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Abstract .  The remote service request, a form of remote procedure call, and 
the global pointer, a global naming mechanism, are two features at the heart 
of Nexus, a library for building distributed systems. NeXeme is an extension of 
Scheme that fully integrates both concepts in a mostly-functional framework, 
hence providing an expressive language for distributed computing. This paper 
presents a semantics for this Scheme extension, and also describes a NeXeme 
implementation~ including its distributed garbage collector. 

1 I n t r o d u c t i o n  

Scheme [20] is a mostly-functional language, i.e., it is a fully functional language that 
also supports imperative notions such as assignments and continuations, for efficiency 
and expressivity reasons. We believe that a distributed extension of such a language 
requires a mechanism to invoke functions remotely, so that distribution becomes part of 
the most fundamental operation of the language. Such an approach is also adopted by 
languages such as Obliq [2], Java + RMI [10, 22], and Compositional C + +  [4], in which 
methods can be invoked remotely. 

Nexus [7], a library for building distributed systems, has two salient features: a re- 
mote service request is a form of remote procedure call [1], and global pointers provide 
for global naming in a distributed environment. By offering a functionality close to re- 
mote function invocation, Nexus is a suitable building block for our distributed language. 
Furthermore, when designing a distributed version of Scheme, our concerns were porta- 
bility and potential use of high-performance hardware or protocols (e.g. supercomputers, 
ATM, UDP). Nexus also addresses these concerns as it runs on a variety of platforms 
and protocols. 

NeXeme integrates the Nexus approach, with its remote service requests and global 
pointers, into a mostly functional language. The result is a novel distributed program- 
ming language that offers expressivity, development ease, and automatic memory man- 
agement (via a distributed garbage collector). NeXeme provides powerful abstractions 
for controlling distribution while remaining computationally efficient. We believe that 
NeXeme is an excellent medium for implementing other forms of parallelism such as com- 
munication channels [21, 9] and futures [12, 14]. It is also an ideal platform for developing 
distributed symbolic applications, based for example on distributed mobile agents. 

In this paper, we formalise the concepts of remote service request and global pointers. 
To this end, in Section 3, we present a formal semantics for a simplified version of NeX- 
eme, called Idealised NeXeme. The semantics is operational as it defines a mechanical 
way of evaluating NeXeme programs on an abstract machine. In Section 4, we describe 
the NeXeme implementation. We compare and discuss our approach with related work 
in Section 5. More information on NeXeme is available at the following URL [15]. 

2 T h e  N e x u s  A r c h i t e c t u r e  

Nexus [7] is structured in terms of five basic abstractions: nodes, contexts, threads, 
global pointers, and remote service requests. A computation executes on a set of nodes 
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and consists of a set of threads, each executing in an address space called a context. 
(For the purposes of this article, it suffices to assume that a context is equivalent to a 
process.) An individual thread executes a sequential program, which may read and write 
data shared with other threads executing in the same context. 

The global pointer (GP) provides a global name space for objects, while the remote 
service request (RSR) is used to initiate communication and invoke remote computation. 
A GP represents a communication endpoint: that is, it specifies a destination to which a 
communication operation can be directed by an RSR. GPs can be created dynamically; 
once created, a GP can be communicated between nodes by including it in an RSR. 
A GP can be thought of as a capability granting rights to operate on the associated 
endpoint. 

Practically, an RSR is specified by providing a global pointer, a handler identifier, 
and a data buffer, in which data are serialised. Issuing an RSR causes the data buffer 
to be transfered to the context designated by the global pointer, after which the routine 
specified by the handler is executed, potentially in a new thread of control. Both the 
data buffer and pointed specific data are available to the P~SR handler. 

The remote service request mechanism allows point-to-point communication, remote 
memory access, and streaming protocols to be supported within a single framework. 

