
NeXeme: A Distributed Scheme Based on Nexus

Luc Moreau*, David De Roure*, and Ian Foster**

Abstract . The remote service request, a form of remote procedure call, and
the global pointer, a global naming mechanism, are two features at the heart
of Nexus, a library for building distributed systems. NeXeme is an extension of
Scheme that fully integrates both concepts in a mostly-functional framework,
hence providing an expressive language for distributed computing. This paper
presents a semantics for this Scheme extension, and also describes a NeXeme
implementation~ including its distributed garbage collector.

1 I n t r o d u c t i o n

Scheme [20] is a mostly-functional language, i.e., it is a fully functional language that
also supports imperative notions such as assignments and continuations, for efficiency
and expressivity reasons. We believe that a distributed extension of such a language
requires a mechanism to invoke functions remotely, so that distribution becomes part of
the most fundamental operation of the language. Such an approach is also adopted by
languages such as Obliq [2], Java + RMI [10, 22], and Compositional C + + [4], in which
methods can be invoked remotely.

Nexus [7], a library for building distributed systems, has two salient features: a re-
mote service request is a form of remote procedure call [1], and global pointers provide
for global naming in a distributed environment. By offering a functionality close to re-
mote function invocation, Nexus is a suitable building block for our distributed language.
Furthermore, when designing a distributed version of Scheme, our concerns were porta-
bility and potential use of high-performance hardware or protocols (e.g. supercomputers,
ATM, UDP). Nexus also addresses these concerns as it runs on a variety of platforms
and protocols.

NeXeme integrates the Nexus approach, with its remote service requests and global
pointers, into a mostly functional language. The result is a novel distributed program-
ming language that offers expressivity, development ease, and automatic memory man-
agement (via a distributed garbage collector). NeXeme provides powerful abstractions
for controlling distribution while remaining computationally efficient. We believe that
NeXeme is an excellent medium for implementing other forms of parallelism such as com-
munication channels [21, 9] and futures [12, 14]. It is also an ideal platform for developing
distributed symbolic applications, based for example on distributed mobile agents.

In this paper, we formalise the concepts of remote service request and global pointers.
To this end, in Section 3, we present a formal semantics for a simplified version of NeX-
eme, called Idealised NeXeme. The semantics is operational as it defines a mechanical
way of evaluating NeXeme programs on an abstract machine. In Section 4, we describe
the NeXeme implementation. We compare and discuss our approach with related work
in Section 5. More information on NeXeme is available at the following URL [15].

2 T h e N e x u s A r c h i t e c t u r e

Nexus [7] is structured in terms of five basic abstractions: nodes, contexts, threads,
global pointers, and remote service requests. A computation executes on a set of nodes

* This research was supported in part by EPSRC grant GR/K30773. Authors' address: Depart-
ment of Electronics and Computer Science, University of Southampton, Southampton SO17
1BJ. United Kingdom. E-maih (L.Moreau, dder) @ecs. soton, ac.uk.

** Author's address: Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne, IL 60439. E-mail: foster@mcs, a~l .gov.

582

and consists of a set of threads, each executing in an address space called a context.
(For the purposes of this article, it suffices to assume that a context is equivalent to a
process.) An individual thread executes a sequential program, which may read and write
data shared with other threads executing in the same context.

The global pointer (GP) provides a global name space for objects, while the remote
service request (RSR) is used to initiate communication and invoke remote computation.
A GP represents a communication endpoint: that is, it specifies a destination to which a
communication operation can be directed by an RSR. GPs can be created dynamically;
once created, a GP can be communicated between nodes by including it in an RSR.
A GP can be thought of as a capability granting rights to operate on the associated
endpoint.

Practically, an RSR is specified by providing a global pointer, a handler identifier,
and a data buffer, in which data are serialised. Issuing an RSR causes the data buffer
to be transfered to the context designated by the global pointer, after which the routine
specified by the handler is executed, potentially in a new thread of control. Both the
data buffer and pointed specific data are available to the P~SR handler.

The remote service request mechanism allows point-to-point communication, remote
memory access, and streaming protocols to be supported within a single framework.

