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Abst rac t .  This paper presents a methodology to transform a pure func- 
tional specification into a distributed message-passing program via equa- 
tional reasoning. The methodology uses a formal model of a message 
passing system. This abstract system can be implemented using PVM 
or MPI, and thus executable programs produced. 

] I n t r o d u c t i o n  

This paper presents a methodology to transform a specification in Haskell, a 
purely functional language, into a distributed message-passing program via equa- 
tional reasoning. This methodology has been applied to small examples and the 
resulting parallel programs proved correct and executed successfully on a net- 
work of workstations. 

The methodology has two main stages. In a lazy functional language the 
evaluation order is implicit, defined by data dependencies between the values 
calculated. This is unsuitable for a message passing implementation, so we first 
create an explicit order of execution. The second stage of the transformation pro- 
duces parallelism by introducing message-passing actions into the intermediate 
program. 

An often-cited advantage of functional programming languages is their sup- 
port  for formal equational reasoning. Communications libraries such as PVM [3] 
and MPI [2] consist of large quantities of C code, thus it is impossible to reason 
formally about  them. We use an abstract message passing model, characterised 
by a set of laws. Program equivalence proofs are then secure in the context of this 
model. The message passing model is made concrete by implementing using a 
communication library; we assume this implementation has the same semantics 
as the model. 

Typically, an implementation of the communication model will have con- 
straints in its use. For instance, in our implementation using PVM only basic 
types can be used to construct messages. This means that  functions cannot 
be communicated between processes, which is inconvenient for a language with 
higher-order functions. We can work around this by transmitting symbolic rep- 
resentations of functions: these are encoded and decoded by the communicating 
tasks. 

Due to limited space, in this paper we concentrate on some of the more inter- 
esting features of the methodology. The rest of the paper is structured as follows: 
Section 2 presents the methodology in more detail, execution order is examined 
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in Section 3, and the message passing model is described in Section 4. We con- 
clude in Section 5. We assume some familiarity with functional programming, 
i.e. as described by Bird and Wadler [1], and with the concrete syntax and use 
of Haskell [4]. 

2 M e t h o d o l o g y  

The methodology transforms a functional specification into a parallel program 
which can be implemented using a message-passing library. The main stages of 
the methodology are as follows - 

Calcula te  Dependencies  Parallelism may be introduced where computations 
can be executed independently of one another. This can be found by analysing 
the dependencies of the specification (Section 3). Some algorithms have more 
capacity for parallelism than others; if little potential is found one should 
consider expressing the algorithm differently. 

Order  the  Specification The specification should be transformed into a pro- 
gram with explicit sequencing of calculations,(Theorem. 5). An explicit ex- 
ecution order allows communication actions to be introduced; optimising 
re-arrangements of the order can also be made. 

In t roduce  Tasks and  Commun ica t i on  Decisions must be made as to which 
expressions to evaluate as new tasks. We believe that Haskell+PVM is best 
suited to large-grain parallelism, due to the computational cost of creat- 
ing tasks and the latency of messages in a distributed memory system. In 
general the best expressions to parallelise are those at the highest level of 
the program. Tasks are introduced using equivalences between actions which 
produce local and distributed computations (Equations 12,13). 

Opt imise  Reordering the execution of the program may increase parallelism. 
For example, operations to create new tasks should be executed as early 
as possible. We assume that this is an expensive operation; early creation 
allows more time for the tasks to be initialised before they are required. 
Rearrangements of code are made using dependency preserving transforma- 
tions (Equations 1-6) and the laws of the message passing model (Section 4). 
This ensures that the resulting program has the same semantics. 

I m p l e m e n t  using a Message Passing Library  The comunication primitives 
of the model must be translated into equivalent operations in the implemen- 
tation of the model. Further optimisation is possible by replacing some model 
operations with different system calls. For instance, if the same message is 
sent to a set of tasks, a sequence of send operations can be replaced by a 
more efficient multicast. 

When examining a sizeable program, there is a tradeoff between the complexity 
produced and the useful parallelism exposed. A limit may have to be chosen 
below which there is assumed to be no code worth parallelising, due to small 
granularity. 
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3 D e p e n d e n c y  a n d  E v a l u a t i o n  O r d e r  

The outcome of a computation may rely upon computations performed previ- 
ously. This constrains the order of execution, and thus limits the ways an al- 
gorithm may be parallelised. These constraints may be found using dependency 
analysis. Assuming f is strict, in the following example x and y are independent, 
while f x y depends on both x and y. 

let x = e 

y=e' 

infxy 

We define the following relations on the dependencies between two computations. 

Definit ion.  a :>>: b ('b depends on a'). The outcome of b relies upon the eval- 
uation of a. :>>:is transitive, but  not reflexive, a:ll: b ('a is independent of b'). 
The evaluation of a and b are totally independent of one another. :11: is reflexive, 
but not transitive. :>>:and :ll: are related by -~(a:>>:b) A -~(b:>>:a) ¢=~ a:ll:b. 

