
Parallel Distributed Programming with
HaskellWPVM

Noel Winstanley and John O'Donnell

University of Glasgow

Abst rac t . This paper presents a methodology to transform a pure func-
tional specification into a distributed message-passing program via equa-
tional reasoning. The methodology uses a formal model of a message
passing system. This abstract system can be implemented using PVM
or MPI, and thus executable programs produced.

] I n t r o d u c t i o n

This paper presents a methodology to transform a specification in Haskell, a
purely functional language, into a distributed message-passing program via equa-
tional reasoning. This methodology has been applied to small examples and the
resulting parallel programs proved correct and executed successfully on a net-
work of workstations.

The methodology has two main stages. In a lazy functional language the
evaluation order is implicit, defined by data dependencies between the values
calculated. This is unsuitable for a message passing implementation, so we first
create an explicit order of execution. The second stage of the transformation pro-
duces parallelism by introducing message-passing actions into the intermediate
program.

An often-cited advantage of functional programming languages is their sup-
port for formal equational reasoning. Communications libraries such as PVM [3]
and MPI [2] consist of large quantities of C code, thus it is impossible to reason
formally about them. We use an abstract message passing model, characterised
by a set of laws. Program equivalence proofs are then secure in the context of this
model. The message passing model is made concrete by implementing using a
communication library; we assume this implementation has the same semantics
as the model.

Typically, an implementation of the communication model will have con-
straints in its use. For instance, in our implementation using PVM only basic
types can be used to construct messages. This means that functions cannot
be communicated between processes, which is inconvenient for a language with
higher-order functions. We can work around this by transmitting symbolic rep-
resentations of functions: these are encoded and decoded by the communicating
tasks.

Due to limited space, in this paper we concentrate on some of the more inter-
esting features of the methodology. The rest of the paper is structured as follows:
Section 2 presents the methodology in more detail, execution order is examined

671

in Section 3, and the message passing model is described in Section 4. We con-
clude in Section 5. We assume some familiarity with functional programming,
i.e. as described by Bird and Wadler [1], and with the concrete syntax and use
of Haskell [4].

2 M e t h o d o l o g y

The methodology transforms a functional specification into a parallel program
which can be implemented using a message-passing library. The main stages of
the methodology are as follows -

Calcula te Dependencies Parallelism may be introduced where computations
can be executed independently of one another. This can be found by analysing
the dependencies of the specification (Section 3). Some algorithms have more
capacity for parallelism than others; if little potential is found one should
consider expressing the algorithm differently.

Order the Specification The specification should be transformed into a pro-
gram with explicit sequencing of calculations,(Theorem. 5). An explicit ex-
ecution order allows communication actions to be introduced; optimising
re-arrangements of the order can also be made.

In t roduce Tasks and Commun ica t i on Decisions must be made as to which
expressions to evaluate as new tasks. We believe that Haskell+PVM is best
suited to large-grain parallelism, due to the computational cost of creat-
ing tasks and the latency of messages in a distributed memory system. In
general the best expressions to parallelise are those at the highest level of
the program. Tasks are introduced using equivalences between actions which
produce local and distributed computations (Equations 12,13).

Opt imise Reordering the execution of the program may increase parallelism.
For example, operations to create new tasks should be executed as early
as possible. We assume that this is an expensive operation; early creation
allows more time for the tasks to be initialised before they are required.
Rearrangements of code are made using dependency preserving transforma-
tions (Equations 1-6) and the laws of the message passing model (Section 4).
This ensures that the resulting program has the same semantics.

I m p l e m e n t using a Message Passing Library The comunication primitives
of the model must be translated into equivalent operations in the implemen-
tation of the model. Further optimisation is possible by replacing some model
operations with different system calls. For instance, if the same message is
sent to a set of tasks, a sequence of send operations can be replaced by a
more efficient multicast.

When examining a sizeable program, there is a tradeoff between the complexity
produced and the useful parallelism exposed. A limit may have to be chosen
below which there is assumed to be no code worth parallelising, due to small
granularity.

672

3 D e p e n d e n c y a n d E v a l u a t i o n O r d e r

The outcome of a computation may rely upon computations performed previ-
ously. This constrains the order of execution, and thus limits the ways an al-
gorithm may be parallelised. These constraints may be found using dependency
analysis. Assuming f is strict, in the following example x and y are independent,
while f x y depends on both x and y.

let x = e

y=e'

infxy

We define the following relations on the dependencies between two computations.

