTINUE;

Assessment. In this section it is shown how the design pattern achieves the
objectives previously stated.

Encapsu la t ion is achieved by placing the synchronization code within the
synchronized object such that client objects can invoke Synchronization Interface
ignoring synchronization issues.

Extensibility is achieved by specializing the abstract classes, Synchronizat ion
Pred i ca t e and Object Synchronizat ion Data. Above a pessimistic reader-
s/writers policy was described. The design pattern also supports several opti-
mistic policies by defining postControl operation and producer/consumer poli-
cies by defining r equ i r e operation since synchronization depends on the object
state.

M o d u l a r i t y is achieved by decoupling synchronization, concurrency and se-
quential code. The synchronization code is kept in classes Synchronization
Pred i ca t e and Object Synchronizat ion Data. Two policies of object concur-
rency are considered: active object and passive object. Object synchronization
requires, from concurrency policies, mutual exclusion and activity delay/awake
services. Both implementation are orthogonal to synchronization code.

Reusab i l i ty is partially achieved. Composition reusability is completely
achieved but inheritance reusability has some limitations. Due to the decouple of
synchronization from sequential code it is possible to have separate composition
reuse. Concerning inheritance reuse, the presented solution allows extension of
synchronization code independently of sequential code, but the opposite is not
necessarily true. For instance, the introduction of a new sequential method may
require the redefinition of synchronization predicates.

3 R e l a t e d W o r k a n d C o n c l u s i o n s

This paper discusses a design pattern, the Customizable Object Synchroniza-
tion pattern, for object synchronization. Contrarily to the common description

580

of design patterns which emphasizes the pattern known uses, this description
emphasizes the quality aspects associated with the solution.

Several proposals tie object synchronization with concurrency and distribu-
tion, e.g. [2]. The design pattern presented in [3] also associates synchronization
with active objects. The Object Synchronization approach decouples object syn-
chronization from concurrency and distribution.

The Object Synchronization pattern supports several of the features of M-
cHale's work on declarative object synchronization mechanisms [4]: it complete-
ly separates object synchronization data from sequential data, and it has the
expressive power of scheduling predicates. Moreover, it supports optimistic poli-
cies by considering new cases where synchronization data can be changed, (post
method of Synchronizat ion Predicate) , and can easily be integrated with
object recovery, (abort method of Synchronizat ion Predicate) .

The inheritance anomaly problem [5] is not completely solved by the design
pattern. However, the supported separation of synchronization from function-
ality solves some of the problems. Other approaches to this problem stressed
this separation, e.g. [6]. However, the pattern approach does not require new
languages neither a new inheritance mechanism.

The Object Synchronization design pattern is implemented in a framework
for heterogeneous concurrency, synchronization and recovery in distributed ap-
plications. This framework is publicly available from the WWW page
http ://albert ina. ine s c. pt/" ars/das co. html.

Acknowledgmen t s . Thanks to my colleagues Francisco Rosa and Teresa
Gon~alves for reading this document.

R e f e r e n c e s

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

2. Murat Karaorman and John Bruno. Introducing Concurrency to a Sequential Lan-
guage. Communications of the ACM, 36(9):103-116, September 1993.

3. R. Greg Lavender and Douglas C. Sehmidt. Active Object: an Object Behavioral
Pattern for Concurrent Programming. In John M. Vlissides, James O. Coplien, and
Norman L. Kerth, editors, Pattern Languages of Program Design 2, pages 483-499.
Addison-Wesley, 1996.

4. Ciaran McHale. Synchronisation in Concurrent, Object-oriented Languages: Ex-
pressive Power, Genericity and Inheritance. PhD thesis, Department of Computer
Science, Trinity College, Dublin, 1994.

5. Satoshi Matsuoka and Akinori Yonezawa. Analysis of Inheritance Anomaly in
Object-Oriented Concurrent Programming Languages. In Gul Agha, Peter Wegner,
and Akinori Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 107-150. MIT Press, 1993.

6. Cristina Videira Lopes and Karl Lieberherr. Abstracting Process-to-Function Rela-
tions in Object-Oriented Applications. In ECOOP '9~, pages 81-99, Bologna, Italy,
July 1994.

