
M-Tree: A Parallel Abstract Data Type for
Block-Irregular Adaptive Applications

Q. Wu 1, A.:I. Field and P.tt.J. Kelly

Department of Computing
Imperial College of Science, Technology and Medicine

180 Queen's Gate, London SW7 2BZ.
Email: ajf, phjk@doc.ic.ac.uk

Abs t r ac t . This paper describes an abstract data type called M-Tree
- - a generalization of a quadtree which captures both the data struc-
ture and computational structure common to many adaptive problems
in science and engineering. It is equipped with a rich set of access func-
tions including higher-order operators describing commonly used com-
putational patterns in parallel adaptive computations. This provides a
uniform high level abstraction of a wide range of applications including
adaptive mesh refinement and adaptive particle simulation and thus en-
ables such applications to be constructed systematically and efficiently.
We present examples in which an M-tree is used to solve both an adap-
tive heat-flow problem and N-body pa.rticle simulation. The structured
abstraction of commonly-occurring computation patterns in the applica-
tion provides us with the opportunity to investigate various approaches
to load balancing and communication minimization using caching and
other techniques. These optimizations are applicable to other problems
with a similar structure.

1 I n t r o d u c t i o n

In this paper we present an abstract data type called "M-Tree", a hierarchical
da ta structure which is used for organizing block-irregular computat ions gener-
ated by recursive domain decomposition. The M-Tree captures both the da ta
structures and computat ional structures common to many adaptive problems in
science and engineering. It is equipped with a rich set of access functions includ-
ing higher-order operators describing commonly-used computat ional pat terns in
parallel adaptive computat ions. This provides a uniform high level of abstract ion
for a wide range of parallel applications including adaptive mesh refinement and
adaptive particle simulation. Thus, with an efficient parallel implementat ion of
the M-tree da ta structure and its operators, a wide variety of such applications
can be constructed systematically.

Without a suitable layer of abstraction, users have to deal with both the
application's problems, and maintenance of the tree data structure itself. This

1 Qian Wu is now with CHAM, 40 High Street, Wimbledon Village, London, UK.

639

problem becomes more serious for efficient parallel solutions since performance
considerations such as load balancing and communications minimization have
to be taken into account during construction and manipulation of the dynamic
tree structure.

The relationship between M-tree applications and our current implementa-
tions is illustrated in Fig. 1.

II II Fa" I App''ca' n I Adaptive-meshll Adaptive Barnes-Hut Multipole I Heat transfer II Mu't'Qr'd , Method

l i l l
(M-Tree ADT Interface J Codedusing . T r e e

Implementation

MPI

I I u,,,so ,ooo

I Optimal C
implementation
for the M-tree

(
1

I Workstation clusters

Portable library
runs on wide
range of clusters and MPPs

I etc.

Fig. 1. Relationship between M-tree applications and our current implementations.

In this paper we aim to demonstrate the power and versatility of the ap-
proach, and to demonstrate that M-q_h'ee leads to clear and succinct solutions
without compromising performance. \¥e have studied a number of applications
of the M-Tree and present here two examples of its use: a simple heat con-
duction problem, and an implementation of the Barnes-Hut N-body particle
simulation algorithm. We show that the structured abstraction of commonly-
occurring computation patterns in the application provides the opportunity to
investigate various approaches to load balancing and communication minimiza-
tion using caching and other techniques. These optimizations are applicable to
other problems with similar structure.

Overview of this paper

In Section 2 we present the basic concepts of the M-tree and its programming
style. In Section 2.2 we present a simple example of its use. We then present
an N-body simulation as a case study in Section 3. The implementation of the
M-tree is presented in Section 4. Section 4.3 shows the performance benefits of

640

some of our optimisations. Section 5 places our work in the context of related
efforts, and Section 6 concludes with directions for developing this research.

