
Par l i s t s - A G e n e r a l i z a t i o n of P o w e r l i s t s

Jacob Kornerup

Department of Computer Science, Southern Methodist University, DMlas, TX75275;
kornerup~seas.smu.edu

1 Introduct ion

The powerlist notation [5] has proven to be a major step forward in describing
parallel algorithms succinctly. It allows the programmer to work at a high level of
abstraction, by avoiding indexing notations, leading towards efficient implemen-
tations on parallel architectures [2]. The powerlist data structure is a list whose
length is a power of two. In the powerlist notation it is possible to elegantly spec-
ify algorithms such as the Discrete Fast Fourier Transform without resorting to
"index gymnastics" [5]. For such algorithms this restriction on the lengths is not
serious, as they are often presented this way in the literature. However, for most
algorithms the restriction is unnatural. In this paper we present an extension of
the powerlist notation to lists of arbitrary positive lengths and work through a
number of examples 1. This new data structure is called "Parkist", which is short
for parallel list.

2 ParList T h e o r y

A ParList is a non-empty list, whose elements are all of the same type, either
scalars from the same base type, or (recursively) ParLists that enjoy the same
property. Two ParLists are similar if they have the same length and their el-
ements are similar; two scalars are similar when they are from the same base
type. We categorize ParLists according to their length. The shortest ParList has
length 1, it is called a singleton; (x) denotes the singleton containing the scalar
x.

A non-singleton ParList v can be deconstructed into a single element and a
ParList whose length is one less than that of v, using the p ("cons") and the <
("snoc") operator:

v = a ~ p A v : q ~ b (1)
where a, b and the elements of p and q are similar to the elements of v, and
p and q are similar Partists. In (1) a is the first element of v and b is the last
element of v.

A Parkist, p, of even length has the property that it can be deconstructed
using the ~ ("zip") and the I ("tie") operator:

p = u ~ v A p = r l s (2)

1 For a detailed presentation of these results, including proofs of claims, see the full
paper [3], available as f t p : / / f~p , cs. utexas, edu/pub/techreports/tr97-17, ps. Z

615

where u is a ParList containing the elements of p at even positions, and v is the
Pad_ist containing the elements of p at odd positions. Similarly, r is the Parl_ist
containing the first half of p and s is the second half of p; the Pad_ists r, s, u and
v are all similar.

2.1 A x i o m s

In the following we extend the axioms of the powerlist theory [5] to an axiom-
atization of the Parkist algebra. Let p, q, u, v be similar Parkists over the same
base type as the elements a, b, c and t be a non-singleton Parkist over the same
base type. The Pad_ist algebra has five constructors: () , h ~ , ~ and ,~. They are
all isomorphisms on their respective domains, i.e. they each satisfy two axioms
like the ones we show for ~ below:

p,~a=q,~b - a = b A p = q
(Vt : t is not a singleton : (3 b, q :: t = q¢ b))

The following axioms define the the full Parkist algebra:

(3)
(4)

Ca) ~ (b) = (~) I (b) (5)
Cpl q) I v) = Cp u) I (q ~ v) (6)

((u I v)<b) = I ((v (7)
a~,(b) -- (a) I (b) (8)
(a),~ b = (~) I (b) (9)

a ~,(p,~ b) = (a ~,p),~ b (10)
a ~ (p ~ q) = (u ~ p),~b =_ a~,q = u,~b (11)

a ~ , (p l q) = (u l v) , ~ c - (3 b : : a ~ , p = u , ~ b A b~q=v ,~c) (12)

The axioms (5) and (6) come from the powerlist algebra; note the symmetry
between ~ and I in axiom C6). Without an operational model the roles of
and I can be interchanged in the powerlist algebra. This is not the case when we
consider the ParList algebra. If we interpret ~,and,~ as prepending and appending
an element to a ParList then the contrast between (11) and (12) and between (7)
and (6) precisely capture the operational difference between ~ and I.

