
A Monadic Calculus for Parallel Cost ing
of a Funct ional Language of Arrays

C.B. Jay 1, M.I. Cole 2, M. Sekanina 1, and P. Steckler 1

School of Computing Sciences, University of Technology, Sydney,
P.O. Box 123, Broadway NSW 2007, Australia;
email: {cbj ,milan, steck}0socs, uts . edu. au

2 Department of Computer Science, University of Edinburgh,
James Clerk Maxwell Building, The King's Buildings,

Edinburgh, EH9 3JZ, Scotland; email: mic0dcs, ed. ac. uk

Abst rac t . VEC is a higher-order functional language of nested arrays,
which includes a general folding operation. Static computation of the
shape, of its programs is used to support a compositional cost calculus
based:on a cost monad. This, in turn, is based on a cost algebra, whose
operations may be customized to handle different cost regimes, especially
for parallel programming. We present examples based on sequential cost-
ing and~on the PRAM model of parallel computation. The latter has been
implemented in Haskell, and applied to some linear algebra examples.

1 I n t r o d u c t i o n

Second-order combinators such as map, fold and zip provide programmers with a
concise, abstract language for writing skeletons for implicitly parallel programs,
as in [Ski94], but there is a hitch. These combinators are defined for list programs
(see [BW88]), but efficient implementations (which is the point of parallelism,
after all) are based on arrays. This disparity becomes acute when working with
nested arrays, which are rarely supported in parallel practice. NESL [BCH+94] is
a notable exception, but still does not support folding over them. Our approach
is to redevelop the theory of arrays to support the combinators while retaining
constant-time access. We illustrate the efficacy of this approach by implementing
static estimates of shapes and parallel work, as compared to, say, the dynamically
obtained estimates for NESL [BG96].

Efficient array access is based on direct access to the storage of array entries,
typically in contiguous blocks of memory. List storage, however, is by allocating
cons cells during evaluation, which introduces significant access costs. Our ap-
proach to arrays uses the syntax of lists, so that combinators can be introduced
in the functional style, but constrained so that a compiler can still determine
the length, or more generally the shape, of any array expression. This process
of shape analysis can be thought of as compile-t ime/run-time separation in a
two-level operational semantics INN92]. Success requires tha t the program be
shapely, that is, the shape of the result is determined by those of its inputs, as is
typical in, say, linear algebra. Shapeliness, and successful shape analysis, require
a new approach, which we have illustrated in a small functional language, VEC.

651

While already of interest in sequential programming, knowledge of shapes is
central to efficient distribution of arrays across a network of processors. In this
paper we show how to estimate the cost of parallel work in VEC. Each potential
distribution of a regular array results in a cost estimate for the program, whose
minimisation determines the choice. These results illustrate the feasibility of the
technique. We will soon cost communications, too, using the shape to determine
the length of each message, and a few hardware parameters (as in BSP [Val90]
or LogP [Ca93]) to compute its transmission cost.

Costs are computed compositionally, so that we are able to associate to each
program fragment a cost function, from the number of processors to time. These
are combined using a cost algebra from which we construct a cost monad (a spe-
cialisation of computational monads [Mog89, Wad92, Gur91] which determines
the cost of a program from that of its components. The specific choice of al-
gebra varies according to the computational model. We give examples of cost
algebras for sequential computation, and for a PRAM "shared-memory" model
[FW78]. A Haskell implementation of our cost model is available on request to
the authors.

The remaining sections of the paper are: Controlling shape; The VEC lan-
guage; The SIZE language (in which shape analysis is performed); Cost algebras
(which describe how to combine costs); Sequential costs; PRAM costs; Relation-
ship to other work; and Conclusions and future work.

2 C o n t r o l l i n g s h a p e

We wish to design a functional language in which all operations are shapely, that
is, the shapes of their results are determined by the shapes of their inputs. For
example, matrix multiplication is shapely, but filtering of a list is not (since the
length of the result depends on the entry values). This is a natural restriction for
array programming, where storage is allocated before entry computation. The
design of a language suitable for shape analysis is motivated by consideration of
the following operations, which act on a vector of integers v:

if (hd v) = 1 then 0 else 1
if (length v) = 1 then v else append v w
if (hd v) = 1 then v else append v w
rec f .An. i f n = 0 then I else n * f (n - i)
rec f .&v. i f length v > 100 then f (append v w) else v

(1)
(2)
(3)
(4)
(5)

1. This operation is shapely: the result is an integer, a datum whose shape is
trivial and therefore unaffected by the condition.

