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1 Introduct ion 

The powerlist notation [5] has proven to be a major step forward in describing 
parallel algorithms succinctly. It allows the programmer to work at a high level of 
abstraction, by avoiding indexing notations, leading towards efficient implemen- 
tations on parallel architectures [2]. The powerlist data  structure is a list whose 
length is a power of two. In the powerlist notation it is possible to elegantly spec- 
ify algorithms such as the Discrete Fast Fourier Transform without resorting to 
"index gymnastics" [5]. For such algorithms this restriction on the lengths is not 
serious, as they are often presented this way in the literature. However, for most 
algorithms the restriction is unnatural. In this paper we present an extension of 
the powerlist notation to lists of arbitrary positive lengths and work through a 
number of examples 1. This new data structure is called "Parkist", which is short 
for parallel list. 

2 ParList  T h e o r y  

A ParList is a non-empty list, whose elements are all of the same type, either 
scalars from the same base type, or (recursively) ParLists that  enjoy the same 
property. Two ParLists are similar if they have the same length and their el- 
ements are similar; two scalars are similar when they are from the same base 
type. We categorize ParLists according to their length. The shortest ParList has 
length 1, it is called a singleton; (x) denotes the singleton containing the scalar 
x. 

A non-singleton ParList v can be deconstructed into a single element and a 
ParList whose length is one less than that  of v, using the p ("cons") and the < 
("snoc") operator: 

v = a ~ p  A v : q ~ b  (1) 
where a, b and the elements of p and q are similar to the elements of v, and 
p and q are similar Partists. In (1) a is the first element of v and b is the last 
element of v. 

A Parkist, p, of even length has the property that  it can be deconstructed 
using the ~ ("zip") and the I ("tie") operator: 

p = u ~ v  A p = r l s  (2) 

1 For a detailed presentation of these results, including proofs of claims, see the full 
paper [3], available as f t p : / / f~p ,  cs. utexas, edu/pub/techreports/tr97-17, ps. Z 
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where u is a ParList containing the elements of p at even positions, and v is the 
Pad_ist containing the elements of p at odd positions. Similarly, r is the Parl_ist 
containing the first half of p and s is the second half of p; the Pad_ists r, s, u and 
v are all similar. 

2.1 A x i o m s  

In the following we extend the axioms of the powerlist theory [5] to an axiom- 
atization of the Parkist algebra. Let p, q, u, v be similar Parkists over the same 
base type as the elements a, b, c and t be a non-singleton Parkist over the same 
base type. The Pad_ist algebra has five constructors: ( ) ,  h ~ ,  ~ and ,~. They are 
all isomorphisms on their respective domains, i.e. they each satisfy two axioms 
like the ones we show for ~ below: 

p,~a=q,~b - a = b  A p = q  
(Vt : t is not a singleton : (3 b, q :: t = q¢ b)) 

The following axioms define the the full Parkist algebra: 

(3) 
(4) 

Ca) ~ (b) = (~) I (b) (5) 
Cpl q) I v) = Cp u) I (q ~ v) (6) 

((u I v)<b) = I ((v (7) 
a~,(b) -- (a) I (b) (8) 
(a),~ b = (~) I (b) (9) 

a ~,(p,~ b) = ( a ~,p),~ b (10) 
a ~ ( p ~  q) = (u ~ p),~b =_ a~,q = u,~b (11) 

a ~ , ( p l q ) = ( u l v ) , ~ c - ( 3 b : : a ~ , p = u , ~ b  A b~q=v ,~c)  (12) 

The axioms (5) and (6) come from the powerlist algebra; note the symmetry 
between ~ and I in axiom C6). Without an operational model the roles of 
and I can be interchanged in the powerlist algebra. This is not the case when we 
consider the ParList algebra. If we interpret ~,and,~ as prepending and appending 
an element to a ParList then the contrast between (11) and (12) and between (7) 
and (6) precisely capture the operational difference between ~ and I. 

Let @ be a binary operator, defined on a scalar type. We lift @ to operate 
on ParList over elements of that  type with the following laws: 

(a) • (b) = (a • b) (13) 
(a t>p) @ (b t>q) = (a @ b) ~,(p @ q) (14) 

( p ~ q ) ® ( u ~ v )  = (p@u) ~ (q(~v) C15) 

2.2 Functions in ParList 

Functions over ParList are defined by three different cases based on the length of 
the argument ParList: singleton, even length and odd length. Each case is defined 
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using pattern-matching on the argument ParList: ( ) for singletons, ~ or I for 
even length lists, and ~ or ¢ for odd length lists. We insist that  ~ and ~ only be 
used for Parkists of odd length in function definitions, since we want to exploit 
parallelism as much as possible. When the argument has an even length, the 
computation should be expressed using a balanced divide-and-conquer strategy. 
Arguments of odd length should be treated as an alignment step, introduced by 
necessity. 

As an example, we define the function rev that  reverses its argument. 

rev.(a) = (a) 
rev.(p ~ q) = rev.q ~ rev.p 

rev. (a t>p) = rev.p ~ a 

(16) 
(17) 
(18) 

Note that  the choice of ~ and ~ as destructors was arbitrary. A definition us- 
ing I and/or  ~ in their place yields the same function. In the definition of rev, 
(17) expresses that  each recursive case is independent and can be evaluated in 
parallel. The step described by (18) corresponds to a sequential "alignment" 
step, necessary before a balanced recursive step can be performed. In the case 
of rev the "alignment" step does not have to be sequential; depending on the 
parallel architecture (and the concrete implementation of ParList) rev can be 
evaluated in constant time. This would be the case on a CREW PRAM with the 
straightforward implementation of ParList. 