Let @ be a binary operator, defined on a scalar type. We lift @ to operate
on ParList over elements of that type with the following laws:

(a) • (b) = (a • b) (13)
(a t>p) @ (b t>q) = (a @ b) ~,(p @ q) (14)

(p ~ q) ® (u ~ v) = (p@u) ~ (q(~v) C15)

2.2 Functions in ParList

Functions over ParList are defined by three different cases based on the length of
the argument ParList: singleton, even length and odd length. Each case is defined

616

using pattern-matching on the argument ParList: () for singletons, ~ or I for
even length lists, and ~ or ¢ for odd length lists. We insist that ~ and ~ only be
used for Parkists of odd length in function definitions, since we want to exploit
parallelism as much as possible. When the argument has an even length, the
computation should be expressed using a balanced divide-and-conquer strategy.
Arguments of odd length should be treated as an alignment step, introduced by
necessity.

As an example, we define the function rev that reverses its argument.

rev.(a) = (a)
rev.(p ~ q) = rev.q ~ rev.p

rev. (a t>p) = rev.p ~ a

(16)
(17)
(18)

Note that the choice of ~ and ~ as destructors was arbitrary. A definition us-
ing I and/or ~ in their place yields the same function. In the definition of rev,
(17) expresses that each recursive case is independent and can be evaluated in
parallel. The step described by (18) corresponds to a sequential "alignment"
step, necessary before a balanced recursive step can be performed. In the case
of rev the "alignment" step does not have to be sequential; depending on the
parallel architecture (and the concrete implementation of ParList) rev can be
evaluated in constant time. This would be the case on a CREW PRAM with the
straightforward implementation of ParList.

It is possible to reuse proof of properties of powerlist functions, when the
function definition is extended with a case for odd length lists. It is only necessary
to specify and verify the odd case, assuming that the existing proof of the even
case does not rely on properties that are specific to powerlists. E.g. had we
already proved that rev.(rev.p) = p for the powerlist function defined by (16)
and (17), we would only need to prove that rev.(rev.(a ~,p)) = a ~p using (18).

2.3 P re f ix S u m

Prefix sum is a fundamental parallel algorithm; it is used in many algorithms as
a building block, e.g. carry lookahead addition (see Sect. 3). The prefix sum of
a ParList p over a data type Y, with the property that (Y, +, 0) is a monoid, can
be defined [5] as the (unique) solution to the equation (in u):

u=(O--- -~u)+p (19)

where the operator -+ takes a element and a ParList and "pushes" a scalar into
the list from the left and the rightmost element of the list is lost. -~ has a higher
binding power than that of ~ , I, ~ and¢ ; it is defined as follows:

a - + (b) = (a) A a -+(p ,~b) - -a~ ,p A a - + (p ~ q) = a - + q ~ p (20)

Exploring the defining equation for prefix sum (19), we can derive a scheme for
computing the prefix sum, due to Ladner & Fischer [4]. Misra [5] derived the

617

base (21) and even (22) cases for powerlists; the derivation of the odd case case
(23) can be found in the extended version of this paper [3]. The function last,
used below, returns the last element of a Parkist:

ps.(a) = (a)
ps.(p ~ q) = (O-+t + p) ~ t, w h e r e t = ps.(p + q)

ps.(p~ a) = ps.p ~ (last.(ps.p) + a)

(21)
(22)
(23)

3 Adder circuits

In [1] Will Adams presented powerlist descriptions for two arithmetic circuits
that perform addition on natural numbers: the ripple carry adder and the carry
lookahead adder. The ripple carry adder performs addition as it is first taught in
grade school; it is an inheritly sequential method, yielding a linear time method
in the number of bits to be added. The carry lookahead adder uses a prefix sum
calculation to propagate carries, yielding a method that is logarithmic in the
number of bits to be added, in a setting where sufficient parallelism available.