2. Shapely: the shape of the result (the length of the resulting vector) depends
on the choice of the branch, and that choice is determined by the length of
v, that is, by a shape.

3. Non-shapely: the choice of the branch and thus the length of the resulting
vector depends on an integer (a datum).

652

4. Shapely: the result is an integer and therefore its shape is known (it is the
trivial shape) regardless of the number of iterations of the recursion.

5. Problematic: although shapely, the evaluation of the resulting shape may
not terminate, which makes the operation unsuitable for shape analysis.

The VEC language will introduce type-based restrictions to discriminate among
these examples.

3 The VEC language

The VEC language is a simply typed lambda calculus with products, a unit type,
and a vector type constructor. The language as presented here is a variant of
that presented in [JS97]. The types are given by

D ::= nat I bool I . . .
: := D I sz I un I ~ × ~ I vec
: : = r I ~ x ~ I ~ - ~ .

D ranges over datum types whose shapes are trivial. T ranges over data types.
They include the datum types, the type sz of sizes, and are closed under finite
products and vectors. The set of sz values is isomorphic to the set of natural num-
bers, but these values are shapes rather than data, and they will represent lengths
of vectors and index vector entries. The vector construction can be iterated to
produce arbitrarily nested arrays. For example, we define mat T -- vec (vec w) to
represent matrices with entries of type 7. The stratification of types between T
and t9 disallows types for vectors of functions.

We will also need the discrete types, indicated by 5, which are constructed
without using the vector construction or sz:

6 : : : D I un l d x 6 1 6 - + 6 .

The VEC terms are

t : : = d l c l x I Axe ' t] t t I i f t t h e n t e l s e t I i f s t t hen t elset I rec /6 , t

d ranges over basic datum constants and operations. These are assumed to con-
tain the nat numerals 0,1,2 and ordinary booleans, c ranges over the eombi-
nators with non-trivial shapes. These include the size numerals -0,-I,.... Basic
arithmetic operations, such as + and *, are overloaded to act on both numbers
and sizes. We use sz to represent "shape booleans" with -0 indicating truth and
all other sizes indicating falsehood. The remaining combinators, and the general
typing rules, are given in Figure 1. Type superscripts on terms will be elided
where appropriate.

The combinators for finite products and vectors are all standard. The use of
list constructors for vectors was done deliberately to emphasize that the distinc-
tion between vectors and lists is not in the typing, but in the shaping. Other
combinators can be added, as long as they are shapely.

653

un i t : un t l r : v e c r -~ vec 7
pai r ° ' ° ' : 8 --,'. 8 ' --~ 8 x 8 ' ent ry r : vec 7 -~ sz -~ T
fst °'e' : OxO' -+ 0 length y : vec r --+ sz
snd e'e' : e x e ' -~ e' map ~'~' : (7 -~ T ') -+ (vec r --~ vec T ')
s i n f f : r + v e c r fo ld ~'~' : (r - + r ' - + r ') - ~ r ' + v e c r - ~ r '
c o n s r : T -+ vec r -+ vec r zip r'r' : vec r -+ v e c T I ---} v e c (TXT I)
hd r : vec r --+ T iter r : (r --+ r) -+ T --+ SZ --+ T

id
V(x)=e
F F x : 8

abs
F, x : OF t : O'

F I- Ax °. t : 0--+ O'

F k t : b o o l F H t ' : 6 F H t" :
if

F F i f t then t ' else t" : 6

rec
F , f : 6 F t : 5

F I- rec fa. t : 5

F F t : O - - + O ' F H t ' : 8
app F ~- t t' : O'

F F t : s z F F t ' : 8 F F t " : O
ifs F H ifs t then t' else t" : 8

Fig. 1. VEc type inference rules

There are two forms of conditional: a data condi t ional (keyword i f) , whose
condition is given by a da tum (of type bool), and a shape condi t ional (keyword
ifs), whose condition is a shape (of type sz). The da ta conditional allows the con-
dition to be data-dependent , but ensures shapeliness by requiring the branches
to be of discrete type, and hence trivial shape, as in Equation 1. By contrast,
the branch taken by the shape conditional is known by shape analysis, so the
branches may have arbi t rary types and shapes. In VEC, Equation 2 takes the
form

ifs (l e n g t h v) ---- - 1 t hen v else a p p e n d v w .