3 T h e E s s e n c e o f R e m o t e S e r v i c e R e q u e s t s

In this section, we present an operational semantics for remote service requests. For
the sake of clarity and simplicity, we consider a subset of NeXeme, called idealised
NeXeme. Table 1 summarises its different data structures, their representation, their
constructors, and the operations permitted on them. (Programming examples may be
found in [15].) The semantics was designed also to model non-functional languages like
C; for example, full closures and first-class continuations are present in the semantics,
but are not required in the actual implementation.

name
pair
box
lock
global pointer
closure
continuation

representation constructors operations
(cons Yl V2) cons car, cdr
(bx a, s) makeref deref, setref
ilk c~, s) make-lock lock, unlock
(gp a, s) make-gp,remote remote service request
{cl A:KM p) AE.M apply
(co ~) callcc apply

Table 1. Data Structures

The state space of the semantics appears in Figure 1. Distributed computations
proceed inside a world composed of several sites 3. Each site is identified by a unique
name s and is composed of a set T of tasks sharing access to a store 0. A store associates
locations with values. Sites communicate by exchanging requests; each site contains both
an output queue O of requests to be sent, and an input queue I of requests to be handled.
When arriving at a site, requests are dealt with by a handler contained in H, a handler
table associating names with closures.

A task is an abstraction of a Nexus thread composed of a computational state and a
name. A computational state is a configuration of the CEK abstract machine [5] designed
to evaluate the sequential subset of the language. Two states are permitted: EvIM, p, a)
represents the evaluation of a term M, in the environment p, with a continuation g;
Ret(V, a/models the return of a value V to a continuation t~. In terms of implementation,
the term being evaluated is the program counter, the continuation is the control stack,
and the environment is the sequence of frames containing bindings.

3 In the semantics, a site corresponds to the notion of context in Nexus; we adopt a different
name because contexts are usually given a different meaning in semantics [5].

583

]4; : : : {ml , . . . , rn,~} (World)
m 6 A,I ::= (T , O , s , H , I , O) (Site)
t E T a s k ::= <C,T) (Task)
0 6 S tore ::= {(al V1)... (a , V,)} (Store)
s 6 S : {sl, s2 } (Site Name)
~- 6 T = {~-1, ~-2 } (Task Name)

C E C o S t ::=

p E E n v ::=
I
O =
T =
H E H n d l ::=

Ev(M, p,t;) (Computational State)
] Ret(V, t~)
{(x~ 111) ... (x~Vn)}(Environment)
{R1 R~} (Input Queue)
{R1 R~} (Output Queue)
{h , t~} (Tasks Set)
{(s t r l f i) . . . (strn f~)} (Handlers)

Free Task Name:
F T N (T) = {~-](C,T) 6 T}

Free Site Name:
F S N (I W) = {s l<T,O,s ,H, I ,O> e W }

5(cons, V1, V2) = (cons 111 172)
5(car, (cons V1 V2)) = V1
5(cdr, (cons V1 112)) = V2

6(+, In], [m]) = In + m]

M E A
V~ 6 S V a l u e
V E R V a l u e
x 6 V a r s
6 V V e c

f E Clo
s tr 6 S t r i n g
c 6 C o n s t
cb 6 B C o n s t
cf 6 F C o n s t

p 6 P a i r
b 6 B o x
I C Locks
gp C GloP
k E C o n t
6 CCode

R E Req
so E S O
sgp E S O

::= y~ I (M M ...) I (if M M M) (Term)
::= x I (A ~ . M) I s tr I c (Syntactic Value)
::= f [s t r [c [p [b [l [gp] k] T (RuntimeValue)
= {x, y, z . . .} (User Variable)

::= • I x ~ I .~ I .o (Var Vector)
: : : (¢I ,kZ.M, p) (Closure)

(String)
: :=cb I cf (Constant)
: {true, false, nil, 0, 1 , . . . , void} (Basic Constant)
={cons , car, cdr,+,makeref, deref, (Functional Constant)

setref, callcc, make-gp, remote, rsr, fork, define-handler, shutdown}
::= (cons v v) (Pair)
::= (b× , , s> (Box)
::---- (Ik a, s) CLock)
::= (gp s, a) (Global Pointer)
::= (co n) (Continuation)
: :=(in i t) I (a a r g p (V M . . .)) I (n c o n d (i , i , p)) (Cont. code)
::= Req(s, sgp, so , . . .) (Request)
::= (scr ia l i sed objects) (Serialised Object)
::= (ser ia l i sed global pointer) (Serialised Object)