3 T h e  E s s e n c e  o f  R e m o t e  S e r v i c e  R e q u e s t s  

In this section, we present an operational semantics for remote service requests. For 
the sake of clarity and simplicity, we consider a subset of NeXeme, called idealised 
NeXeme. Table 1 summarises its different data structures, their representation, their 
constructors, and the operations permitted on them. (Programming examples may be 
found in [15].) The semantics was designed also to model non-functional languages like 
C; for example, full closures and first-class continuations are present in the semantics, 
but are not required in the actual implementation. 

name 
pair 
box 
lock 
global pointer 
closure 
continuation 

representation constructors operations 
(cons Yl V2) cons car, cdr 
(bx a, s) makeref deref, setref 
ilk c~, s) make-lock lock, unlock 
(gp a, s) make-gp,remote remote service request 
{cl A:KM p) AE.M apply 
(co ~) callcc apply 

Table  1. Data Structures 

The state space of the semantics appears in Figure 1. Distributed computations 
proceed inside a world composed of several sites 3. Each site is identified by a unique 
name s and is composed of a set T of tasks sharing access to a store 0. A store associates 
locations with values. Sites communicate by exchanging requests; each site contains both 
an output queue O of requests to be sent, and an input queue I of requests to be handled. 
When arriving at a site, requests are dealt with by a handler contained in H, a handler 
table associating names with closures. 

A task is an abstraction of a Nexus thread composed of a computational state and a 
name. A computational state is a configuration of the CEK abstract machine [5] designed 
to evaluate the sequential subset of the language. Two states are permitted: EvIM, p, a) 
represents the evaluation of a term M, in the environment p, with a continuation g; 
Ret(V, a/models  the return of a value V to a continuation t~. In terms of implementation, 
the term being evaluated is the program counter, the continuation is the control stack, 
and the environment is the sequence of frames containing bindings. 

3 In the semantics, a site corresponds to the notion of context in Nexus; we adopt a different 
name because contexts are usually given a different meaning in semantics [5]. 
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]4; : : :  {ml , . . . ,  rn,~} (World) 
m 6 A,I ::= ( T , O , s , H , I , O )  (Site) 
t E T a s k  ::= <C,T) (Task) 
0 6 S tore  ::= {(al V1)... ( a ,  V,)} (Store) 
s 6 S : {sl, s2 . . . .  } (Site Name) 
~- 6 T = {~-1, ~-2 . . . .  } (Task Name) 

C E C o S t  ::= 

p E E n v  ::= 
I 
O = 
T = 
H E H n d l  ::= 

Ev(M, p,t;) (Computational State) 
] Ret(V, t~) 
{(x~ 111) ... (x~Vn)}(Environment) 
{R1 . . . . .  R~} (Input Queue) 
{R1 . . . . .  R~} (Output Queue) 
{h . . . .  , t~} (Tasks Set) 
{(s t r l  f i ) . . .  (strn f~)} (Handlers) 

Free Task Name: 
F T N ( T )  = {~-](C,T) 6 T} 

Free Site Name: 
F S N ( I W )  = {s l<T,O,s ,H, I ,O> e W }  

5(cons, V1, V2) = (cons 111 172) 
5(car, (cons V1 V2)) = V1 
5(cdr, (cons V1 112)) = V2 

6(+, In], [m]) = In + m] 

M E A  
V~ 6 S V a l u e  
V E R V a l u e  
x 6 V a r s  
6 V V e c  

f E Clo 
s tr  6 S t r i n g  
c 6 C o n s t  
cb 6 B C o n s t  
cf  6 F C o n s t  

p 6 P a i r  
b 6 B o x  
I C Locks  
gp C GloP  
k E C o n t  
6 CCode  

R E Req 
so E S O  
sgp E S O  

::= y~ I (M M ...) I (if M M M) (Term) 
::= x I ( A ~ . M ) I  s tr  I c (Syntactic Value) 
::= f [ s t r [  c [ p [ b [ l [ gp ] k ] T (RuntimeValue) 
= {x, y, z . . .}  (User Variable) 

::= • I x ~ I .~ I .o (Var Vector) 
: : :  (¢I ,kZ.M, p) (Closure) 

(String) 
: :=cb I cf (Constant) 
: {true, false, nil, 0, 1 , . . . ,  void} (Basic Constant) 
={cons ,  car, cdr,+,makeref, deref, (Functional Constant) 

setref, callcc, make-gp, remote, rsr, fork, define-handler, shutdown} 
::= (cons v v)  (Pair) 
::= (b× , ,  s> (Box) 
::---- (Ik a, s) CLock) 
::= (gp s, a) (Global Pointer) 
::= (co n) (Continuation) 
: :=( in i t )  I ( a a r g p ( V  . . . .  M . . . ) ) I  ( n c o n d ( i , i , p ) )  (Cont. code) 
::= Req(s, sgp, so , . . . )  (Request) 
::= (scr ia l i sed  objects)  (Serialised Object) 
::= ( ser ia l i sed  global pointer)  (Serialised Object) 