2 T h e M - T r e e a b s t r a c t d a t a t y p e

The M-Tree is designed to support a wide range of applications. The common
basis is a regional mesh tree in which each node represents a region of the domain
and its subtrees are subregions overlaying the region of the parent node. The
common computational patterns we need to support include the following:

- parallel computation upon a group of nodes on the tree
- flexible dynamic recursive decomposition
- control for dynamic expansion and contraction over the tree
- access to neighbouring regions, whatever their level of decomposition and
- efficient support for hierarchical treatment of long-range interactions

An M-Tree is a regional mesh tree in which the degree of each nonleaf node
is Rz in the x-dimension, Ry in the y-dimension and Rz in the z-dimension.
Each node represents a region of the domain and its subtrees are subregions
overlaying the region of the parent node. Thus a tree is called a quadtree when
R~ = Ry = 2,and Rz = 1. It can be regarded as a generalization of quadtree
representing a class of hierarchical data structures whose common property is
that they are based on the principle of recursive decompositions of space [17].

The simplified definition of a mesh tree can be described using the following
C code:

struct MeshTree {
int status;
struct Region domain;
struct NeighbourTree** NbTrees;
struct MeshTree* parent;
MeshTree newlevel [rx] [ry] [rz] ;
NodeType* vdata ;

where

s t a t u s indicates if the current node is childless,
domain includes the upper and lower bounds of geographic range,
Nb t rees is the internal link to a list of the adjacent nodes,
p a r e n t is the internal link to the parent node,
newleve l are the internal links to the subtrees
NodeType is the user-defined node-based variable type.

This representation is internal to the ADT and so need not be understood by
the applications programmer.

641

2.1 T h e M - t r e e ' s O p e r a t o r s

The operations over an M-Tree can be divided into first-order and higher-order
operators. The first-order operators perform basic query and update on each
node of the M-Tree. The higher-order operators abstract commonly-used pat-
terns of parallel adaptive computations. They are higher-order in the sense that
they are parameterized by user-defined functions for local and global computa-
tion. We present a brief overview of these operators as follows:

1. Tree c o n s t r u c t i o n :
MT_Init:

uses a user-defined partition operation to distribute global data to ini-
tialize the M-Tree.

2. C o m p u t a t i o n a l o p e r a t o r s - l eaf -based:
MT_Map_Leaf:

applies a user-defined region-based operation to each leaf node in parallel.
The local operation is accompanied by a communication stencil, so that
the function can access neighbouring elements.

MT_Reduce_Leaf:
performs reduction for all leaf nodes in parallel.

gx_comm..Leaf:
provides communication among all leaf nodes, according to a specified
stencil.

MT_Bcast-Leaf:
broadcasts to all leaf nodes in parallel.

MT_Map_Leaf_Env:
applies a user-defined region-based operation to each leaf node in parallel
with respect to a global environment parameter. The local operation is
accompanied by a filter function that restricts the range of the global en-
vironment (the environment is often the M-Tree as a whole, and the filter
function specifies which subnodes are needed for each leaf computation).

3. C o m p u t a t i o n a l o p e r a t o r s - level -based:
MT.Map_Level:

applies a user-defined region-based operation to each node on a given
level in parallel, using a stencil as above.

MT-Reduce_Level:
performs reduction for all nodes on a given level in parallel.

gx_comm_Level:
provides communication among all nodes on a given level.

MT_Bcast_Level:
broadcasts to all nodes on a given level in parallel.

4. " A l l - a t - o n c e " t r ee ope ra to r s :
MT_Up-Pass:

traverses the M-tree level-wise from the bottom up and applies user-
defined operations to leaf and internal nodes.

642

MT_Down_Pas s:
traverses the M-tree level-wise top-down and applies user-defined oper-
ations to leaf and internal nodes.

MT-Adapt ive:

updates the grid hierarchy, as required, for example after application-
dependent error analysis.

MT_Gather:
collects the elements of the M-Tree into a user-specified data structure.

2.2 Example : adap t ive -mesh Jacob i solver for hea t flow p r o b l e m

We consider a simple heat conduction example to illustrate how the M-tree is
used in programming a continuum system. Consider a material being heated by
boundary temperature difference or an internal hot spot• The two-dimensional
steady-state thermal conduction with no internal heat generation is governed by

, Oa 2 Laplace s equation, ~ + ~ a = 0. and boundary condition equations. Such a
• . Y

system of partial differential equations can be solved by numerical discretization.
The difference equations can be obtained as:

T/', +1 I'T.' Z' -- 4 (i+l,j "{- Tg-I , j "~ i , j -1 "~ Tit, j+ l)

With a suitable grid and a set of finite difference equations, the approximation
at each grid point can be achieved by an iterative linear equation solver• The
solver computes an initial state of the grid and then applies the finite difference
equation iteratively until a certain convergence condition is met. For this simple
example, we use the Jacobi method [16]. The global temperature distribution
is then approximated by computing the difference equations of the subregions.
Regions where accuracy is not satisfactory may be refined further. Such an ap-
proximation involves the interaction between subgrids and the global grid in a
way similar to the multigrid method [16]. That is, the coarse grid is interpolated
to form the initial state of the refined subgrids.