Environment Operations:
p(x) = V if (x V) E p
p[x +- v] =

p b +- v] =

p[z 2~ +-- V1, V2 . . .] =
p[,O ~-] =
p[.x +-] =

p[.x +- v . . .] =

(p \ {(x v ') }) u {(x v)}
if (x V ') c p
p u {(x v) }
if x ~ D O M (p)
p[~ +- yl][e +- y2. . .]
p
p[x +- nil]
pD ~- l is t i iv (v . . .)1

Store Operations:
0 W { (~ V) } = 0 U {(~V)}

with a ~ DOM(O)
O (a) = V if (a V) EO
0 b := v] = (0 \ {(~ 0(~))}) u {(~ v)}

l i s t i f y (V J = icons V1 nil)
l is t i f y (V1, V2...) = icons V1 l is t i f y (V2 . . .))

Fig. 1. State Space of the CEKDS-machine

584

Ev((M Ml.,.),p,t~) -+c Ev(M,p,(~ arg p (., MI, ...))) (operator)
Ev()~.M, p, t~) --+c Ret((cl)~.M, p}, n) (lambda)

Ev(c, p, ~) --+c Rat{c, t~) (constant)
Ev(x, p, ~} --~c Ret(p(x), n) (variable)

Ret(V,(~ arg p {VI,...,.,M, M1, ...))) -+c Ev(M,p,(~ arg p {V1 V, II, M1)))
(operand)

Ret(V, (~ arg p ((cl X~.M, Pl), V1 o)))
Ret((cl X~.M, p), (8 arg p' (.)))

Ev((K M/1//1 M2), p, ~)
Rat(V, (~ cond (M, Ml,p)))

Ret(V~ (t~ arg p (caIIcc, .}))
Rat(V, (t~ arg p {(co ~'), .)))

Rat(V, (~ arg p (f, V1, ..., *)))

-+c Ev(M, P112 +- 1/'1 V], ~} (apply)
-+c Ev(M, p[~ +--], ~) (applyO)
-+c Ev(M, p, (~ cond (M1, M2, p))} (predicate)
-+o Ev(M1, p,~> if V = false (if else)
--+c Ev(M,p, ~) if V • false (if then)
--~c Ret((co t~), (t~ arg p (V,.))) (capture)
--+c Rat(V, t~') (invoke)
-+o Ret(5(f, 1/1 , V), n) (5)

Fig. 2. CEK Machine

The transitions between computational states in Figure 2 deal with the sequen-
tial subset of the language that does not involve the store. The transitions extend the
CEK-machine transitions [5] by accepting n-ary applications (M1 M2 . . .) and abstrac-
tions ()~ .M) with variable number of arguments. Consequently the continuation code
(n a r g p (VI,..., Vn, o, Mn+2,.. .)) conveys the following meaning: the first n compo-
nents of the application have already been evaluated and their values are V1,. •. , V,; the
next component, i.e., the n + l th, is being evaluated; the components Mn+2, . . . remain
to be evaluated in the environment p.

Figures 3 to 6 deal with site transitions. According to rule (sequential), a site can
perform a transition if it contains a task that can perform a transition of Figure 2. In rule
(fork), the primitive fork creates a new task applying the closure received as argument
and returns the new task name.

Figure 4 deals with operations related to boxes. The primitive ma keref allocates a new
location a, stores the value V in that location, and returns a new box object {bx a, s),
pointing at the location a in the current site s. The primitive deref returns the content
of the location associated with the box and the primitive setref changes the content of
its associated location.

Rule (make gp) creates global pointers in the same way as (makeref) creates boxes.
A remote service request has the form (rsr str gp M1 ... M,) , where str must evaluate
to a string naming a handler to be called on the site that gp is pointing at, with the
arguments obtained as values of M1,. •. , M,n. The value returned by a remote service
request is the distinguished void value, but its effect is to add a request in the output
queue of the current site. A request is not a first-class object, i.e., it is not part of the set
of RValues, but it contains the destination site designated by gp, the serialised string,
and the serialised values of M 1 , . . . , Mn.