Definit ion. a :>>: b ('b depends on a'). The outcome of b relies upon the eval-
uation of a. :>>:is transitive, but not reflexive, a:ll: b ('a is independent of b').
The evaluation of a and b are totally independent of one another. :11: is reflexive,
but not transitive. :>>:and :ll: are related by -~(a:>>:b) A -~(b:>>:a) ¢=~ a:ll:b.

Computations may depend upon one another in two distinct ways - by a value
passed explicitly, or by a change in shared state. We can subdivide :>>:into
:>>:v for a value dependency and :>>:s for a state dependency; likewise, :11: sep-
arates into :ll:v and :ll:s . The following now holds

mA :11: m B ~ mA :ll:s m B A mA :tt:v mB
mA :>>: m B ¢=~ mA :>>:smB Y mA :>>:v mB

3.1 Ordering Combinators

All computations that a computation c is dependent upon must be completed
before c can be executed. An explicit execution order which captures this can
be specified using the following combinators.

Definit ion. SEQ takes two computations and executes them sequentially, i.e.
a SEQb evaluates a to completion, then b. INDtakes two computations and
executes them in an undefined order. This may be in sequence, in parallel or
concurrently.

Theorem 1 : E x e c u t i o n O r d e r . An execution order for a sequence of compu-
tations is valid if, for all computations a,b,x in the sequence, the following is
true.

a:>>:b~aSEQb or aSEQxSEQb where~b:>>:xA-,x:>>:a
a:ll:b ~ a I NDb

A sequence of computations may be reordered and still give a valid result. This
is useful, as alternative orderings may produce more parallelism. The following
theorem gives transformations that can be used to reorder a sequence.

673

T h e o r e m 2 : T r a n s f o r m a t i o n o f SEQ a n d IND. Let .£4[a~ denote the se-
mantics of computation a. We define a transformation relation ~ such that
for computations a,b, a ~ b =~ M~a~ = Jt4~ The following are valid transforma-
tions - -

a INDb ¢ ~ b INDa . (1)

a:]]:b ~ a S E Q b ~=~ b S E Q a . (2)

a:]]:b ~ a S E Q b ¢=~ a INDb . (3)

(a SEQ b) IND c ~ a SEQ (b IND c) . (4)

(a SEQ b) IND c ==~ (a IND c) SEQ b . (5)

(aSEQb)IND(cSEQd) ~ (aINDc)SEQ(bINDd) . (6)

Note that the first three transformations are reversible, while the others are one-
way, due to a loss of information. Transformation (6) extends for larger combi-
nations of SEQ and IND.

3.2 M o n a d s

Arbitrarily executing computations which produce side-effects breaks referential
transparency. This can be prevented by defining an explicit order of execution for
these computations. In Haskell, this is done using monads [51. Haskell provides
a convenient way to sequence monadic computations using 'do notation'. This is
a language construct which orders a sequence of computations, binding results
to variables and returning the the last computation's result.

T h e o r e m 3 : E q u i v a l e n c e o f Do a n d SEQ. A do statement is equivalent to
a sequence of computations combined with the SEQ combinator. The conver-
sion between the two is purely syntactic. Do statements have nothing akin to the
IND combinator; these must be transformed to SEQ combinators before convert-
ing to do statement syntax.

Thus computations in a do statement may be reordered using the ~ relation:
provided the same value is returned by the do statement, the semantics remain
the same. Associated with monads are two operations - -

return :: a -> 10 al run :: 10 a -> a

r e t u r n takes a value and returns a computation, which just produces that
value with no side effects, run executes a monadic computation, returning the
value the computation produces. This operation should be used with care, as if
misused can undermine referential transparency. However, we consider it safe
within the context it is used in the methodology. The following laws relate
r e t u r n , run and do statements and can be used to remove from code the run
operations introduced by the methodology.

1 I0 a is the type of a computation which will return a value of type a when executed.

674

L a w 4 : M o n a d a n d D o Laws .

run . r turn = i d (7)

(r e t u r n . run) mA = mA (8)

mA = do {mA} (9)

do {mA (run roB)}----do {v <- mB; mA v} (I0)

do {v <- do {reAl roB}; mC v} = do {mA; v <- roB; mC v} (11)

3.3 L e t E x p r e s s i o n s a n d D o S t a t e m e n t s

Let expressions are a fundamen ta l feature of Haskell. The following theorem
shows how they can be t ransformed to do s ta tements . Thus we give an explicit
order of execut ion to a funct ional program. This allows side-effecting computa-
t ions (such as message passing) to be added to the program wi thout breaking
referential t ransparency.

