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Abst rac t .  VEC is a higher-order functional language of nested arrays, 
which includes a general folding operation. Static computation of the 
shape, of its programs is used to support a compositional cost calculus 
based:on a cost monad. This, in turn, is based on a cost algebra, whose 
operations may be customized to handle different cost regimes, especially 
for parallel programming. We present examples based on sequential cost- 
ing and~on the PRAM model of parallel computation. The latter has been 
implemented in Haskell, and applied to some linear algebra examples. 

1 I n t r o d u c t i o n  

Second-order combinators such as map, fold and zip provide programmers with a 
concise, abstract language for writing skeletons for implicitly parallel programs, 
as in [Ski94], but  there is a hitch. These combinators are defined for list programs 
(see [BW88]), but efficient implementations (which is the point of parallelism, 
after all) are based on arrays. This disparity becomes acute when working with 
nested arrays, which are rarely supported in parallel practice. NESL [BCH+94] is 
a notable exception, but  still does not support folding over them. Our approach 
is to redevelop the theory of arrays to support the combinators while retaining 
constant-time access. We illustrate the efficacy of this approach by implementing 
static estimates of shapes and parallel work, as compared to, say, the dynamically 
obtained estimates for NESL [BG96]. 

Efficient array access is based on direct access to the storage of array entries, 
typically in contiguous blocks of memory. List storage, however, is by allocating 
cons cells during evaluation, which introduces significant access costs. Our ap- 
proach to arrays uses the syntax of lists, so that  combinators can be introduced 
in the  functional style, but constrained so that  a compiler can still determine 
the length, or more generally the shape, of any array expression. This process 
of shape analysis can be thought of as compile-t ime/run-time separation in a 
two-level operational semantics INN92]. Success requires tha t  the program be 
shapely, that  is, the shape of the result is determined by those of its inputs, as is 
typical in, say, linear algebra. Shapeliness, and successful shape analysis, require 
a new approach, which we have illustrated in a small functional language, VEC. 
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While already of interest in sequential programming, knowledge of shapes is 
central to efficient distribution of arrays across a network of processors. In this 
paper we show how to estimate the cost of parallel work in VEC. Each potential 
distribution of a regular array results in a cost estimate for the program, whose 
minimisation determines the choice. These results illustrate the feasibility of the 
technique. We will soon cost communications, too, using the shape to determine 
the length of each message, and a few hardware parameters (as in BSP [Val90] 
or LogP [Ca93]) to compute its transmission cost. 

Costs are computed compositionally, so that we are able to associate to each 
program fragment a cost function, from the number of processors to time. These 
are combined using a cost algebra from which we construct a cost monad (a spe- 
cialisation of computational monads [Mog89, Wad92, Gur91] which determines 
the cost of a program from that of its components. The specific choice of al- 
gebra varies according to the computational model. We give examples of cost 
algebras for sequential computation, and for a PRAM "shared-memory" model 
[FW78]. A Haskell implementation of our cost model is available on request to 
the authors. 

The remaining sections of the paper are: Controlling shape; The VEC lan- 
guage; The SIZE language (in which shape analysis is performed); Cost algebras 
(which describe how to combine costs); Sequential costs; PRAM costs; Relation- 
ship to other work; and Conclusions and future work. 

2 C o n t r o l l i n g  s h a p e  

We wish to design a functional language in which all operations are shapely, that 
is, the shapes of their results are determined by the shapes of their inputs. For 
example, matrix multiplication is shapely, but filtering of a list is not (since the 
length of the result depends on the entry values). This is a natural restriction for 
array programming, where storage is allocated before entry computation. The 
design of a language suitable for shape analysis is motivated by consideration of 
the following operations, which act on a vector of integers v: 

if (hd v) = 1 then 0 else 1 
if (length v) = 1 then v else append v w 
if (hd v) = 1 then v else append v w 
rec f .An. i f  n = 0 then I else n * f ( n  - i )  
rec f .&v. i f  length v > 100 then f (append v w) else v 

(1) 
(2) 
(3) 
(4) 
(5) 

1. This operation is shapely: the result is an integer, a datum whose shape is 
trivial and therefore unaffected by the condition. 