Environment Operations: 
p(x) = V if  (x V)  E p 
p[x +- v ]  = 

p b  +- v]  = 

p[z 2~ +-- V1, V2 . . . ]  = 
p[,O ~-] = 
p[.x +-] = 

p[.x +- v . . . ]  = 

(p \ {(x v ' ) } )  u {(x v )}  
if (x V ' )  c p 
p u {(x v ) }  
if x ~ D O M ( p )  
p[~ +- yl][e +- y2. . . ]  
p 
p[x +- nil] 
pD ~- l is t i iv (v . . . )1  

Store Operations: 
0 W { ( ~ V ) } = 0 U  {(~V)} 

with a ~ DOM(O)  
O ( a ) = V  if ( a V )  EO 
0 b  := v] = (0 \ {(~ 0(~))}) u {(~ v )}  

l i s t i f y ( V J  = icons V1 nil) 
l is t i  f y (V1,  V2...) = icons V1 l is t i  f y (V2  . . .) ) 

Fig. 1. State Space of the CEKDS-machine 
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Ev((M Ml.,.),p,t~) -+c Ev(M,p,(~ arg p (., MI, ...))) (operator) 
Ev()~.M, p, t~) --+c Ret((cl )~.M, p}, n) (lambda) 

Ev(c, p, ~) --+c Rat{c, t~) (constant) 
Ev(x, p, ~} --~c Ret(p(x), n) (variable) 

Ret(V,(~ arg p {VI,...,.,M, M1, ...))) -+c Ev(M,p,(~ arg p {V1 . . . . .  V, II, M1 . . . .  ))) 
(operand) 

Ret(V, (~ arg p ((cl X~.M, Pl), V1 ..... o))) 
Ret((cl X~.M, p), (8 arg p' (.))) 

Ev((K M/1//1 M2), p, ~) 
Rat(V, (~ cond (M, Ml,p))) 

Ret(V~ (t~ arg p (caIIcc, .})) 
Rat(V, (t~ arg p {(co ~'), .))) 

Rat(V, (~ arg p (f, V1, ..., *))) 

-+c Ev(M, P112 +- 1/'1 ..... V], ~} (apply) 
-+c Ev(M, p[~ +-- ], ~) (applyO) 
-+c Ev(M, p, (~ cond (M1, M2, p))} (predicate) 
-+o Ev(M1, p,~> if V = false (if else) 
--+c Ev(M,p, ~) if V • false (if then) 
--~c Ret((co t~), (t~ arg p (V,.))) (capture) 
--+c Rat(V, t~') (invoke) 
-+o Ret(5(f, 1/1 .... , V), n) (5) 

Fig. 2. CEK Machine 

The transitions between computational states in Figure 2 deal with the sequen- 
tial  subset of the language that  does not involve the store. The transitions extend the 
CEK-machine transitions [5] by accepting n-ary applications (M1 M2 . . . )  and abstrac- 
tions ( )~ .M)  with variable number of arguments. Consequently the continuation code 
(n a r g  p (VI,..., Vn, o, Mn+2,.. .)) conveys the following meaning: the first n compo- 
nents of the application have already been evaluated and their values are V1,. •. ,  V,; the 
next component, i.e., the n + l th,  is being evaluated; the components Mn+2, . . .  remain 
to be evaluated in the environment p. 

Figures 3 to 6 deal with site transitions. According to rule (sequential), a site can 
perform a transition if it contains a task that  can perform a transition of Figure 2. In rule 
(fork), the primitive fork creates a new task applying the closure received as argument 
and returns the new task name. 

Figure 4 deals with operations related to boxes. The primitive ma keref allocates a new 
location a,  stores the value V in that  location, and returns a new box object {bx a,  s), 
pointing at the location a in the current site s. The primitive deref returns the content 
of the location associated with the box and the primitive setref changes the content of 
its associated location. 