Let us observe that the semantics does not specify the behaviour of the Serial and
:Deserial functions. Their purpose is to convert to and from a suitable format for trans-
portation. The composition of these functions returns a result that is an isomorphic copy
of its argument. (The specification is available from [15].)

If there is a request in the input queue of a site, rule (handle) deserialises its content,
and applies the handler associated with str to the value indicated by the global pointer
and the deserialised values. It is also worth noticing that the incoming request is handled

585

({ <C,~-) } U T,O,s,H,I,O)
--+m <{ <Ci,~-> } U T,O,s,H,I,O) ifC-+*oC1

<{ (Ret((d AZ.M, p), (a arg pl (fork, .))>, T) } U T, O, s, H, I, O)
--+.~ ({ (Ret(n,~) ,T) } O { (Ev(M,p[~? <---], (in i t)) ,n) } UT, O,s ,H,I , O)

with T1 ~ F T N (T) O {T}

Fig. 3. Sequential and Parallel Evaluation

(sequential)

(fork)

({ (R e t (V , (n a r g p (makeref,.>)),~-) } U T,O,s ,H,I ,O>
-~m ({ (Ret((bx a, s>, a), ~-> } O T,O~{(a Y)},s,H,l,O)

({ (Ret((bxa, s> , (t~argp (deref, .))), T) } U T ,O , s ,H , I ,O)
-+m ({ <Ret<O(a),a>,~-> } U T,O,s,H,I,O)

({ (Ret(V,(~argp (setref,(bxa, s),.))),T) } O T,O,s,H,I,O)
--+m ({ (Ret<void, a), ~-> } U T, O[a := V], s, H, I, O)

Fig. 4. Boxes

(makere])

(dere])

(setrel)

({ (Ret(V,(~argp (make-gp, .))), T> } U T, 8, s,H,I,O>
-+m <{ (Ret<(gpa, S),~),T> } U T, 8~{(aV)},s,H,I,O)

({ (Ret(Vn, (~ arg p (rsr, sir, (gp a, s), VI))), 7) } U T, 0, 81, H, I, O)
-+,~ ({ (Ret<void, t0,T) } U T,O, s l , H , I , { Req(s, sgp, sstr, sol,...,so,~} } U O)

if Serial(s1,8, <(gp a, s>, str, V1 , Vn>) = (sgp, sstr, SOl sos>
(T ,O,s ,H,{ Req(s, sgp, str, sol,...,so,~) } U I ,O)

-+m ({ (Ev(M, p[~ +- 8(a), V1 Vn], (init)), T) } U T, 01, s, H, I, O)
if H(str) = (cl AZ.M, p),
l)eserial(s, e, <sgp, sol son>) = (<(gp a, s>, V1 V~>, 01)

with ~- ~ /FTN(T)
({ (Ret<V,(t~ a rg p (define-handler, str, a>)>,z> } U T, 8, s ,H,I ,O>

-+m ({ (Ret(void, a), ~-> } U T, O, s, U t~ {(str V)}, I, O)

(make gp)

(rsr)

(handle)

(define handler)

Fig. 5. Global Pointers and Remote Service Requests

({ (Ret(make-lock, (t~ a rg p (*))>, T) } U T, 8, s, H, I, O>
-+m <{ (Ret((Ika, S),~),T} } U T ,01~{(a t rue)} , s ,H , I ,O>

({ (Ret((lk a, s>, (~ a rg p (lock, .))>, T} } U T, 0, s, H, I, O>
-+m ({ (Ret(void, ~), T) } t_J T, 0[a := false], s, H, I, O) if 8(a) ---- true

({ (Ret<(Ika, s) , (~ a r g p (unlock,.))>,z>} U T , Q , s , H , I , O)
-+,~ {{ (Ret(void,~),T) } U T,O[a := true] ,s ,H,I ,O)

(make-lock)

(acquire)

(release)

Fig. 6. Mutual Exclusion

586

{ml } U]22
-+w {m2} U W if ml -e,~ m2 (site)

{(T,O,s, tI, I , { Req(s, req> } U O) U YV
-ew {(T,O,s,H,{ Req(s, req) } U I,O> U W (local request)

{(To, O, so,Ho, Io,{ Req(s,,req) } U Oo),(Tl,(gi,Sl,Hl,]l,01)} _U]/V
-+W {(To,8, so, Ho, Io, Oo),(T1,81,si,Hl,{ Req(sl,req) } U I1,Oi)} U }4?