Note tha t Equation 3 cannot be expressed in V E C , a s desired.
General recursion of the form rec f6. t is only supported for functions f of dis-

crete type. This suffices for functional completeness, since the computable func-
tions on natural numbers are all available, but does not generate non-terminat ing
shape analyses. Finite iteration of arbi t rary operations is expressed by iteration,
using the iter combinator.

Let us introduce some notat ion to improve readability:

(h , t2) = pair tl t2
h :: t = cons h t
[h , t 2 , " ' , t n] = t l :: (t2 :: (" " :: (sing tn))) •

Also, we may write VEC functions using pat terns , defined by the g rammar

p : : = x I <p,p>

with the restriction tha t any variable may appear at most once in a pat tern. The
notat ion f p = t defines a VEC function f = Aw.t ' , where w is fresh and t ' is t

654

with the variables in p suitably substituted. For example, f ((x, y}, z} = x + y + z
is syntactic sugar for f = Aw.(fst (fst w)) + (snd (fst w)) + (snd w). We omit
formal specification of these substitutions.

The evaluation relation is given by a standard eager operational semantics,
which we omit for lack of space.

To ensure termination of analysis, in this version of VEC we allow the re-
cursion combinator rec (and the data conditional if) to act on discrete types
only. Thus, Equation 5 is not well-formed. This restriction is ameliorated by
introducing additional combinators, such as map, fold, and iter.

4 The SIZE language

VEC shapes can be isolated in a sub-language called SIZE, whose types are

0 : := unJszlOx~16~O.
The discrete types in SIZE do not include datum types. Hence there is no need
for data conditionals or recursion. Its terms are given by

t : : = c I x l) ~ x e . t] t t l i f s t t h e n t e l s e t

where c denotes those VEC combinators whose types are in SIZE. Its type in-
ference rules are the applicable VEC rules. We define bang : 5 to be the canon-
ical term of discrete size type 5. For example, for type 0 = un --~ unxun, we
have bang ° =)~x u". (unit, unit). For any SIZE type 0, we may define a func-
tion szmax o-~-~e that gives the maximum of two SIZE terms, using pointwise
maximum where 8 is a function type.

We shall shortly give a translation from VEC to SIZE which generates execu-
tion costs, but first we must introduce the notion of a cost algebra.

5 Cost algebras

Cost algebras are used to model execution costs. A cost algebra has signature
(T, +, 0, ®, ®, max) with binary operations

+,® : T -+ T--+ T
® : s z - + T - + T

max : T - ~ T - ~ T

where (T, +, 0) is a commutative monoid, and • is commutative with unit 0. We
will write these operations in infix form.

The carrier T represents execution costs of some kind, for example, time.
The operations + and ® are sequential addition and parallel addition of costs,
corresponding to sequential and parallel composition of programs. The operation
® is parallel multiplication, which determines the cost of computing in parallel
many tasks that have the same cost.

655

It is tempting to introduce additional equations to the algebra, for example,
to make @ associative. However, associated tasks typically share resources in
ways that affect the efficiency of the resulting algorithm. This lack of associativity
motivates the introduction of ® which could otherwise be treated as iterated
parallel addition. In practice, static computation of ® for n tasks takes constant
time, whereas the corresponding iterated parallel addition is exponential.

For sequential program execution we take T to be clock ticks, with + and
O as addition on clock ticks, ® as ordinary multiplication, and max as the ordi-
nary maximum. For PRAM executions take T to be functions from numbers of
processors to clock ticks, with + and max as pointwise addition and maximum.
Both these examples will be developed below.