2. Shapely: the shape of the result (the length of the resulting vector) depends 
on the choice of the branch, and that choice is determined by the length of 
v, that is, by a shape. 

3. Non-shapely: the choice of the branch and thus the length of the resulting 
vector depends on an integer (a datum). 
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4. Shapely: the result is an integer and therefore its shape is known (it is the 
trivial shape) regardless of the number of iterations of the recursion. 

5. Problematic: although shapely, the evaluation of the resulting shape may 
not terminate, which makes the operation unsuitable for shape analysis. 

The VEC language will introduce type-based restrictions to discriminate among 
these examples. 

3 The VEC language 

The VEC language is a simply typed lambda calculus with products, a unit type, 
and a vector type constructor. The language as presented here is a variant of 
that presented in [JS97]. The types are given by 

D ::= nat I bool I . . .  
: :=  D I sz I un I ~ × ~  I vec 
: : = r  I ~ x ~  I ~ - ~ .  

D ranges over datum types whose shapes are trivial. T ranges over data types. 
They include the datum types, the type sz of sizes, and are closed under finite 
products and vectors. The set of sz values is isomorphic to the set of natural num- 
bers, but these values are shapes rather than data, and they will represent lengths 
of vectors and index vector entries. The vector construction can be iterated to 
produce arbitrarily nested arrays. For example, we define mat T -- vec (vec w) to 
represent matrices with entries of type 7. The stratification of types between T 
and t9 disallows types for vectors of functions. 

We will also need the discrete types, indicated by 5, which are constructed 
without using the vector construction or sz: 

6 : : :  D I un l d x 6 1 6 - +  6 . 

The VEC terms are 

t : : = d l  c l  x I Axe ' t  ] t t  I i f t t h e n  t e l s e t  I i f s t t hen  t elset I rec /6 ,  t 

d ranges over basic datum constants and operations. These are assumed to con- 
tain the nat numerals 0,1,2 .... and ordinary booleans, c ranges over the eombi- 
nators with non-trivial shapes. These include the size numerals -0,-I,.... Basic 
arithmetic operations, such as + and *, are overloaded to act on both numbers 
and sizes. We use sz to represent "shape booleans" with -0 indicating truth and 
all other sizes indicating falsehood. The remaining combinators, and the general 
typing rules, are given in Figure 1. Type superscripts on terms will be elided 
where appropriate. 

The combinators for finite products and vectors are all standard. The use of 
list constructors for vectors was done deliberately to emphasize that the distinc- 
tion between vectors and lists is not in the typing, but in the shaping. Other 
combinators can be added, as long as they are shapely. 
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un i t  : un t l  r : v e c r  -~  vec 7 
pai r  ° ' ° '  : 8 --,'. 8 '  --~ 8 x 8 '  ent ry  r : vec 7 -~  sz -~  T 
fst  °'e' : OxO' -+ 0 length y : vec r --+ sz 
snd e'e' : e x e '  -~  e' map ~'~' : (7 -~  T ' )  -+  (vec r --~ vec T ' )  
s i n f f  : r + v e c r  fo ld ~'~' : ( r - + r ' - + r ' ) - ~ r ' + v e c r - ~ r '  
c o n s  r : T -+ vec r -+ vec r zip r'r' : vec r -+ v e c  T I ---} v e c  (TXT I) 
hd r : vec r --+ T iter r : (r  --+ r) -+ T --+ SZ --+ T 

id 
V(x)=e 
F F x : 8  

abs  
F, x : OF t : O' 

F I- Ax °. t : 0--+ O' 