T h e o r e m 5 : L e t t o Do . A let expression may be transformed into an do state-
ment with the same semantics, provided the let expression contains no mutually
recursive values. 2 During this transformation variables may have to be renamed
whenever name spaces are combined.

Proof of Theorem 5, by induction.
Base Case : A let expression of form l e t v = exp in f v

=let v = (run . r e t u r n) exp in f v
= l e t v = (run . r e t u r n) exp in (run . r e t u r n) (f v)
----(run . r e t u r n) (f ((run . r e t u rn) exp))
----run (do {return (f ((run . return) exp))})

----run (do {v <- return exp; return (f v)})

(r)
(r)

(9)
(l o)

Induc t ive Step : A let expression of form 3
let v = exp in let v' = exp' in ~ v

----let v = (run . return) exp in let v' = exp' in E v (7)

=let v = (run . return) exp in

run . return)(let v' = exp' in ~ v) (7)

--= (run . return) (let v' = exp' in ~ ((ran . return) exp))

= run (do { r e tu rn (l e t v ' = exp' i n ~ ((run . r e t u r n) exp))} (9)
= run (do {v <- return exp; return (let v' = exp' in E v)}) (10)

----run (do {v <- return exp;

r e t u r n (run (do {v' <- r e t u r n exp ' ; r e t u r n (C v)}))} (ind. hyp.)
=run (do {v <- return exp; v' <- return exp'; return (C v)}) (8,11)

[]

2 A mutually recursive definition is indicated by two values such that a :>>: b A b :>>: a
a Any non-mutually recursive let expression can be expressed in this form

675

T r a n s f o r m i n g D o t o Le t A similar transformation can be made from a do
statement to a let expression. However, a let expression's execution can only be
ordered by data dependencies: thus a complete transformation is only possible
when every state dependency in the do statement is shadowed by a similar value
dependency.

4 A Formal Mode l of a Message Passing Sys tem

In a distributed memory implementation of a Haskell specification, values must
be communicated explicitly between computations running as separate tasks.
This is because there is no common heap underlying the entire program. This
section presents a simple model of a message passing system.

A task is a distinct unit of work within the system. A task may create, destroy
and communicate with other tasks. Let T A S K be the set of tasks in the system,
and Tl[C~, where T1 E T A S K denote that T1 performs the computation c at some
time during its existence. Similarly, T[c~ denotes the i th time that computation
c has been performed by T. The system call myTid returns an identifier, of type
T I D , to the calling task. The following law states that we require that this
identifier is unique for each task within the system.
L a w 6 : T a s k E q u a l i t y .

VT1, T2 e T A S K . Tl~myTid~ = T2~nyTid~ ¢e~ T1 = T2 •

It follows from Law 6 that a value of type T I D can be used to select a task from
T A S K . Let TASK[tio~ select an element from T A S K such that - -

Vtl G T I D S . TASK[tl][t2 <- myTid~ ¢:~ t~ = t2 •

4.1 T a s k C r e a t i o n

The operation t a s k : : a -> I0 TID takes an expression, and creates a task
to evaluate it, in parallel to the main program, t a s k returns the identifier of
the newly created task. If the expression to evaluate is a function, the new task
will expect to receive messages, from the parent, containing arguments. After
evaluating the expression, the task sends a result back to the parent. There are
different ways to define the behaviour of t a s k . Does the task compute once and
then die, or does it persist and live to compute another day? For simplicity,
we choose a 'one shot' task, which will evaluate once, and then terminate. The
following lemma states that no computation can be performed by a task until it
has been created.
L e m m a 7 : Task E x i s t e n c e .

VT E T A S K , x : : a . T ~ <- t a s k c~:>>:sTASK[t]~x~ .

The following law gives the behaviour of the system call pa ren t . When called
by a child task, it returns the identifier of the task which created it.
L a w 8 : P a r e n t a n d Chi ld .

VT e T A S K , x : : a . 7~t <- t a s k x~ ==~ T~myTid~ = TdSK[t]~parent~ .

676

4.2 C o m m u n i c a t i o n

Message passing is performed using the operations r e c e i v e : : TID -> I0 a
and send : : TID -> a -> Ifl () . send transfers a message from one task to
the message buffer of another, r e c e i v e searches the message buffer for the first
message from the specified task. The ordering of messages in a task 's buffer is
defined in the following law.