We are going to track costs of our programs using a monad in the style
of [Wad92], though our monad will carry some additional structure. From the
programmer's perspective, a monad is a type constructor M coupled with three
operations:

mmap : (0 --+ 0') -+ MO -+ MO'
unit : 0 --+ MO
join : M M O --+ MO

for any types O, 0 t. (We write mmap to distinguish this operation from the VEC
combinator map.) Now, any monoid (T, +, O) generates a monad by

MO = O x T
mmap f (x,t) = (f x, t)

unit x = (x,O)
jo in ((x , t) , t ') = (x , t + t') .

MO pairs the type O, indicating the shape of a term, with T, the type of the cost
of computing the term. To these we can add some other operations:

add : M O - - + T - - + M O
add (x, t) t ' = (x, t + t ')

pre_iter : (0 --+ MO') --+ MO -+ MO'
pre_iter f (x,t) = add (f x) t .

When the monoid is that of a cost algebra, then we use the parallel addition to
define the operation

capp : M(O --+ MO') --+ MO --+ MO'
capp <f, t) <x, t'> = (fst (f x), (snd (f x)) + (t ® t')}

which combines the costs associated with applications.
A cost monad is a monad generated by a cost algebra. Note that one could

abstract away from the underlying cost algebra, just as monads abstract from
monoids. The cost monads appearing in the rest of the paper are all represented
in the SIZE language.

656

tycostM (D) = un
tycostM(un) = un
tycostM(OxO') = tycostM(O)xtycostM(O')
tycostM(vec 0) = szxtycostM(0)
tycostM (SZ) = sz
tycostM (0 --+ 0') = tycostM (0) --+ M (tycostM (0'))

cost(d) = {bang)
cost(d) =)~'x, y./bang, binOpConst)
cost (x) = (x, varConst)
cost(Ax.t) = A'x.cost(t)
cost(t t ') = capp cost(t) cost(t')

where d is a datum constant
where d is a binary datum operation

cost(re¢ f .t) = cost(t)[(fst cost(t)) / f]n[bang/ f]
costiif t then t' else t")

= add (szmax cost(t') cost(t")) (snd cost(t))
cost(ifs t then t'

cost i length) =
cost (entry) =
cost(pair) =
cost(hd) =

cost(tl) =
cost(fst) =
cost(snd) =
cost(sing) =
cost(cons) =
cost(map) =

cost(fold) =

cost(iter) =

cost (zi p) =

else t")
add (ifs (fst it)) then cost(t') else cost(t")) (snd cost(t))
A'x.(fst x, lengthConst)
)~'x, y.(snd x, entryConst)
~'x, y. ((x, y) , pairConst)
)~'x.isnd x~ hdConst)
A'x.(i(fst x) - -1~ snd x), tlConst)
A'x.(fst x, fstConst)
)~'x.(snd x, sndConst)
)~'x.((-1, x)~ singConst)
A'x, y.i((fst y) + ~1, snd y), consConst)
A'I, x.((fst x, fst (f (snd x))), (fst x) ®(snd (f (snd x))))
A'f, x, y.iter (pre_iter (fst (f (sad y)))) (x, foldConst) (fst y)
A'f, x, y.iter (pre_iter f) ix, iterConst) y
.X'x, y.((fst x, (snd x, snd y)), zipConst)

Fig. 2. Cost translations.

We use the following nota t ion to describe pairs in SIZE whose second element
is the 0 of the cost algebra:

{t} = (t, o)
Y z . t = { ~ x . t } .

also, we may wri te ,Vx, y . t for A'x. iVy. t , and so on.
We use the cost monad to suppor t a syntax-di rec ted t rans la t ion from VEC to

SIZE which describes the shape and cost of VEC terms. It is given in Figure 2. We
may write just cost, suppressing the subscript , when M is unders tood, tycostM
extends to type environments by applying it pointwise. One can show tha t if
F t- t : 0, then

t ycos tM(F) t- cOStM(t) : M (t y c o s t M ($)) .

657

The outermost M in M(tycos tM (0)) reflects the cost of evaluating t. Other copies
of M occur in the result type of functions, to reflect the cost of applying them.
The other interesting type translation is of vectors, which yields a shape, given
by a length of type sz, and a cost, the uniform cost of entries.