(migrate request)
{({ (Ret({gp a, s},(~ arg p (remote, "host",(c{ A£.M, ql),e))>,:r) } U T,O,s,H,I,O}} U kV

-+w{<{ (Ret((gpa,, s,),n),~')} U.T,O,s,H,I,O),m} U W (remote)
with m = ({ {Ev(M, qi[~ +- (gp a, s}], (init)}, ~) }, Oi, Sl, @, 0, 0}
with O, = {(az nil)},, si !~ FSN(W) U {s}

Fig. 7. Other Distribution Aspects

asynchronousty and that the handler,, is executed in a new thread. Optimistic active-
messages [25] show that the thread could be created lazily [13] and still produce good
performance. According to rule (define handler), the primitive define-handler allows a
program to add new handlers in. a ~iven site.

Idealised NeXeme offers some?primitives to implement critical sections. A lock is a
datastructure that can be acquired' by at most one task using the primitive lock, and
that can be released by the p r i ~ i v e unlock. In Figure 6, a busy-wait implementation
of locks relies on the fact that transi~on rules are atomic.

Figure 7 displays transitions ,between worlds. Rule (site) shows that a world can
perform a transition, if there is a site:,which can perfbrm a transition of Figures 3 to 6.
In addition, rules (local request) and' (migrate request) deal with request transfers, and
rule (remote) is used to create a newsite in a world.

Creation of a remote site is always a delicate problem in a distributed system. Fre-
quently, libraries for distribution assume an SPMD approach and use operating-system
primitives to startup remote processes. We decided not to model NeXeme very closely,
as the semantics would have been unsatisfactorily complicated. Instead, Idealised NeX-
eme provides a primitive to create a new remote site and to initiate a computation on
that site. This initial computation is essential, because it allows the user to install initial
handlers for remote service requests. In addition, it makes it possible to synchronise both
sites so that the initial site is kept informed when the new site is initialised and is ready
to perform some processing.

A remote site is created by the primitive remote which takes the following arguments:
the name of a host, a closure representing the initial computation to be done, and a global
pointer that can be used by the remote site to notify the end of inJtia.lisation by a remote
service request. The value returned by the primitive remote is a global pointer pointing
at the new remote site. In order to be implementable in languages without closures, like
C, rule (remote) requires the closure to have an empty environment. As a result, the
closure can be encoded as a pointer to its entry point. Let us observe that the remote
site should be executed on "host".

Having defined a transition relation between worlds, we can now define an evaluation
relation associating programs with values. Detecting termination in a distributed system
is a difficult matter in the general case. In Idealised NeXeme, we assume there exists
a primitive shutdown that the program has to call on the origin site; it terminates the
computation and returns its argument.

De f in i t i on 1 (Eval) Let M be a closed term. An initial task is of the form ti =

587

(E~(M, 0, ((ini t))) , 7), while a final task is of the
t] = (Ret(V, (~ a r g p (shutdown, .))) , T'). We have that:

eval(M) = V if ({ ti },O, so,~b,O,O) --+w {({ ty } O T,O, so ,H,I ,O)}UW.
[]

form

4 T h e I m p l e m e n t a t i o n

4.1 G e n e r a l D e s c r i p t i o n
Figure 8 displays the organisation of the NeXeme implementation. As Nexus is multi-
threaded, we had to adopt a thread-safe garbage collector. The public domain Boehm-
Weiser's [11] garbage collector supports various OS-level threads and is also part of the
P P C R portable common runtime system [26]. On each platform, Nexus is recompiled
against the garbage collector (abbreviated gc) and the suitable thread package. The ex-
ecutable is generated by linking the Scheme system with the resulting libraries Nexus,
gc, and threads.