F k t : b o o l  F H t ' : 6  F H t" : 
if  

F F i f  t then t '  else t" : 6 

rec 
F , f : 6 F t : 5  

F I- rec fa. t : 5 

F F t : O - - + O '  F H t ' : 8  
app  F ~- t t' : O' 

F F t : s z  F F t ' : 8  F F t " : O  
ifs F H ifs t then t' else t" : 8 

Fig. 1. VEc type inference rules 

There  are two forms of conditional: a data condi t ional  (keyword i f ) ,  whose 
condition is given by a da tum (of type bool), and a shape condi t ional  (keyword 
ifs), whose condition is a shape (of type sz). The da ta  conditional allows the con- 
dition to be data-dependent ,  but ensures shapeliness by requiring the branches 
to be of discrete type, and hence trivial shape, as in Equation 1. By contrast,  
the branch taken by the shape conditional is known by shape analysis, so the 
branches may have arbi t rary  types and shapes. In VEC, Equation 2 takes the 
form 

ifs ( l e n g t h  v )  ---- - 1  t hen  v else a p p e n d  v w . 

Note tha t  Equation 3 cannot be expressed in V E C ,  a s  desired. 
General recursion of the form rec f6. t  is only supported for functions f of dis- 

crete type. This suffices for functional completeness, since the computable  func- 
tions on natural  numbers are all available, but  does not generate non-terminat ing 
shape analyses. Finite iteration of arbi t rary  operations is expressed by iteration, 
using the iter combinator.  

Let us introduce some notat ion to improve readability: 

(h , t2 )  = pair tl t2 
h :: t = cons h t 
[ h , t 2 , " ' , t n ]  = t l  :: (t2 :: ( " "  :: (sing tn ) ) )  • 

Also, we may  write VEC functions using pat terns ,  defined by the g rammar  

p : : =  x I <p,p> 

with the restriction tha t  any variable may appear  at most  once in a pat tern.  The 
notat ion f p  = t defines a VEC function f = Aw.t ' ,  where w is fresh and t '  is t 
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with the variables in p suitably substituted. For example, f ((x, y}, z} = x + y + z 
is syntactic sugar for f = Aw.(fst (fst w)) + ( snd  (fst w)) + (snd w). We omit 
formal specification of these substitutions. 

The evaluation relation is given by a standard eager operational semantics, 
which we omit for lack of space. 

To ensure termination of analysis, in this version of VEC we allow the re- 
cursion combinator rec (and the data  conditional if) to act on discrete types 
only. Thus, Equation 5 is not well-formed. This restriction is ameliorated by 
introducing additional combinators, such as map, fold, and iter. 

4 The SIZE language 

VEC shapes can be isolated in a sub-language called SIZE, whose types are 

0 : :=  unJszlOx~16~O. 
The discrete types in SIZE do not include datum types. Hence there is no need 
for data  conditionals or recursion. Its terms are given by 

t : : = c  I x l  ) ~ x e . t ] t t l i f s t t h e n t e l s e t  

where c denotes those VEC combinators whose types are in SIZE. Its type in- 
ference rules are the applicable VEC rules. We define bang : 5 to be the canon- 
ical term of discrete size type 5. For example, for type 0 = un --~ unxun, we 
have bang ° = )~x u". (unit, unit). For any SIZE type 0, we may define a func- 
tion szmax o-~-~e that  gives the maximum of two SIZE terms, using pointwise 
maximum where 8 is a function type. 

We shall shortly give a translation from VEC to SIZE which generates execu- 
tion costs, but  first we must introduce the notion of a cost algebra. 

5 Cost algebras 

Cost algebras are used to model execution costs. A cost algebra has signature 
(T, +, 0, ®, ®, max) with binary operations 

+,® : T -+  T--+ T 
® : s z - + T - + T  

max : T - ~  T - ~  T 

where (T, +, 0) is a commutative monoid, and • is commutative with unit 0. We 
will write these operations in infix form. 