The implementation using an M-Tree is shown in Figure 2. The tree is cre-
ated from the initial domain using MT_Init parameterized by a user-defined C
function, decompfun, which specifies how the initial domain is decomposed and
partitioned among the processors.

Jacobi relaxation is applied repeatedly until convergence is achieved or the
number of iterations exceeds maxconv. Each relaxation iteration u s e s g ; r _ C o m a t _ L e a . f

to exchange halo boundary between the leaf nodes. The user defined function
node_to_temp extracts the boundary temperature values to be communicated,
and the interpolation/un-interpolation functions in tp and unintp are used for
boundaries on different refinement levels. 14T_Rap_Leaf is then applied, using the
user-supplied aacobi function relax_temp, which operates the regular grids at
the tree's leaves.

If convergence is not achieved, MT_14ap_Leaf is used to interpolate and ini-
tialize a finer mesh on each leaf. A similar Jacobi relaxation procedure is then
applied to each leaf node's refined mesh.

643

MT_Init(TAG_MESH, buffer, domain, decompfun);
for (outer_iter=O; outer-iter<maxiters; outer_iter++) {

/* first relaxation on all leaf nodes */
for (iter=O; iter<maxconv; iter++) {
Ex_Comm_Leaf (node_to_temp, intp, unintp) ;
MT_Map_Leaf (relax_temp) ;
/* until converges or exceeds maxconv */

}
if (not convergent) {
/* interpolate each leaf to a finer mesh */
MT_Map_Leaf (intpt_t emp) ;
for (iter=0; iter<maxconv; iter++) {

Ex_Comm_Leaf (node_to_finertemp, intp, unintp) ;
MT_Map_Leaf (relax_finertemp) ;
/* until converges or exceeds maxconv */

}
/* get global maximum truncation error */
MT_Reduce_Leaf (MAX, calc_trunc_error, &m) ;
/*broadcast to all leaf nodes to set refinement tag */
MT_Bcast_Leaf (set_tag, m) ;
MT-Adaptive(refinefun, intpt, unintpt) ;

}

Fig. 2. }Ieat Transfer Example

MT.Reduce_Leaf uses the user-defined function calc_trunc_error to esti-
mate the truncation error from the difference between the original mesh and
the finer mesh, and find where this is maximum. MT_Bcast_Leaf is used to tag
the nodes where refinement is needed. Finally MT-hdaptive refines the tagged
regions using the user-defined interpolation functions.

3 Application to particle simulation

The application we consider here is the Barnes-Hut algorithm [1] for modelling
the behaviour of interacting particles in space; there are similar applications
in, for example, molecular biology, plasma physics and fluid mechanics. The
algorithm is based on the observation that, while forces from nearby particles
must be considered separately, forces from a group of particles far enough away
can be approximated as one equivalent particle. In three dimensions it uses an
oct-tree to store particle information or the collective particle information in the
subcubes. The same problem can be cast in two dimensions--the structure is

644

then a quad-tree. Each particle calculates the forces acting on it by querying
the hierarchical quadtree/oct- tree. Figure 3 shows how the oct-tree Barnes-Hut

... set up initial global-particles, global~iomain ...

for (iter=O; iter<maxiter; iter++) {
/* create oct-tree from global.particles by recursive subdivision of the domain
* the tree is flattened in the order indicated by par t i fam and then
* partitioned/distributed to all processors
*/
HT_Init (TIG~PAItTICLE, global.particles, global~domain, partifun) ;
/* compute center of mass of each cube in the oct-tree, starting from the leaves
*/

MT_Up.Pass (centermass) ;
/* ca.lculate accelerations for each leaf's particle list. The list of particles or cells
* considered is computed by searching the entire oct-tree (the %nvironment"), but
* using critical_radius_test to prune out ceils sufficiently distant to be
* treated as a single large mass
*/
MT_Hap_Leaf.Env(critical_radius_test, calculate~ccelerations, rootkey) ;
/* update position ~ velocity of each particle by leapfrog integration based
* on its calculated acceleration
*/

MT.~ap-l.eaf (update.body) ;
/* Collect the particles from the tree back into global_partic:l.es
*/
HT_Gather(global.particles, global-domain) ;

}

Fig. 3. Implementing the Barnes-Hut algorithm for the N-body problem (simplified)

algori thm is implemented using M-Tree operators. The code shown is slightly
simplified and we have omit ted initialization details.