Rule (make gp) creates global pointers in the same way as (makeref) creates boxes. 
A remote service request has the form (rsr str gp M1 ... M, ) ,  where str must evaluate 
to a string naming a handler to be called on the site that  gp is pointing at, with the 
arguments obtained as values of M1,. •. ,  M,n. The value returned by a remote service 
request is the distinguished void value, but its effect is to add a request in the output 
queue of the current site. A request is not a first-class object, i.e., it is not part  of the set 
of RValues, but it contains the destination site designated by gp, the serialised string, 
and the serialised values of M 1 , . . . ,  Mn. 

Let us observe that  the semantics does not specify the behaviour of the Serial and 
:Deserial functions. Their purpose is to convert to and from a suitable format for trans- 
portation. The composition of these functions returns a result that  is an isomorphic copy 
of its argument. (The specification is available from [15].) 

If there is a request in the input queue of a site, rule (handle) deserialises its content, 
and applies the handler associated with str to the value indicated by the global pointer 
and the deserialised values. It is also worth noticing that  the incoming request is handled 
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({ <C,~-) } U T,O,s,H,I,O) 
--+m <{ <Ci,~-> } U T,O,s,H,I,O) ifC-+*oC1 

<{ (Ret((d AZ.M, p), (a arg  pl (fork, .))>, T) } U T, O, s, H, I, O) 
--+.~ ({ (Ret(n,~) ,T)  } O { (Ev(M,p[~? <---], ( in i t ) ) ,n )  } UT, O,s ,H,I ,  O) 

with T1 ~ F T N ( T )  O {T} 

Fig. 3. Sequential and Parallel Evaluation 

(sequential) 

(fork) 

({ ( R e t ( V , ( n a r g p  (makeref,.>)),~-) } U T,O,s ,H,I ,O> 
-~m ({ (Ret((bx a, s>, a), ~-> } O T,O~{(a Y)},s,H,l,O) 

({ (Ret((bxa,  s> , ( t~argp  (deref, .))),  T) } U T ,O , s ,H , I ,O)  
-+m ({ <Ret<O(a),a>,~-> } U T,O,s,H,I,O) 

({ (Ret(V,(~argp (setref,(bxa, s),.))),T) } O T,O,s,H,I,O) 
--+m ({ (Ret<void, a), ~-> } U T, O[a := V], s, H, I, O) 

Fig. 4. Boxes 

( makere]) 

( dere]) 

(setrel) 

({ (Ret(V,(~argp (make-gp, .))), T> } U T, 8, s,H,I,O> 
-+m <{ (Ret<(gpa, S),~),T> } U T, 8~{(aV)},s,H,I,O) 

({ (Ret(Vn, (~ arg p (rsr, sir, (gp a, s), VI ..... .))), 7) } U T, 0, 81, H, I, O) 
-+,~ ({ (Ret<void, t0,T ) } U T,O, s l , H , I , {  Req(s, sgp, sstr, sol,...,so,~} } U O) 

if Serial(s1,8, <(gp a, s>, str, V1 .... , Vn>) = (sgp, sstr, SOl ..... sos> 
(T ,O,s ,H,{  Req(s, sgp, str, sol,...,so,~) } U I ,O)  

-+m ({ (Ev(M, p[~ +- 8(a), V1 ..... Vn], (init)), T) } U T, 01, s, H, I, O) 
if H(str)  = (cl AZ.M, p), 
l)eserial(s, e, <sgp, sol ..... son>) = (<(gp a, s>, V1 ..... V~>, 01) 

with ~- ~ /FTN(T)  
({ (Ret<V,(t~ a rg  p (define-handler, str, a>)>,z> } U T, 8, s ,H,I ,O> 

-+m ({ (Ret(void, a), ~-> } U T, O, s, U t~ {(str V)}, I, O) 

(make gp) 

(rsr) 

(handle) 

(define handler) 

Fig. 5. Global Pointers and Remote Service Requests 

({ (Ret(make-lock, (t~ a rg  p (*))>, T) } U T, 8, s, H, I, O> 
-+m <{ (Ret((Ika,  S),~),T} } U T ,01~{(a t rue )} , s ,H , I ,O> 

({ (Ret((lk a,  s>, (~ a rg  p (lock, .))>, T} } U T, 0, s, H, I, O> 
-+m ({ (Ret(void, ~), T) } t_J T, 0[a := false], s, H, I, O) if 8(a) ---- true 