It is possible to reuse proof of properties of powerlist functions, when the 
function definition is extended with a case for odd length lists. It is only necessary 
to specify and verify the odd case, assuming that  the existing proof of the even 
case does not rely on properties that  are specific to powerlists. E.g. had we 
already proved that  rev.(rev.p) = p for the powerlist function defined by (16) 
and (17), we would only need to prove that  rev.(rev.(a  ~,p)) = a ~p using (18). 

2.3 P re f ix  S u m  

Prefix sum is a fundamental parallel algorithm; it is used in many algorithms as 
a building block, e.g. carry lookahead addition (see Sect. 3). The prefix sum of 
a ParList p over a data  type Y, with the property that  (Y, +,  0) is a monoid, can 
be defined [5] as the (unique) solution to the equation (in u): 

u=(O--- -~u)+p (19) 

where the operator -+ takes a element and a ParList and "pushes" a scalar into 
the list from the left and the rightmost element of the list is lost. -~ has a higher 
binding power than that  of ~ ,  I, ~ and¢ ; it is defined as follows: 

a - + ( b ) = ( a )  A a -+(p ,~b) - -a~ ,p  A a - + ( p ~ q ) = a - + q  ~ p  (20) 

Exploring the defining equation for prefix sum (19), we can derive a scheme for 
computing the prefix sum, due to Ladner & Fischer [4]. Misra [5] derived the 
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base (21) and even (22) cases for powerlists; the derivation of the odd case case 
(23) can be found in the extended version of this paper [3]. The function last, 
used below, returns the last element of a Parkist: 

ps.(a) = (a) 
ps.(p ~ q) = (O-+t + p) ~ t, w h e r e  t = ps.(p + q) 

ps.(p~ a) = ps.p ~ (last.(ps.p) + a) 

(21) 
(22) 
(23) 

3 Adder  circuits 

In [1] Will Adams presented powerlist descriptions for two arithmetic circuits 
that  perform addition on natural numbers: the ripple carry adder and the carry 
lookahead adder. The ripple carry adder performs addition as it is first taught in 
grade school; it is an inheritly sequential method, yielding a linear time method 
in the number of bits to be added. The carry lookahead adder uses a prefix sum 
calculation to propagate carries, yielding a method that  is logarithmic in the 
number of bits to be added, in a setting where sufficient parallelism available. 

Adams proved that  the ripple carry circuit correctly implements addition and 
that  the carry lookahead and the ripple carry circuits are the same function. 
This result was achieved in the powerlist algebra. In the following we extend 
the definition of the addition circuits and the equivalence result to the ParUst 
algebra. The derivation of the odd case for the carry lookahead reader and the 
equivalence between the circuits in the odd case can be found in [3]. 
The ripple carry adder takes three arguments: the first argument is the carry-in 
bit and the second and third argument are the two ParUsts of bits that  are to be 
added. The result is a pair; the first component of the pair is a Pad_ist containing 
the result of the addition, and the second component is the carry-out bit from 
the addition. The following defines re, where (24) and (25) are taken from [1]: 

rc.b.(x).(y) = (((x + y + b) mod 2), (x + y + b) + 2) (24) 
rc.b.(plq).(r Is) = (t, d) (25) 

where t = u Iv A (u, c) ---- rc.b.p.r A (v, d) = rc.c.q.s 
rc.c.(p¢ a).(q¢ b) = (u~ y, x) (26) 

w h e r e x = ( a + b + d ) + 2  A y = ( a + b + d )  mod2  A (u,d)=rc.c.p.q 

The carry lookahead adder has the same signature as the ripple carry adder, 
except that  the elements are taken from the set {0,1,r}, where u corresponds to 
a "propagate" action for the carry-in value to a position. To specify the carry 
lool~head adder, Adams introduces the associative scalar opera tors . ,  , and ® 
defined by: 

{ x i f x = y  x , y = { y i f y ~ r  x ® y = { X  i f y ~  (27) 
x . y =  r i f x ~ y  if y = ~r -~y if y = ~r 

where -10=1 A -~1=0  A -~r=~r  
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Adams [1] defines the carry lookahead adder by 

cl.b.p.q = (t, d) (28) 
w h e r e t = s ® r  A d = l a s t s * l a s t . r  A r = p • q  A s=ps . (b -~r )  

where ps is computed using the associative operator * (that has 7r as its neutral 
element). Expanding the  odd case of the definition of cl we get: 

cl.c.(p,~ x).(q¢ y) = (a, w) (29) 
w h e r e w = u ® v  A a = l a s t . u , l a s t . v  A v = ( p ¢ x ) • ( q ¢ y )  A u = p s . ( b ~ v )  

This can be simplified to: 

c/.c.(p~ X).(q,~ y) = (t,~ (d ® (x • y)), d*  (x • y)) (30) 
where cl.b.p.q = (t, d) 

enabling us to prove [3] the equivalence between the adders in the odd case: 

rc.c.(p,~ a).(q,~ b) = cl.c.(p,~ a).(q,~ b) (31) 

4 Conclusion 

ParList appears to be.an appropriate generalization of the powerlist notation. The 
powerlist examples presented above had straightforward extensions to the ParList 
algebra. The set of shared axioms makes it possible to reuse proofs of properties 
of the correspondi~g;powerlist functions when proving the same properties of 
ParList functions. 
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