Utilities
NeXeme

Functional Nexus
Foreign Interface

Nexus IThreadslScheme
GC

Fig . 8. Organisation of NeXeme

Primitives of the Nexus library axe made accessible through a foreign interface def-
inition. Let us note that some Nexus primitives require procedures as argument (for
instance, thread creation or callbacks for handlers). In order to integrate properly Nexus
with Scheme, we modified Nexus to support callbacks to Scheme functions. While the
foreign interface defines a similar API as the Nexus library, the "functional Nexus"
layer provides a more functional interface to Nexus; for instance, results are returned
by functions, errors are signalled by exceptions, and memory is managed automatically.
The NeXeme layer offers a functional version of remote service requests as described
in Section 3. Finally, a library defining a set of utilities provides other paradigms for
distribution like futures, communication channels, or farm processing.

4.2 D i s t r i b u t e d G a r b a g e Co l l ec t i on
NeXeme has a distributed garbage collector that takes care of memory management an-
tomatically. Our working hypotheses, provided by Nexus, are a reliable message-passing
and a FIFO ordering 4 of messages between two sites.

Each site relies on a thread safe, conservative, mark and sweep garbage collector [11];
conservativeness is required as Scheme data are passed to Nexus, written in C, and
are pointed by Nexus data structures. In addition, NeXeme maintains two tables for
each site. The exit table 5 associates each global pointer with the number of distinct
remote copies of this pointer originating from the site. The entry table contains all
global pointers received by a site, except those that point at itself. The exit table, but
not the entry table, is a root of the local garbage collector. The role of the distributed
collector it to update counters in a safe and consistent way. To this end, it relies on two
types of control messages, called "decrement(gp)" and "increment-decrement(gp, s) ' ,
as described below.

4 Nexus, as opposed to Idealised NeXeme, allows requests to be handled in a non-threaded
manner; in such a case, Nexus guarantees the FIFO ordering of requests between two sites.

5 Different names are found in the literature, such as entry/exit items, scions/stubs [17].

588

Reference counters are updated according to the diffusion tree [16] of global pointers.
The first time a global pointer gp is serialised, an entry is added into the exit table of
the current site with a counter set to 1; afterwards, for every serialisation, this counter is
incremented. Symmetrically, the first time a global pointer gp is deserialised, it is added
to the entry table (if it points at a remote host); if it is already present, NeXeme sends
a decrement message for this global pointer, "decrement(gp)" to the site that sent the
remote service request. When a site receives a message "decrement(gp)", the counter of
gp in the exit table is decremented. Once the counter reaches zero, the global pointer
may be removed from the table; only then, the pointer itself and the local data may be
reclaimed, if no longer accessible.

In Nexus, a global pointer contains the site it is pointing at, and not the site it is
arriving from. Therefore, once a global pointer gp pointing at a site sl becomes inacces-
sible on a site s2, s2 sends a message "decrement(gp)" to sl. This naive implementation
of the reference counter technique is sound if causality is preserved in the system [16].
This is ensured by a reorganisation of the diffusion tree, as explained in the following
scenario illustrated in Figure 9.

Let us consider that gp, a global pointer pointing to address a in sl, is migrated to
s2, and then migrated to 8 3. Figure 9 part 1 shows that the reference counters in sl and
s2 are equal to 1, meaning that there are 1 + 1 = 2 active remote references of gp. Once
s3 deserialises gp, the global pointer received from s2, a reorganisation can be initiated,
as illustrated in Figure 9 part 2. (i) Site s3 sends an "increment-decrement(gp, s2)"
message to sl; (ii) when the message is received by sl, the counter for gp is incremented
on sl; 5ii) afterwards, a "decrement(gp)" message is sent to s~; (iv) when the message
is received, the counter for gp is decremented on s2.