Adams proved that the ripple carry circuit correctly implements addition and
that the carry lookahead and the ripple carry circuits are the same function.
This result was achieved in the powerlist algebra. In the following we extend
the definition of the addition circuits and the equivalence result to the ParUst
algebra. The derivation of the odd case for the carry lookahead reader and the
equivalence between the circuits in the odd case can be found in [3].
The ripple carry adder takes three arguments: the first argument is the carry-in
bit and the second and third argument are the two ParUsts of bits that are to be
added. The result is a pair; the first component of the pair is a Pad_ist containing
the result of the addition, and the second component is the carry-out bit from
the addition. The following defines re, where (24) and (25) are taken from [1]:

rc.b.(x).(y) = (((x + y + b) mod 2), (x + y + b) + 2) (24)
rc.b.(plq).(r Is) = (t, d) (25)

where t = u Iv A (u, c) ---- rc.b.p.r A (v, d) = rc.c.q.s
rc.c.(p¢ a).(q¢ b) = (u~ y, x) (26)

w h e r e x = (a + b + d) + 2 A y = (a + b + d) mod2 A (u,d)=rc.c.p.q

The carry lookahead adder has the same signature as the ripple carry adder,
except that the elements are taken from the set {0,1,r}, where u corresponds to
a "propagate" action for the carry-in value to a position. To specify the carry
lool~head adder, Adams introduces the associative scalar opera tors . , , and ®
defined by:

{ x i f x = y x , y = { y i f y ~ r x ® y = { X i f y ~ (27)
x . y = r i f x ~ y if y = ~r -~y if y = ~r

where -10=1 A -~1=0 A -~r=~r

618

Adams [1] defines the carry lookahead adder by

cl.b.p.q = (t, d) (28)
w h e r e t = s ® r A d = l a s t s * l a s t . r A r = p • q A s=ps . (b -~r)

where ps is computed using the associative operator * (that has 7r as its neutral
element). Expanding the odd case of the definition of cl we get:

cl.c.(p,~ x).(q¢ y) = (a, w) (29)
w h e r e w = u ® v A a = l a s t . u , l a s t . v A v = (p ¢ x) • (q ¢ y) A u = p s . (b ~ v)

This can be simplified to:

c/.c.(p~ X).(q,~ y) = (t,~ (d ® (x • y)), d* (x • y)) (30)
where cl.b.p.q = (t, d)

enabling us to prove [3] the equivalence between the adders in the odd case:

rc.c.(p,~ a).(q,~ b) = cl.c.(p,~ a).(q,~ b) (31)

4 Conclusion

ParList appears to be.an appropriate generalization of the powerlist notation. The
powerlist examples presented above had straightforward extensions to the ParList
algebra. The set of shared axioms makes it possible to reuse proofs of properties
of the correspondi~g;powerlist functions when proving the same properties of
ParList functions.

5 Acknowledgments

The basic ideas behind the extensions presented in this paper are due to my ad-
visor Jayadev Misra; he shared them with me and encouraged me to develop the
Parlist theory and to write this paper. Rajeev Joshi had many useful comments
to drafts of this paper.

References
1. Will E. Adams. Verifying adder circuits using powerlists. Technical Report CS-

TR-94-02, University of Texas at Austin, Department of Computer Sciences, March
1994.

2. Jacob Kornerup. Mapping a functional notation for parallel programs onto hyper-
cubes. Information Processing Letters, 53:153-158, 1995.

3. Jacob Kornerup. Parlists - a generalization of powerlists (extended version). Tech-
nical Report CS-TR-97-15, University of Texas at Austin, Department of Computer
Sciences, June 1997.

4. Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. Journal of
the ACM, 27(4):831-838, October 1980.

5. Jayadev Misra. Powerlist: A structure for parallel recursion. ACM Transactions on
Programming Languages and Systems, 16(6):1737-1767, November 1994.