({ (Ret<(Ika, s ) , ( ~ a r g p  (unlock,.))>,z>} U T , Q , s , H , I , O )  
-+,~ {{ (Ret(void,~),T) } U T,O[a := true] ,s ,H,I ,O) 

(make-lock) 

(acquire) 

(release) 

Fig. 6. Mutual Exclusion 
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{ml }  U ]22 
-+w {m2} U W if ml -e,~ m2 (site) 

{(T,O,s, tI, I , {  Req(s, req> } U O) U YV 
-ew {(T,O,s,H,{ Req(s, req) } U I,O> U W (local request) 

{(To, O, so,Ho, Io,{ Req(s,,req) } U Oo),(Tl,(gi,Sl,Hl,]l,01)} _U ]/V 
-+W {(To,8, so, Ho, Io, Oo),(T1,81,si,Hl,{ Req(sl,req) } U I1,Oi)} U }4? 

(migrate request) 
{({  (Ret({gp a, s},(~ arg p (remote, "host",(c{ A£.M, ql),e))>,:r) } U T,O,s,H,I,O}} U kV 

-+w{<{  (Ret((gpa,, s,),n),~')} U.T,O,s,H,I,O),m} U W (remote) 
with m = ({ {Ev(M, qi[~ +- (gp a, s}], (init)}, ~) }, Oi, Sl, @, 0, 0} 
with O, = {(az nil)},, si !~ FSN(W) U {s} 

Fig. 7. Other Distribution Aspects 

asynchronousty and that the handler,, is executed in a new thread. Optimistic active- 
messages [25] show that the thread could be created lazily [13] and still produce good 
performance. According to rule (define handler), the primitive define-handler allows a 
program to add new handlers in. a ~iven site. 

Idealised NeXeme offers some?primitives to implement critical sections. A lock is a 
datastructure that can be acquired' by at most one task using the primitive lock, and 
that can be released by the p r i ~ i v e  unlock. In Figure 6, a busy-wait implementation 
of locks relies on the fact that transi~on rules are atomic. 

Figure 7 displays transitions ,between worlds. Rule (site) shows that a world can 
perform a transition, if there is a site:,which can perfbrm a transition of Figures 3 to 6. 
In addition, rules (local request) and' (migrate request) deal with request transfers, and 
rule (remote) is used to create a newsite in a world. 

Creation of a remote site is always a delicate problem in a distributed system. Fre- 
quently, libraries for distribution assume an SPMD approach and use operating-system 
primitives to startup remote processes. We decided not to model NeXeme very closely, 
as the semantics would have been unsatisfactorily complicated. Instead, Idealised NeX- 
eme provides a primitive to create a new remote site and to initiate a computation on 
that site. This initial computation is essential, because it allows the user to install initial 
handlers for remote service requests. In addition, it makes it possible to synchronise both 
sites so that the initial site is kept informed when the new site is initialised and is ready 
to perform some processing. 

A remote site is created by the primitive remote which takes the following arguments: 
the name of a host, a closure representing the initial computation to be done, and a global 
pointer that can be used by the remote site to notify the end of inJtia.lisation by a remote 
service request. The value returned by the primitive remote is a global pointer pointing 
at the new remote site. In order to be implementable in languages without closures, like 
C, rule (remote) requires the closure to have an empty environment. As a result, the 
closure can be encoded as a pointer to its entry point. Let us observe that the remote 
site should be executed on "host". 

Having defined a transition relation between worlds, we can now define an evaluation 
relation associating programs with values. Detecting termination in a distributed system 
is a difficult matter in the general case. In Idealised NeXeme, we assume there exists 
a primitive shutdown that the program has to call on the origin site; it terminates the 
computation and returns its argument. 

De f in i t i on  1 (Eval) Let M be a closed term. An initial task is of the form ti = 
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(E~(M, 0, (( ini t))) ,  7), while a final task is of the 
t] = (Ret(V, (~ a r g  p (shutdown, .))) ,  T'). We have that:  

eval(M) = V if ({ ti },O, so,~b,O,O) --+w {({ ty } O T,O, so ,H,I ,O)}UW. 
[] 

form 

4 T h e  I m p l e m e n t a t i o n  

4.1 G e n e r a l  D e s c r i p t i o n  
Figure 8 displays the organisation of the NeXeme implementation. As Nexus is multi- 
threaded, we had to adopt a thread-safe garbage collector. The public domain Boehm- 
Weiser's [11] garbage collector supports various OS-level threads and is also part  of the 
P P C R  portable common runtime system [26]. On each platform, Nexus is recompiled 
against the garbage collector (abbreviated gc) and the suitable thread package. The ex- 
ecutable is generated by linking the Scheme system with the resulting libraries Nexus, 
gc, and threads. 