L a w 9 : M e s s a g e O r d e r i n g . If m' is the i th message sent by T1 to T2 and m "
is the i th message received by T2 from T1 then m ' = m".

If no messages from TASK[t1] are present in the message buffer, r e c e i v e tl
blocks until a message becomes available. Thus there is a state dependency
between r e c e i v e and send, as given in the next lemma.
L e m m a 10 : R e c e i v e D e p e n d e n c y .

Vtl , t2 e T I D S . TASK[t l] [send t2 m~ :>>:sTASK[t2][receive t]] ~ .

4.3 Task Introduction

We now present t ransformations for the introduction of message passing opera-
tions into a Haskell program.

exp ~ r u n (do {t <- t a s k exp; r e c e i v e t }) (12)
,, > (do{ t <- t a s k f ; . end t rec iw t }) (1 3)

These laws state tha t an expression or function can be transformed into a task
which evaluates separately. A function's arguments must be sent to the new
task before it can return a result. The transformation given is for an uncurried
function; a curried function can be parallelised in a similar way, or by using a
send operat ion for each argument.

4.4 Dialogues

A dialogue is a two-way communication between two tasks, and is comprised of
two coupled s t reams of requests to the system. A process may simultaneously
hold dialogues with many different processes. The interleaving of dialogues is
constrained only by da ta dependencies between dialogues.

The order in which one dialogue may be executed is constrained by the data
dependencies of the messages passed between the two tasks. Nonetheless, reorder-
ing a dialogue may enable further parallelisation. Provided these dependencies
are satisfied, the dialogue can be re-ordered in any way.

T h e o r e m l l : D i a l o g u e R e o r d e r i n g . Two tasks, T1, T2 in a dialogue pro-
duce streams SI,S2. Let cl, c2 be the computations executed by T1 and T2 to

t produce these streams of requests. Cl and c2 can be transformed, using ~ , thus
reordering the system requests in the dialogue, producing new streams S~,S~ The
dialogue has the same semantics if, given Cl is reordered so that the ith request
in $1 is now executed as the j t h request in S~, c2 is reordered likewise.

677

For optimisation it is useful to know the dependencies between message pass-
ing operations. The following law only reasons about state dependencies; da ta
dependencies must also be considered.

L a w 1 2 : D e p e n d e n c i e s b e t w e e n O p e r a t i o n s .

x l ,x2 : : a . task xl :ll:s task x2 . (14)
Vh, t2 6 T I D S . tl # t2

=,,=s m }4 (15)
Vtl , t2 E T I D S . t l # t2

{receive tl I send t] m } :l]:S {receive t2 I send t2 m } . (16)

5 C o n c l u s i o n

We have presented a methodology for formally deriving a message passing pro-
gram from a pure Haskell specification. Sections of this methodology are me-
chanical in nature, and could be supported by transformation tools. Using this
methodology, we have derived small parallel programs from specifications. The
message passing model has been implemented using PVM; with this the derived
programs have been executed on a group of workstations. A direction for future
work is to extend this methodology to other communication models.

R e f e r e n c e s

1. R. Bird and P. Wadler. Introduction to Functional Programming. International
Series in Computer Science. Prentice-Hall, 1987.

2. Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker. An introduction
to the MPI standard. Technical Report UT-CS-95-274, Department of Computer
Science, University of Tennessee, January 1995. Tue, 1 Apr 97 18:13:17 GMT.

3. A1 Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. PVM 3 Users Guide and Re]erence manual. Oak Ridge National
Laboratory, Oak Ridge, Tennessee 3~831, May 94.

4. J. Peterson[editor], K. Hammond[editor], L. Augustsson, B. Boutel, W. Burton,
J. Fasel, A. Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, S. Peyton Jones,
A. Reid, and P. Wadler. Haskell 1.3, A non-strict, purely functional language. Re-
port YALEU / DCS / RR-1106, Department of Computer Science, Yale University,
May 1996.

5. P. Wadler. The essence of functional programming (invited talk). In Conference
record of the Nineteenth Annual A CM SIGPLA N-SIG A CT Symposium on Principles
of Programming Languages: papers presented at the symposium, Albuquerque, New
Mexico, January 19-22, 1992, pages 1-14, New York, NY, USA, 1992. ACM Press.

4 The notation {... I "" ') indicates that the law is true for any alternative between
the braces.