(gP i n ~ s2

(gp a, 81)

I: RSR

(gP i n ~
~2

DEC(gp) ", (i;i)

©

{gP ~, Sl)

,s
• INC-DEC(gp, s2)

(gp a, Sl)

Fig. 9. Distributed Reference Counters (1) after Remote Service Requests
(2) after Control Messages

Race conditions are avoided between sl and s3 by giving priority to "increment-
decrement" over "decrement" messages. As a result, we have the following invariant. For
every global pointer gp pointing to site s:

counter(gp) = Z in(gp) + Val (message /or gp)
site s i t e , s

with Value(decrement(gp)) = 1 and Value(increment-decrement(gp, si)) = O.
The simplicity and portability of the solution is unfortunately counter-balanced by

its inability to collect distributed cycles. Our approach differs from "Indirect Reference
Counting" [16] because it can reclaim "zombie" pointers, i.e., gp can be freed on s2 even
though it remains active on s3; other techniques to reduce the length of indirection chains

589

are described in [17]. Several optimisations are possible. First, control messages of the
same type may be grouped in a single message. Second, an "increment-decrement(gp, s2)"
to be sent to sl, followed by a "decrement(gp)" to the same destination, may be replaced
by a "decrement(gp)" to s2.

4.3 Ut i l i t i e s
The utilities layer offers a number of services that we briefly describe in this section.
Remote invocation of a procedure sends a locally-available closure to a remote site where
it is invoked on some arguments; as in a remote service request, no result is returned by
this operation. Not only does remote invocation of a function transfer and call a function
on some arguments, but also it returns the result to the site that initiated the operation.
Communication channels [21, 9], and futures [12] are also provided.

"Farm-processing" versions of the various remote call utilities are provided that can
be used when a list of global pointers is passed as an argument; these versions map the
corresponding operation onto each element of the list. NeXeme is also able to detect when
a site becomes idle so that lazy task creation [13] and task stealing can be implemented
easily.

5 D i s c u s s i o n a n d R e l a t e d W o r k

The Nexus [7] philosophy is derived from active messages [24], where each message con-
tains at its head the address of a user-level handler executed on message arrival. Nexus
has also been used to build several other distributed languages. In Fortran M [6], program
modules, called processes, communicate via explicitly-declared channels. The language
nPerl [8] is a distributed extension of Perl which provides a remote procedure call; un-
like NeXeme, higher-order functions and continuations are not available. Compositional
C + + [4] supports global pointers that can refer to objects on remote machines, and
defines usual operations on them; also, CC+ offers single assignment objects. Currently,
NeXeme uses Nexus 3.0; Nexus 4.0 provides EZ Nexus a more abstract interface to
remote service requests, which is similar to the one described here.

Boxes allow the programmer to define mutable data structures, for example cyclic
data structures. If a cyclic data structure is passed as an argument to a remote service
request, an isomorphic copy is generated on the remote site. NeXeme does not prevent
the user from mutating each copy separately, as they are now independent entities.
However, using global pointers, any form of consistency can be programmed on top of
NeXeme, such as simulated shared memory [14] or cansally-coherent memory [18].

There exist other distributed implementations of functional languages with explicit
notations for parallelism or distribution. DMeroon [18] offers a distributed memory model
which enforces coherence based on causality, while ICSLAS [19] adds to DMeroon trans-
parent remote execution. KMi Scheme [3] also offers a form of active messages, on top of
which higher-level primitives are defined; the semantics of Kali Scheme could easily be
defined in terms of Idealised NeXeme. Distributed versions of SML-style languages are
usually based on communications channels [21, 9].

6 Conclusion

This paper presents NeXeme, a distributed dialect of Scheme, based on remote service
requests and global pointers provided by the library for distribution Nexus. This paper
describes the semantics but also the implementation of this language. The functional
interface to remote service requests of NeXeme is a perfect abstraction to build a Scheme
with futures [14]; in addition, NeXeme is used for programming multimedia distributed
applications.

7 Acknowledgement

Hans Boehm, Carl Hauser, Carl Kesselman, Andreas Kind, Christian Queinnec, Manuel Serrano,
and Steve Tuecke gave useful comments and advice for the implementation of NeXeme.

590

Bibliography
[1] A. D. Birell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Transactions

on Computer Systems, 2(1):39-59, February 1984.
[2] L. Cardelli. A Language with Distributed Scope. In Proceedings of the Twenty Second

Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 286-297, San-Francisco, California, January 1995.

[3] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-Order Distributed Objects. ACM
Transactions on Programming Languages and Systems, 17(5):704-739, 1995.