The rationale for the costings are as follows. It costs nothing to evaluate
a function, since it is a value. Costs of applications are obtained by com-
bining costs of the function and argument using capp. Our cost model needs
assistance with general recursions; the programmer must indicate the antic-
ipated recursion depth n, using the following notation. Let t[t ' /x] ° = t and
t[t ' /x] n = (t[t ' /x]n-1)[t ' /x] . The cost translations of combinators typically refer
to constants in T, such as pairConst, that vary with the choice of monad and
assumptions about the underlying machine, as we shall now see.

6 S e q u e n t i a l cos t s

Sequential executions are costed using the cost algebra (T, +, -0, +, *, max),
where T = sz. We (somewhat arbitrarily) assign times to the various cost con-
stants by counting the number of variables appearing in the cost definition, for
example, varConst = - I and foldConst = -4.

Here are two examples of costing sequential programs.

cost(+ 39 3) = capp (capp (&'x,y.(bang, ~1)) {bang}) {bang} => (bang, "1) .

The first of the pair is the shape of the integer result, and the second is the time
to compute it, exactly the cost of doing the addition.

cost(fold + 0 [1,2,3,4]) ~ (bang,~15) .

It costs -7 for building the vector: - I for a singleton, plus three conses at -2 each.
It costs -8 for doing the fold: -4 overhead (from foldConst) plus four additions
at ~1 each. The result -15 is the sum of these two subtotals.

7 P R A M cos t s

For the parallel execution of VEC programs, the carrier T of an associated cost
algebra is a set of functions from parallel machine descriptions to times. Here we
choose the PRAM model, so a parallel machine is fully described by a number
of available processors. Therefore, T = sz --> sz represents t ime functions. As
mentioned, sequential addition is pointwise addition on time functions, and max
is pointwise maximum. Parallel addition is more complex. First, we define an
operation that gives a time function for an optimal division of processors between
two parallel tasks:

(f e0 g) p = min0<q<p {max { f q,g (p - q)}} .

But sequential execution of the tasks may be faster, so define

(/ G g) p = m i n { (/ + g) p , (] Go g) p} •

658

We use ® when costing the evaluation of a pair, for instance, because the pair
elements may be evaluated in parallel. Similarly, for an application, the operator
and operand may be evaluated in parallel, so again ® is used. Note that ® is not
associative: to compute (f ® g) ® h, we consider the possibility of sequentially
adding f and g in parallel with h, a possibility not addressed in computing
f • (g e h).

Parallel multiplication, ®, is used to obtain a time function for running sev-
eral tasks in parallel, as in mapping a function across a vector. Parallel multi-
plication ® is defined by

(n ® f) p = if (n m o d p = = -0)
then (n + p) • (f -1)
else (n + p) . (f - 1) + (f (p + (n modp))) .

The cost (n + p) • (f ~ 1) represents the cost of a sequential phase, while the
rest of the cost, if any, comes from a parallel phase. In the sequential phase, we
divide n tasks evenly among p processors, with perhaps some tasks left over. In
the parallel phase, remaining tasks are divided among the processors. Phasing
the computation into sequential and parallel parts is more efficient than simply
rounding up the number of tasks n to a multiple of p.

For parallel execution, the cost constants referred to in the cost translation
become constant time functions. We use constant time functions because the op-
erations whose costs mention such constants cannot be parallelized. For example,
lengthConst = ,~p.-1 and foldConst = ,~p.-4.

While folding cannot be parallelized in general, we can fold associative op-
erations in parallel. We introduce a new combinator pfold : (0 --+ 0 --+ 0) -->
vec 0 --+ 0 which satisfies

pfold f [a] = [a]
pfold f (h :: t) = f h (pfold f t) .

If an operation f has unit b, then for any vector v, pfold f v and fold f b v have
the same value. The pfold algorithm has sequential and parallel phases, as for
mapping. Knowledge of shapes allows us to redistribute work among the proces-
sors to increase efficiency, but an exhaustive search for the most efficient method
would take too long. Instead, we adopt an algorithm, too complex to describe
here, that constrains the number of shapes in play at any time. This approach
allows us to replace i terated parallel additions by parallel multiplications.

Similarly, we introduce a term constructor that parallelises the construction
of vectors. If h : T and t : vec ~-, then pcons(h, t) : vec T is like cons h t but has
cost given by

cost(pcons(h, t)) -- ((n, s), n ® f)
where n = (length t) + -1

(s, f) = cost(h) .