Utilities 
NeXeme 

Functional Nexus 
Foreign Interface 

Nexus IThreadslScheme 
GC 

Fig .  8. Organisation of NeXeme 

Primitives of the Nexus library axe made accessible through a foreign interface def- 
inition. Let us note that  some Nexus primitives require procedures as argument (for 
instance, thread creation or callbacks for handlers). In order to integrate properly Nexus 
with Scheme, we modified Nexus to support callbacks to Scheme functions. While the 
foreign interface defines a similar API as the Nexus library, the "functional Nexus" 
layer provides a more functional interface to Nexus; for instance, results are returned 
by functions, errors are signalled by exceptions, and memory is managed automatically. 
The NeXeme layer offers a functional version of remote service requests as described 
in Section 3. Finally, a library defining a set of utilities provides other paradigms for 
distribution like futures, communication channels, or farm processing. 

4.2 D i s t r i b u t e d  G a r b a g e  Co l l ec t i on  
NeXeme has a distributed garbage collector that  takes care of memory management an- 
tomatically. Our working hypotheses, provided by Nexus, are a reliable message-passing 
and a FIFO ordering 4 of messages between two sites. 

Each site relies on a thread safe, conservative, mark and sweep garbage collector [11]; 
conservativeness is required as Scheme data  are passed to Nexus, written in C, and 
are pointed by Nexus data  structures. In addition, NeXeme maintains two tables for 
each site. The exit table 5 associates each global pointer with the number of distinct 
remote copies of this pointer originating from the site. The entry table contains all 
global pointers received by a site, except those that  point at itself. The exit table, but 
not the entry table, is a root of the local garbage collector. The role of the distributed 
collector it to update  counters in a safe and consistent way. To this end, it relies on two 
types of control messages, called "decrement(gp)" and "increment-decrement(gp, s ) ' ,  
as described below. 

4 Nexus, as opposed to Idealised NeXeme, allows requests to be handled in a non-threaded 
manner; in such a case, Nexus guarantees the FIFO ordering of requests between two sites. 

5 Different names are found in the literature, such as entry/exit items, scions/stubs [17]. 
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Reference counters are updated according to the diffusion tree [16] of global pointers. 
The first time a global pointer gp is serialised, an entry is added into the exit table of 
the current site with a counter set to 1; afterwards, for every serialisation, this counter is 
incremented. Symmetrically, the first time a global pointer gp is deserialised, it is added 
to the entry table (if it points at a remote host); if it is already present, NeXeme sends 
a decrement message for this global pointer, "decrement(gp)" to the site that sent the 
remote service request. When a site receives a message "decrement(gp)", the counter of 
gp in the exit table is decremented. Once the counter reaches zero, the global pointer 
may be removed from the table; only then, the pointer itself and the local data may be 
reclaimed, if no longer accessible. 

In Nexus, a global pointer contains the site it is pointing at, and not the site it is 
arriving from. Therefore, once a global pointer gp pointing at a site sl becomes inacces- 
sible on a site s2, s2 sends a message "decrement(gp)" to sl. This naive implementation 
of the reference counter technique is sound if causality is preserved in the system [16]. 
This is ensured by a reorganisation of the diffusion tree, as explained in the following 
scenario illustrated in Figure 9. 

Let us consider that gp, a global pointer pointing to address a in sl, is migrated to 
s2, and then migrated to 8 3. Figure 9 part 1 shows that the reference counters in sl and 
s2 are equal to 1, meaning that there are 1 + 1 = 2 active remote references of gp. Once 
s3 deserialises gp, the global pointer received from s2, a reorganisation can be initiated, 
as illustrated in Figure 9 part 2. (i) Site s3 sends an "increment-decrement(gp, s2)" 
message to sl; (ii) when the message is received by sl, the counter for gp is incremented 
on sl; 5ii) afterwards, a "decrement(gp)" message is sent to s~; (iv) when the message 
is received, the counter for gp is decremented on s2. 