[4] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented pro-
gramming notation. In Research Directions in Object Oriented Programming, pages 281-
313. MIT Press, 1993.

[5] M. Felleisen and D. P. Friedman. Control Operators, the SECD-Machine and the ~-
Calculus. In M. Wirsing, editor, Formal Description of Programming Concepts III, pages
193-217, Amsterdam, 1986. Elsevier Science Publishers B.V. (North-Holland).

[6] I. Foster and K.M. Chandy. Fortran M: A Language for Modular Parallel Programming.
J. of Parallel and Distributed Computing, 26(1):24-35, 1995.

[7] I. Foster, C. Kesselman, and S. ~hecke. The Nexus Approach to Integrating Multithreading
and Communication. J. of Parallel and Distributed Computing, 37:70-82, 1996.

[8] I. Foster and R. Olson. A Guide to Parallel and Distributed Programming in nPerl.
Mathematics and Computer Science Division, October 1995.

[9] A. Giacalone, P. Mishra, and S. Prasad. Facile: A Symmetric Integration of Concurrent
and Functional Programming. Int. Y. of Parallel Programming, 18(2):121-160, 1989.

[10] J. Gosling, G. Steele, and B. Joy. The Java Language Specification. Addison-Wesley, 1996.
[11] H.-J.Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment. Soft-

ware - Practice and Experience, 18(9):807-820, 1988.
[12] R. Halstead, Jr. Parallel Symbolic Computing. IEEE Computer, pages 35-43, Aug. 1986.
[13] E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy Task Creation : a Technique for Increas-

ing the Granularity of Parallel Programs. In Proceedings of the 1990 ACM.Conference on
Lisp and Functional Programming, pages 185-197, June 1990.

[14] L. Moreau. Correctness of a Distributed-Memory Model for Scheme. In Second Interna-
tional Europar Conference (EURO-PAR'96), LNCS 1123, pages 615-624, 1996.

[15] NeXeme Home Page. http:/ /www, ecs. soton, ac.uk/~lavm/NeXeme.
[16] J. M. Piquer. Indirect Distributed Garbage Collection: Handling Object Migration. ACM

Transactions on Programming Languages and Systems, 18(5):615-647, 1996.
[17] D. Plainfoss@ and M. Shapiro. A survey of distributed garbage collection techniques. In

Int. Workshop on Memory Management (IWMM95), LNCS 986, pages 211-249, 1995.
[18] C. Queinnec. DMEROON: a Distributed Class-based Causally-coherent Data Model: Pre-

liminary Report. In Parallel Symbolic Languages and Systems., LNCS 1068, 1995.
[19] C. Queinnec and D. De Roure. Design of a Concurrent and Distributed Language. In

Parallel Symbolic Computing: Languages, Systems and Applications, LNCS 748, pages 234-
259, Boston, Massachussetts, October 1992.

[20] J. Rees and W. Clinger, editors. Revised 4 Report on the Algorithmic Language Scheme.
Lisp Pointers, 4(3):1-55, July-September 1991.

[21] J. H. Reppy. Higher-Order Concurrency. PhD thesis, Department of Computer Science,
Cornell University, Ithaca, New York, June 1992.

[22] Sun MicroSystems. Java Remote Method Invocation Specification, November 1996.
[23] P. van Roy, S. Haridi, P. Brand, and G. Smolka et al. Mobile Objects in Distributed Oz.

Technical report, Swedish Institute of Computer Science, December 1996.
[24] T. von Eicken, D. E. Culler, S. Goldstein, and K. Schauser. Active Messages: a Mechanism

for Integrated Communication & Computation. In Proceedings of the 19th symposium on
Computer Architecture, pages 256-266, 1992.

[25] D. A. Wallach, W. C. Hsieh, K. Johnson, M. F. Kaashoek, et al. Optimistic active mes-
sages: A mechanism for scheduling communication with computation. In 5th ACM SIG-
PLAN Syrup. on Principles and Practice of Parallel Programming (PPoPP '95), 1995.

[26] M. Weiser, A. Demers, and C. Hauser. The Portable Common Runtime Approach to In-
teroperability. In A CM Symp. on Operating System Principles, pages 114-122, Dec. 1989.