That is, it represents the cost of loading the whole vector in a single, parallel
operation. Note that pcons is a term constructor, rather than a combinator, since
otherwise the cost of constructing the tail would be computed as part of the

659

cost of application. A consequence is that analysing its cost is also significantly
cheaper, since it avoids i terated parallel additions.

With these additional constructs we can make useful costings of linear alge-
bra operations, such as matrix multiplication. In Figure 3, we give the costs of
multiplying an m x4 matr ix by a 4 x 1 vector on differing numbers of processors.
The multiplication uses pfold for the inner product, which is mapped across the
rows of the matrix. As expected of a PRAM model, the cost decreases uniformly
as the number of processors increases, with little increase in the total number
of cycles. More interesting is the stability of costs as the number of rows varies.
With 8 processors, many costing algorithms would treat 33 rows the same way
as 40 (the next multiple of 8), resulting in a significant increase in costs. Our
algorithm avoids this approach, with the corresponding savings. These effects
may not be notable where the number of rows is very large compared to the
number of processors, but for programs consisting of many small subtasks, the
cumulative savings may be significant.

32
33

m 40
32
33
40

1
1357
1399
1693
1357
1399
1693

2
682
708
850
1364
1416
1700

3
472
472
580
1416
1416
1740

processors
4 5 6

345 287 243
364 303 245
429 345 303
1380 1435 1458
1456 1515 1470
1716 1725 1818

7
219
219
261
1533
1533
1827

8
177
186
219
1416
1488
1752

execution times

total cycles

Fig. 3. Statically-computed costs for multiplying an m x 4 matrix by a 4 x 1 vector.

8 Relat ionship to other work

Any at tempt to develop a parallel cost calculus is complicated by the absence
of a generally accepted underlying cost model, with systems such as the PRAM
[FW78] and BSP [Val90] offering competing tradeoffs between conceptual tracta-
bility and reflectivity of realistic machines. Previous work has reflected this di-
versity and has also largely been conducted in a relatively informal setting,
particularly with respect to the central questions of composition and nesting of
parallel operations.

Skillicorn presents a cost calculus for a parallelized list BMF, using the notion
of a "standard topology" for a datatype to describe the minimal connectivity
required for efficient support of each primitive [Ski94]. Shape information is
considered but the costing of, for example, folding is tackled informally according
to the shape behaviour of the accompanying operation.

NESL [Ble96] has precisely developed mechanisms for cost composition in a
"work" and "depth" circuit-complexity model, but severely restricts nesting since

660

only mapping is allowed at outer levels, with folded computations limited to a
small number of special cases. Blelloch and Greiner's profiling semantics for Core-
NESL [BG96] essentially records work and space usage while fully evaluating
programs. By contrast, our cost translation produces a program which contains
just enough summary information about the source in order to calculate its costs,
as a kind of abstract interpretation. Further, the Core-NESL profiling semantics
does not make any decisions about how programs are to be parallelized. We base
our costs on optimal allocations of tasks to processors, which information can
be used by a parallelizing compiler. While the DAG's generated by the NESL
semantics suggest a task schedule, they do not indicate where the tasks are to
execute.

A wide survey of other related work is presented by To [To95], most of it less
formal than what we propose. The "oblivious" PRAM programs and compilation
techniques of [ZL94] are related to our work on shapely programs by their use
of static analysis. In the sequential case, [Weg75] and [M6t88] are examples of
syntax-directed cost analyses, closely related to our own work. Both [HC88] and
[FSZ91] describe average-case analyses. However, our work is distinguished by its
exploitation of source program structure, concise information about bulk data
structures and factoring out of the cost algebra. Note that our work on shape is
unrelated to the shape types of Fradet and Le M6tayer [FM97], which are used
to represent graphs for modelling pointers.

9 C o n c l u s i o n s a n d f u t u r e w o r k

VEC supports a new account of arrays that combines the benefits of the list
programming style with the efficiency of array programming, by means of static
shape analysis. This paper represents the first attempt (known to us) to produce
a formal cost calculus for a parallel programming language of nested arrays that
automatically derives costs from program source. Its power derives from shape
analysis, and is expressed using the now familiar technique of monadic program-
ming. By designing cost algebras with varying notions of parallel addition and
parallel multiplication, we can straightforwardly generate new cost monads to
reflect different models of parallel execution.