The carrier T represents execution costs of some kind, for example, time. 
The operations + and ® are sequential addition and parallel addition of costs, 
corresponding to sequential and parallel composition of programs. The operation 
® is parallel multiplication, which determines the cost of computing in parallel 
many tasks that  have the same cost. 
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It is tempting to introduce additional equations to the algebra, for example, 
to make @ associative. However, associated tasks typically share resources in 
ways that  affect the efficiency of the resulting algorithm. This lack of associativity 
motivates the introduction of ® which could otherwise be treated as iterated 
parallel addition. In practice, static computation of ® for n tasks takes constant 
time, whereas the corresponding iterated parallel addition is exponential. 

For sequential program execution we take T to be clock ticks, with + and 
O as addition on clock ticks, ® as ordinary multiplication, and max as the ordi- 
nary maximum. For PRAM executions take T to be functions from numbers of 
processors to clock ticks, with + and max as pointwise addition and maximum. 
Both these examples will be developed below. 

We are going to track costs of our programs using a monad in the style 
of [Wad92], though our monad will carry some additional structure. From the 
programmer's perspective, a monad is a type constructor M coupled with three 
operations: 

mmap : (0 --+ 0') -+ MO -+ MO' 
unit : 0 --+ MO 
join : M M O  --+ MO 

for any types O, 0 t. (We write mmap to distinguish this operation from the VEC 
combinator map.) Now, any monoid (T, +, O) generates a monad by 

MO = O x T  
mmap f (x,t) = ( f  x, t)  

unit  x = (x,O) 
jo in ( ( x , t ) , t ' )  = ( x , t  + t') . 

MO pairs the type O, indicating the shape of a term, with T, the type of the cost 
of computing the term. To these we can add some other operations: 

add : M O - - + T - - + M O  
add (x, t) t '  = (x, t + t ' )  

pre_iter : (0 --+ MO') --+ MO -+ MO' 
pre_iter f (x,t) = add ( f  x) t .  

When the monoid is that  of a cost algebra, then we use the parallel addition to 
define the operation 

capp : M(O --+ MO') --+ MO --+ MO' 
capp <f, t) <x, t'> = (fst ( f  x), (snd ( f  x)) + (t ® t')} 

which combines the costs associated with applications. 
A cost monad is a monad generated by a cost algebra. Note that  one could 

abstract away from the underlying cost algebra, just as monads abstract from 
monoids. The cost monads appearing in the rest of the paper are all represented 
in the SIZE language. 
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tycostM (D) = un 
tycostM(un) = un 
tycostM(OxO') = tycostM(O)xtycostM(O') 
tycostM(vec 0) = szxtycostM(0) 
tycostM (SZ) = sz 
tycostM (0 --+ 0') = tycostM ( 0) --+ M (  tycostM (0') ) 

cost(d) = {bang) 
cost(d) = )~'x, y./bang, binOpConst) 
cost (x) = (x, varConst) 
cost(Ax.t) = A'x.cost(t)  
cost(t t ') = capp cost(t) cost(t') 

where d is a datum constant 
where d is a binary datum operation 

cost(re¢ f .t) = cost(t)[(fst cost(t) ) / f]n[bang/ f] 
costiif t then t' else t") 

= add (szmax cost(t') cost(t")) (snd cost(t)) 
cost(ifs t then t' 