The algorithm has three main stages:

P a r t i t i o n : recursively decompose the particle region into eight subregions.
In Figure 3 this is implemented by HT_Init ;

Mass : each internal node calculates its center of mass using information prop-
agated upwards from its subtrees.
This is handled by the ~lT_UP.2ass operator. Its parameter , cen te r raass , is
the name of a function which computes the center of mass for each node
of the tree by combining information about the mass distribution of the
subtrees;

P o t e n t i a l / F o r c e C a l c u l a t i o n : For each particle, traverse the tree searching
for particles which must be considered. Prune the traversal by approximat-

645

ing a subtree as a single mass if it lies sufficiently far away. This is han-
dled by MT_Map.Leaf.Env. The "environment" is the root of the octree it-
self. The "filter" function c r i t i c a l _ r a d i u s _ t e s t returns the list of particles
and approximated subtrees which need to be considered for a given particle
MT_Map_Leaf..Env maps ca lcu la t e . . acce le ra t ions to each particle with a
filtered portion of global tree, to compute the resultant forces.

Upda te : MT_Map_Leaf is used to apply update_body to every particle, to up-
date its position according to the forces acting upon it.

Finally, the results are collected and, in the next iteration, a new M-Tree is
constructed reflecting the updated positions.

4 I m p l e m e n t a t i o n o f t h e M - T r e e f o r p a r t i c l e a p p l i c a t i o n s

For portability, the M-tree is implemented as a C library based on MPI[9]. In
the current prototype implementation there are separate implementations for
mesh-based problems and particle-based problems, although it should be stressed
that a common implementation is quite possible by enriching the higher-order
operators of the ADT with additional parameters. For simplicity we describe the
implementation as it currently stands.

In the mesh-based problems, the most commonly-used computation pat-
terns are mainly among blocks on the same level or on neighbouring levels. The
particle-based problems tend to invoh, e computation and communication among
treenodes located on all levels. For example in Barnes Hut algorithm, each leaf
node needs to compute with a subset of whole tree as its interaction list. In
order to achieve efficient access to randomized treenodes, a hashing scheme is
used which is discussed in the following section. In what follows we focus on the
details of the particle-based M-tree implementation and its performance.

4.1 I m p l e m e n t a t i o n

Particle-based solvers are not mesh-based in the sense that a number of discrete
particles form a domain according to their positions and they cannot be mod-
elled by variables on gridded points in the domain as in a continuum system.
Most of the solvers use the hierarchical structure of the domains to improve
the computational complexity. The M-Tree offers the control over such hierar-
chically structured particle space. In applications such as the N-body problem,
each body is influenced by all the other bodies. Thus to cMculate the influence
on each body, the interactions between the body and all the other bodies must
be considered. The computationM pattern in this kind of application tends to
access the global data structure from each particle, pruning where possible. This
leads to an unpredictable access pattern and dynamic load imbalance which are
the main issues for parallelization.

The particle simulation libraries are implemented using a hashing scheme
similar to the technique proposed by Warren and Salmon [14]. In this scheme

646

each treenode has a unique key defined according to its hierarchical coordinates.
Each key corresponds to some physical data inside the domain of each treenode.
A hash table is used to map the key to the memory location holding this data.
This key space is convenient for tree traversals where a node is accessed directly,
without going via its parent; this is needed in some fast N-body algorithms such
as the Fast Multipole Method.