(gP i n ~  s2 

(gp a, 81) 

I: RSR 

(gP i n ~  
~2 

DEC(gp) ", (i;i) 

© 

{gP ~, Sl) 

,s 
• INC-DEC(gp, s2) 

(gp a, Sl) 

Fig. 9. Distributed Reference Counters (1) after Remote Service Requests 
(2) after Control Messages 

Race conditions are avoided between sl and s3 by giving priority to "increment- 
decrement" over "decrement" messages. As a result, we have the following invariant. For 
every global pointer gp pointing to site s: 

counter(gp) = Z in(gp) + Val  (message /or gp) 
site s i t e , s  

with Value(decrement(gp) ) = 1 and Value(increment-decrement(gp, si) ) = O. 
The simplicity and portability of the solution is unfortunately counter-balanced by 

its inability to collect distributed cycles. Our approach differs from "Indirect Reference 
Counting" [16] because it can reclaim "zombie" pointers, i.e., gp can be freed on s2 even 
though it remains active on s3; other techniques to reduce the length of indirection chains 
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are described in [17]. Several optimisations are possible. First, control messages of the 
same type may be grouped in a single message. Second, an "increment-decrement(gp, s2)" 
to be sent to sl, followed by a "decrement(gp)" to the same destination, may be replaced 
by a "decrement(gp)" to s2. 

4.3 Ut i l i t i e s  
The utilities layer offers a number of services that we briefly describe in this section. 
Remote invocation of a procedure sends a locally-available closure to a remote site where 
it is invoked on some arguments; as in a remote service request, no result is returned by 
this operation. Not only does remote invocation of a function transfer and call a function 
on some arguments, but also it returns the result to the site that initiated the operation. 
Communication channels [21, 9], and futures [12] are also provided. 

"Farm-processing" versions of the various remote call utilities are provided that can 
be used when a list of global pointers is passed as an argument; these versions map the 
corresponding operation onto each element of the list. NeXeme is also able to detect when 
a site becomes idle so that lazy task creation [13] and task stealing can be implemented 
easily. 

5 D i s c u s s i o n  a n d  R e l a t e d  W o r k  

The Nexus [7] philosophy is derived from active messages [24], where each message con- 
tains at its head the address of a user-level handler executed on message arrival. Nexus 
has also been used to build several other distributed languages. In Fortran M [6], program 
modules, called processes, communicate via explicitly-declared channels. The language 
nPerl [8] is a distributed extension of Perl which provides a remote procedure call; un- 
like NeXeme, higher-order functions and continuations are not available. Compositional 
C + +  [4] supports global pointers that can refer to objects on remote machines, and 
defines usual operations on them; also, CC+ offers single assignment objects. Currently, 
NeXeme uses Nexus 3.0; Nexus 4.0 provides EZ Nexus a more abstract interface to 
remote service requests, which is similar to the one described here. 

Boxes allow the programmer to define mutable data structures, for example cyclic 
data structures. If a cyclic data structure is passed as an argument to a remote service 
request, an isomorphic copy is generated on the remote site. NeXeme does not prevent 
the user from mutating each copy separately, as they are now independent entities. 
However, using global pointers, any form of consistency can be programmed on top of 
NeXeme, such as simulated shared memory [14] or cansally-coherent memory [18]. 

There exist other distributed implementations of functional languages with explicit 
notations for parallelism or distribution. DMeroon [18] offers a distributed memory model 
which enforces coherence based on causality, while ICSLAS [19] adds to DMeroon trans- 
parent remote execution. KMi Scheme [3] also offers a form of active messages, on top of 
which higher-level primitives are defined; the semantics of Kali Scheme could easily be 
defined in terms of Idealised NeXeme. Distributed versions of SML-style languages are 
usually based on communications channels [21, 9]. 

6 Conclusion 

This paper presents NeXeme, a distributed dialect of Scheme, based on remote service 
requests and global pointers provided by the library for distribution Nexus. This paper 
describes the semantics but also the implementation of this language. The functional 
interface to remote service requests of NeXeme is a perfect abstraction to build a Scheme 
with futures [14]; in addition, NeXeme is used for programming multimedia distributed 
applications. 
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