cost i length ) = 
cost (entry) = 
cost(pair) = 
cost(hd) = 

cost(tl) = 
cost(fst) = 
cost(snd) = 
cost(sing) = 
cost(cons) = 
cost(map) = 

cost(fold) = 

cost(iter) = 

cost (zi p) = 

else t")  
add (ifs (fst it)) then cost(t') else cost(t")) (snd cost(t)) 
A'x.(fst x, lengthConst) 
)~'x, y.(snd x, entryConst) 
~'x, y. ( (x, y) , pairConst) 
)~'x.isnd x~ hdConst) 
A'x.( i( fst x) - -1~ snd x), tlConst) 
A'x.(fst x, fstConst) 
)~'x.(snd x, sndConst) 
)~'x.((-1, x)~ singConst) 
A'x, y.i((fst y) + ~1, snd y), consConst) 
A'I, x.((fst x, fst ( f  (snd x))), (fst x) ®(snd ( f  (snd x)))) 
A'f,  x, y.iter (pre_iter (fst ( f  (sad y)))) (x, foldConst) (fst y) 
A'f,  x, y.iter (pre_iter f )  ix, iterConst) y 
.X'x, y.((fst x, (snd x, snd y)), zipConst) 

Fig. 2. Cost translations. 

We use the  following nota t ion  to  describe pairs in SIZE whose second element 
is the  0 of the cost algebra: 

{t}  = (t, o) 
Y z .  t = { ~ x . t }  . 

also, we may  wri te  ,Vx,  y . t  for A'x. iVy. t ,  and so on. 
We use the  cost monad  to suppor t  a syntax-di rec ted  t rans la t ion  from VEC to 

SIZE which describes the  shape and cost of VEC terms.  It is given in Figure 2. We 
may  write just  cost, suppressing the  subscript ,  when M is unders tood,  tycostM 
extends  to  type  environments  by applying it pointwise. One can show tha t  if 
F t- t : 0, then  

t ycos tM(F)  t- cOStM(t) : M ( t y c o s t M ( $ ) )  . 
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The outermost M in M(tycos tM (0)) reflects the cost of evaluating t. Other copies 
of M occur in the result type of functions, to reflect the cost of applying them. 
The other interesting type translation is of vectors, which yields a shape, given 
by a length of type sz, and a cost, the uniform cost of entries. 

The rationale for the costings are as follows. It costs nothing to evaluate 
a function, since it is a value. Costs of applications are obtained by com- 
bining costs of the function and argument using capp. Our cost model needs 
assistance with general recursions; the programmer must indicate the antic- 
ipated recursion depth n, using the following notation. Let t[t ' /x] ° = t and 
t[t ' /x] n = ( t[ t ' /x]n-1)[t ' /x] .  The cost translations of combinators typically refer 
to constants in T,  such as pairConst, that  vary with the choice of monad and 
assumptions about the underlying machine, as we shall now see. 

6 S e q u e n t i a l  cos t s  

Sequential executions are costed using the cost algebra (T, +, -0, +, *, max), 
where T = sz. We (somewhat arbitrarily) assign times to the various cost con- 
stants by counting the number of variables appearing in the cost definition, for 
example, varConst = - I  and foldConst = -4. 

Here are two examples of costing sequential programs. 

cost(+ 39 3) = capp (capp (&'x,y.(bang, ~1)) {bang}) {bang} => (bang, "1) . 

The first of the pair is the shape of the integer result, and the second is the time 
to compute it, exactly the cost of doing the addition. 

cost(fold + 0 [1,2,3,4])  ~ (bang,~15) . 

It costs -7 for building the vector: - I  for a singleton, plus three conses at -2 each. 
It costs -8 for doing the fold: -4 overhead (from foldConst) plus four additions 
at ~1 each. The result -15 is the sum of these two subtotals. 

7 P R A M  cos t s  

For the parallel execution of VEC programs, the carrier T of an associated cost 
algebra is a set of functions from parallel machine descriptions to times. Here we 
choose the PRAM model, so a parallel machine is fully described by a number 
of available processors. Therefore, T = sz --> sz represents t ime functions.  As 
mentioned, sequential addition is pointwise addition on time functions, and max 
is pointwise maximum. Parallel addition is more complex. First, we define an 
operation that  gives a time function for an optimal division of processors between 
two parallel tasks: 

( f  e0  g) p = min0<q<p {max { f  q,g ( p -  q)}} . 