The M-tree is flattened and partitioned by a user-defined ordering function.
In our test case a Peano-Hilbert ordering [17] is used to achieve maximumlocality
and load balancing. In this partitioning scheme, each process initially stores those
particles for which it is responsible which tend to have maximum intersection
of their interaction sets. These local particle sets are a subset of the flattened
M-tree and thus stored spatially in Peano-Hilbert order. A software caching
scheme is used to minimize the extra message passing for the shared overlapping
interaction sets. Whenever a non-local tree node is read, it is also inserted into
into the local hash table as subsequent references can be satisfied locally. The
variable cacheline size of each remote access can be used to further optimize the
overall performance as described below.

4.2 Opt imiza t ions

Various optimization approaches have been used in the implementation of the
M-tree operators for particle simulation. For example, the MT_Map_Leaf_Env
operator is implemented by traversing the global M-tree in depth-first order since
the partition and load balancing scheme maintains maximum locality. Message
passing occurs whenever a non-local tree node is encountered. When replying
to request messages from other processors, instead of sending just the requested
treenode, a contiguous package of treenodes (a cache line) can be sent. This
scheme is based on a cache coherence protocol which exploits the controlled
update discipline of the data structure to make efficient use of high-bandwidth
high-latency message passing platforms [2]. The optimization is based on the
statistical likelihood that further treenodes stored adjacently will be accessed
later either by the current particle or by other particles on the same processor.
The scheme reduces the number of separate messages at the risk of wasting
bandwidth on data which is not eventually used. In Figure 4, a 8192-body test
shows that using a cache line size of 50 treenodes almost doubles the speedup
obtained using a cache line size of 5.

4.3 Pe r fo rmance

Our implementation is currently only in prototype form, but some initial per-
formance results are available for the Barnes-Itut algorithm. Our experimental
work has used the 128-processor Fujitsu AP1000 at Imperial College. Figure 5
shows overall time and speedup for different problem sizes up to 16384 particles.
The optimal performance for smaller problems are tested using smaller cacheline
size because of the small number of local treenodes when scaling up to 128 pro-
cessors. It shows that performance continues to improve with large numbers of

647

-g=
O)

60

50

40

30

20

10

0
0

Speedup vs. Cacheline Size, Problem size=8192
.

/ line--25 -e.-- ~ !!.n. ~ : ~ - ~ -

....--'" .~

S ..~,.....

I I I I I I

20 40 60 80 100 120 140
Number of Processors

Fig. 4. Speedup with Different Cacheline Sizes

processors, but that there is potential for improvement. Figure 4 shows speedup
obtained at different cache line sizes. The performance is substantially improved
by using large cache lines, although comparison with a hand-tuned low-level
implementation [3] shows that there is considerable room for improvement.

70

60

SO

40

30

20

10

ICQ4
2 0 4 8 ~

i i - - i i
20 40 60 80 100 120 140

N u n ~ of Proc4msom

Ova, all Tlrne (mmoered w~h ha,~l coded m~4,41, Probi4m sizl,=8192, 4 ItetaJofll

o l i l I = i i
0 20 40 ~0 80 I~0 120 140

Number o(Proce~:el

Fig. 5. Overall Speedup (lcft graph) and Overall Time (right graph)

5 Related work
This project is a further development of our earlier work on skeletons and alge-
braic program transformation [12, 8] The skeletons approach aims at building

648

up a general framework for structured parallel programming based on the idea
of abstracting commonly-used computation patterns as higher-order functions.
This work concerns applications where there is rich domain knowledge and hence
plenty of scope for abstraction and optimization. Here we have focussed on the
underlying distributed data structure, whose dynamic nature involves important
and complex factors which have not properly been addressed in theoretical work
up to now. Recent developments like Sfidholt's Data Distribution Algebras [18]
indicate some of the potential. There are several comparable attempts to build
general-purpose support for adaptive computations [5, 10, 4].

Using data abstraction to capture commonly-occurring computation forms
with a class of application have been well studied, in particular for irregular
and dynamic applications. Such systems includes LPARX [13] and DAGH [15].
LPARX provides parallel abstraction for dynamic arrays. The mechanism hides
low-level implementation details and provides tools for data distribution, parti-
tioning and mapping, parallel execution and interprocessor communication. The
dynamic array supported by LPARX forms one level of data partition and the
user has to maintain explicit control over multi-level hierarchy. The idea of col-
lective communication has been widely adopted to enhance the compositionality
of concurrent processes. Co-ordination systems such as Archetype [7] and PCN
[11] and parallel languages such as CC++ [6] all provide abstractions of collective
communication.