Future work should proceed in four main directions. First, we will improve
the existing cost calculus, both to make explicit the task schedules implicit in
the costing, and to optimize the speed of the analysis. Currently, parallel addi-
tion takes O(p) time, where p is a number of processors; we think we can reduce
this to O(log p) or less. Second, the accuracy of the existing cost model must
be tested. We plan to compile VEC programs into FORK95 programs [KS95].
This language is designed to reflect the PRAIV[model, and an instrumented sim-
ulator is already available. Third, the computational model should be modified
to recognize communication costs. Fourth, we are exploiting VEC features in an
Algol-like language, called Fish, which also supports imperative features.

661

R e f e r e n c e s

[BCH+94]

[BG96]

[Ble96]

[BW88]

[Ca93]

[FM97]

[FSZ91]

[FWT8]

[Cur91]

[HC88]

[Js97]

[KS951

[M~t88]

[Mog89]

[NN921
[Ski94]

[To95]

[Val90]

[Wad92]
[Weg751

[ZL94]

G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha.
Implementation of a portable nested data-parallel language. Journal of Par-
allel and Distributed Computing, 21(1), 1994.
G.E. Blelloch and J. Greiner. A provable time and space efficient imple-
mentation of NESL. In ACM SIGPLAN '96 International Conference on
Functional Programming, pages 213-225, 1996.
G. E. Blelloch. Programming parallel algorithms. Communications of the
ACM, 39(3):85-97, 1996.
R. Bird and P. Wadler. Introduction to Functional Programming. Interna-
tional Series in Computer Science. Prentice Hall, 1988.
D.E. Culler and all. LogP: Towards a realistic model of parallel computation.
In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1993.
P. Fradet and D. Le M~tayer. Shape types. In Conference Record of the
24th ACM Symposium on Principles of Programming Languages, pages 27-
39. ACM, New York, 1997.
P. Flajolet, B. Salvy, and P. Zimmermann. Average case analysis of algo-
rithms. Theoretical Computer Science, 1991.
S. Fortune and J. Wyllie. Parallelism in random access machines. In Pro-
ceedings lOth STOC. ACM Press, 1978.
D.J. Gurr. Semantic frameworks for complexity. PhD thesis, University of
Edinburgh, 1991. Available as ECS-LFCS-91-130.
T. Hickey and J. Cohen. Automating program analysis. Journal of the
Association for Computing Machinery, 35(1):185-220, 1988.
C.B. Jay and M. Sekanina. Shape checking of array programs. In Com-
puting: the Australasian Theory Seminar, Proceedings, 1997, volume 19 of
Australian Computer Science Communications, pages 113-121, 1997.
C.W. Kessler and H. Seidl. Fork95 Language and Compiler for the SB-
PRAM. In 5th Intl. Workshop on Compilers for Parallel Computers, 1995.
D. Le M~tayer. ACE: An automatic complexity evaluator. ACM Transac-
tions on Programming Languages and Systems, 10(2):248-266, 1988.
E. Moggi. Computational lambda-calculus and monads. In 4th LICS Conf.,
pages 14 23. IEEE, 1989.
F. Nielson and H.R. Nielson. Two-level functional languages. CUP, 1992.
D.B. Skillicorn. Foundations of Parallel Programming. Number 6 in Cam-
bridge Series in Parallel Computation. Cambridge University Press, 1994.
H.W. To. Optimizing the Parallel Behaviour of Combinations of Program
Components. PhD thesis, Dept. of Computing, Imperial College, 1995.
L. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103-111, 1990.
P. Wadler. Comprehending monads. MSCS, 2:461-493, 1992.
B. Wegbreit. Mechanical program analysis. Communications of the ACM,
18(9):528-539, 1975.
W. Zimmermann and W. LSwe. An approach to machine-independent par-
allel programming. In Parallel Processing: CONPAR 94 - VAPP VI, volume
854 of Lecture Notes in Computer Science, pages 277-288. Springer, 1994.