But sequential execution of the tasks may be faster, so define 

( / G  g) p = m i n { ( / +  g) p , ( ]  Go g) p} • 
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We use ® when costing the evaluation of a pair, for instance, because the pair 
elements may be evaluated in parallel. Similarly, for an application, the operator  
and operand may be evaluated in parallel, so again ® is used. Note that  ® is not 
associative: to compute ( f  ® g) ® h, we consider the possibility of sequentially 
adding f and g in parallel with h, a possibility not addressed in computing 
f • (g e h). 

Parallel multiplication, ®, is used to obtain a time function for running sev- 
eral tasks in parallel, as in mapping a function across a vector. Parallel multi- 
plication ® is defined by 

(n ® f )  p = if ( n m o d p  = =  -0) 
then (n + p )  • ( f  -1) 
else (n + p ) .  ( f  - 1 ) +  ( f  ( p +  (n modp))) . 

The cost (n + p) • ( f  ~ 1) represents the cost of a sequential phase, while the 
rest of the cost, if any, comes from a parallel phase. In the sequential phase, we 
divide n tasks evenly among p processors, with perhaps some tasks left over. In 
the parallel phase, remaining tasks are divided among the processors. Phasing 
the computation into sequential and parallel parts is more efficient than simply 
rounding up the number of tasks n to a multiple of p. 

For parallel execution, the cost constants referred to in the cost translation 
become constant time functions. We use constant time functions because the op- 
erations whose costs mention such constants cannot be parallelized. For example, 
lengthConst = ,~p.-1 and foldConst = ,~p.-4. 

While folding cannot be parallelized in general, we can fold associative op- 
erations in parallel. We introduce a new combinator pfold : (0 --+ 0 --+ 0) --> 
vec 0 --+ 0 which satisfies 

pfold f [a] = [a] 
pfold f (h :: t) = f h (pfold f t) . 

If an operation f has unit b, then for any vector v, pfold f v and fold f b v have 
the same value. The pfold algorithm has sequential and parallel phases, as for 
mapping. Knowledge of shapes allows us to redistribute work among the proces- 
sors to increase efficiency, but an exhaustive search for the most efficient method 
would take too long. Instead, we adopt an algorithm, too complex to describe 
here, that  constrains the number of shapes in play at any time. This approach 
allows us to replace i terated parallel additions by parallel multiplications. 

Similarly, we introduce a term constructor that  parallelises the construction 
of vectors. If h : T and t : vec ~-, then pcons(h, t) : vec T is like cons h t but  has 
cost given by 

cost(pcons(h, t)) -- ((n, s), n ® f )  
where n = (length t) + -1 

(s, f )  = cost(h) . 

That  is, it represents the cost of loading the whole vector in a single, parallel 
operation. Note that  pcons is a term constructor, rather than a combinator, since 
otherwise the cost of constructing the tail would be computed as part  of the 
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cost of application. A consequence is that  analysing its cost is also significantly 
cheaper, since it avoids i terated parallel additions. 

With these additional constructs we can make useful costings of linear alge- 
bra operations, such as matrix multiplication. In Figure 3, we give the costs of 
multiplying an m x4 matr ix by a 4 x 1 vector on differing numbers of processors. 
The multiplication uses pfold for the inner product,  which is mapped across the 
rows of the matrix. As expected of a PRAM model, the cost decreases uniformly 
as the number of processors increases, with little increase in the total  number 
of cycles. More interesting is the stability of costs as the number of rows varies. 
With 8 processors, many costing algorithms would treat  33 rows the same way 
as 40 (the next multiple of 8), resulting in a significant increase in costs. Our 
algorithm avoids this approach, with the corresponding savings. These effects 
may not be notable where the number of rows is very large compared to the 
number of processors, but for programs consisting of many small subtasks, the 
cumulative savings may be significant. 