6 C o n c l u s i o n s a n d f u r t h e r w o r k

We have presented the design for a generic package which captures a class of ir-
regular and adaptive algorithms. The user of the package can avoid much of the
difficulty of programming such applications, and rely on a well-tested and care-
fully optimized implementation of the key data structure. The library provides
reusability and eases programming real applications. Since the library is generic,
there are potential overheads compared with a hand coded particle simulation
code [3], which we are currently quantifying.

Directions for further work include:

- Further optimization, including the use of a more efficient hash function,
and finding the optimal cache line size.

- Production of a generic M-Tree implementation capturing the domain-dependent
behaviour of different adaptive applications by enriching the higher-order
ADT operators with additional parameters

- Further application studies, in particular multigrid solvers and time-varying
adaptive-mesh problems such as fluid [tows.

- Developing a theory for Mgebraic transformation of M-Tree programs, for
example to capture fusion of tree traversals.

Acknowledgements: This work was supported by the UK Engineering and Phys-
ical Sciences Research Council under grant number GR/J 87015. We would also

649

like to extend our thanks to the Imperial/Fujitsu Parallel Computing Research
Centre for their continued support.

R e f e r e n c e s

1. J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Na-
ture, 324(4), December 1986.

2. Andrew J. Bennett and Paul H. J. Kelly. Efficient shared-memory support for
parallel graph reduction. Future Generation Computer Systems, 1997. To appear.

3. Simon Boothroyd. Galaxy simulation on the AP1000, 1996. MEng Dissertation,
Department of Computing, Imperial College.

4. G. H. Botorog and H. Kuchen. Algorithmic skeletons for adaptive multigrid algo-
rithms. In Proceedings of IRREGULAR'95, LNCS 980. Springer-Verlag, 1995.

5. G.F. Carey, M.Shaxma, and K.C.Wang. A class of data structures for 2-d and
3-d adaptive mesh refinement. International Journal for numerical methods in
Engineering, 26, 1988.

6. K.M. Chandy and C. I(esselman. Compositional C++: Compositional parallel pro-
gramming. Technical report, California Institute of Technology, 1992. Technical
Report Caltech CS-TR-92-13.

7. K.M. Chandy, R. Manohar, B.L. Massingill, and D.I. Meiron. Integrating task and
data parallelism with the collective communication archetype. Technical report,
California Institute of Technology, 1994. Technical Report Caltech CS-TR-94-08.

8. J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, D.W.N. Sharp, Q. Wu, and
R.L. While. ParMlel programming using skeleton functions. In Parallel Architec-
tures And Languages, Europe: PARLE 93. Springer-Verlag, 1993.

9. Department of Computer Science, Computer Sciences Laboratory, The Australian
National University. MPI: User's Guide, 1994.

10. D.J. Edelsohn. Hierarchical tree-structures as adaptive meshes. Technical Report
SCCS-193, Syracuse Center for Computational Science, NY, 1991.

11. Ian Foster, Robert Olson, and Steven Tuecke. Productive parallel programming:
The PCN approach. Scientific Programming, 1(1), 1992.

12. Paul H.J. Kelly. Functional Programming for Loosely-coupled Multiprocessors. Pit-
man/MIT Press, 1989.

13. S. R. Kohn. A Parallel So.ftware Infrastructure for Dynamic Block-Irregular Scien-
tific Calculations. PhD thesis, Dept. of Computer Science and Engineering, Univ.
of California, San Diego, 1995.

14. J. K. Salmon M. S. Warren. A parallel hashed oct-tree n-body algorithm. In Pro-
ceedings of SuperComputing 93, 1993.

15. M. Parashar and J. C. Browne. Dagh: A data management infrastructure for par-
allel adaptive mesh refinement techniques. Technical report, Dept. of Computer
Science, Univ. of Texas at Austin, 1995. Premiminary Users Guide.

16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. Cambridge University Press, Cambridge, second edition, 1992.

17. H. Samet. The design and analysis of spatial data structures. MIT Press, 1990.
18. Mario Sfidholt. Data distribution algebras - - a formal basis for programming using

skeletons. In E.-R. Olderog, editor, Programming Concepts, Methods and Calculi,
pages 19-38. North-Holland, June 1994.