32 
33 

m 40 
32 
33 
40 

1 
1357 
1399 
1693 
1357 
1399 
1693 

2 
682 
708 
850 
1364 
1416 
1700 

3 
472 
472 
580 
1416 
1416 
1740 

processors 
4 5 6 

345 287 243 
364 303 245 
429 345 303 
1380 1435 1458 
1456 1515 1470 
1716 1725 1818 

7 
219 
219 
261 
1533 
1533 
1827 

8 
177 
186 
219 
1416 
1488 
1752 

execution times 

total cycles 

Fig. 3. Statically-computed costs for multiplying an m x 4 matrix by a 4 x 1 vector. 

8 Relat ionship to other work 

Any at tempt  to develop a parallel cost calculus is complicated by the absence 
of a generally accepted underlying cost model, with systems such as the PRAM 
[FW78] and BSP [Val90] offering competing tradeoffs between conceptual tracta- 
bility and reflectivity of realistic machines. Previous work has reflected this di- 
versity and has also largely been conducted in a relatively informal setting, 
particularly with respect to the central questions of composition and nesting of 
parallel operations. 

Skillicorn presents a cost calculus for a parallelized list BMF, using the notion 
of a "standard topology" for a datatype to describe the minimal connectivity 
required for efficient support of each primitive [Ski94]. Shape information is 
considered but  the costing of, for example, folding is tackled informally according 
to the shape behaviour of the accompanying operation. 

NESL [Ble96] has precisely developed mechanisms for cost composition in a 
"work" and "depth" circuit-complexity model, but  severely restricts nesting since 
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only mapping is allowed at outer levels, with folded computations limited to a 
small number of special cases. Blelloch and Greiner's profiling semantics for Core- 
NESL [BG96] essentially records work and space usage while fully evaluating 
programs. By contrast, our cost translation produces a program which contains 
just enough summary information about the source in order to calculate its costs, 
as a kind of abstract interpretation. Further, the Core-NESL profiling semantics 
does not make any decisions about how programs are to be parallelized. We base 
our costs on optimal allocations of tasks to processors, which information can 
be used by a parallelizing compiler. While the DAG's generated by the NESL 
semantics suggest a task schedule, they do not indicate where the tasks are to 
execute. 

A wide survey of other related work is presented by To [To95], most of it less 
formal than what we propose. The "oblivious" PRAM programs and compilation 
techniques of [ZL94] are related to our work on shapely programs by their use 
of static analysis. In the sequential case, [Weg75] and [M6t88] are examples of 
syntax-directed cost analyses, closely related to our own work. Both [HC88] and 
[FSZ91] describe average-case analyses. However, our work is distinguished by its 
exploitation of source program structure, concise information about bulk data 
structures and factoring out of the cost algebra. Note that our work on shape is 
unrelated to the shape types of Fradet and Le M6tayer [FM97], which are used 
to represent graphs for modelling pointers. 

9 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

VEC supports a new account of arrays that combines the benefits of the list 
programming style with the efficiency of array programming, by means of static 
shape analysis. This paper represents the first attempt (known to us) to produce 
a formal cost calculus for a parallel programming language of nested arrays that 
automatically derives costs from program source. Its power derives from shape 
analysis, and is expressed using the now familiar technique of monadic program- 
ming. By designing cost algebras with varying notions of parallel addition and 
parallel multiplication, we can straightforwardly generate new cost monads to 
reflect different models of parallel execution. 

Future work should proceed in four main directions. First, we will improve 
the existing cost calculus, both to make explicit the task schedules implicit in 
the costing, and to optimize the speed of the analysis. Currently, parallel addi- 
tion takes O(p) time, where p is a number of processors; we think we can reduce 
this to O(log p) or less. Second, the accuracy of the existing cost model must 
be tested. We plan to compile VEC programs into FORK95 programs [KS95]. 
This language is designed to reflect the PRAIV[ model, and an instrumented sim- 
ulator is already available. Third, the computational model should be modified 
to recognize communication costs. Fourth, we are exploiting VEC features in an 
Algol-like language, called Fish, which also supports imperative features. 
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