Computations may depend upon one another in two distinct ways - by a value 
passed explicitly, or by a change in shared state. We can subdivide :>>:into 
:>>:v for a value dependency and :>>:s for a state dependency; likewise, :11: sep- 
arates into :ll:v and :ll:s . The following now holds 

mA :11: m B  ~ mA :ll:s m B A  mA :tt:v mB 
mA :>>: m B  ¢=~ mA :>>:smB Y mA :>>:v mB 

3.1 Ordering Combinators  

All computations that  a computation c is dependent upon must be completed 
before c can be executed. An explicit execution order which captures this can 
be specified using the following combinators. 

Definit ion.  SEQ takes two computations and executes them sequentially, i.e. 
a SEQb evaluates a to completion, then b. INDtakes two computations and 
executes them in an undefined order. This may be in sequence, in parallel or 
concurrently. 

Theorem 1 : E x e c u t i o n  O r d e r .  An execution order for a sequence of compu- 
tations is valid if, for all computations a,b,x in the sequence, the following is 
true. 

a:>>:b~aSEQb or aSEQxSEQb where~b:>>:xA-,x:>>:a 
a:ll:b ~ a I NDb  

A sequence of computations may be reordered and still give a valid result. This 
is useful, as alternative orderings may produce more parallelism. The following 
theorem gives transformations that  can be used to reorder a sequence. 
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T h e o r e m  2 : T r a n s f o r m a t i o n  o f  SEQ a n d  IND.  Let .£4[a~ denote the se- 
mantics of computation a. We define a transformation relation ~ such that 
for computations a,b, a ~ b  =~ M~a~ = Jt4~ The following are valid transforma- 
tions - -  

a INDb ¢ ~  b INDa  . (1) 

a:]]:b ~ a S E Q b  ~=~ b S E Q a  . (2) 

a:]]:b ~ a S E Q b  ¢=~ a INDb . (3) 

(a SEQ b) IND c ~ a SEQ (b IND c) . (4) 

(a SEQ b) IND c ==~ (a IND c) SEQ b . (5) 

(aSEQb)IND(cSEQd)  ~ (aINDc)SEQ(bINDd)  . (6) 

Note that the first three transformations are reversible, while the others are one- 
way, due to a loss of information. Transformation (6) extends for larger combi- 
nations of SEQ and IND. 

3.2 M o n a d s  

Arbitrarily executing computations which produce side-effects breaks referential 
transparency. This can be prevented by defining an explicit order of execution for 
these computations. In Haskell, this is done using monads [51. Haskell provides 
a convenient way to sequence monadic computations using 'do notation'.  This is 
a language construct which orders a sequence of computations, binding results 
to variables and returning the the last computation's result. 

T h e o r e m 3  : E q u i v a l e n c e  o f  Do  a n d  SEQ.  A do statement is equivalent to 
a sequence of computations combined with the SEQ combinator. The conver- 
sion between the two is purely syntactic. Do statements have nothing akin to the 
IND combinator; these must be transformed to SEQ combinators before convert- 
ing to do statement syntax. 

Thus computations in a do statement may be reordered using the ~ relation: 
provided the same value is returned by the do statement, the semantics remain 
the same. Associated with monads are two operations - -  

return :: a -> 10 al run :: 10 a -> a 

r e t u r n  takes a value and returns a computation, which just produces that  
value with no side effects, run  executes a monadic computation, returning the 
value the computation produces. This operation should be used with care, as if 
misused can undermine referential transparency. However, we consider it safe 
within the context it is used in the methodology. The following laws relate 
r e t u r n ,  run  and do statements and can be used to remove from code the run  
operations introduced by the methodology. 

1 I0 a is the type of a computation which will return a value of type a when executed. 
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L a w  4 : M o n a d  a n d  D o  Laws .  

run  . r turn = i d  (7)  

( r e t u r n  . run) mA = mA (8) 

mA = do {mA} (9)  

do {mA (run roB)}----do {v <- mB; mA v} (I0) 

do {v <- do {reAl roB}; mC v} = do {mA; v <- roB; mC v} (11) 

3.3  L e t  E x p r e s s i o n s  a n d  D o  S t a t e m e n t s  

Let expressions are a fundamen ta l  feature of Haskell. The  following theorem 
shows how they  can be t ransformed to do s ta tements .  Thus  we give an  explicit 
order of execut ion to a funct ional  program. This  allows side-effecting computa-  
t ions  (such as message passing) to be added to the program wi thout  breaking 
referential  t ransparency.  

T h e o r e m  5 : L e t  t o  Do .  A let expression may be transformed into an do state- 
ment with the same semantics, provided the let expression contains no mutually 
recursive values. 2 During this transformation variables may have to be renamed 
whenever name spaces are combined. 

Proof of Theorem 5, by induction. 
Base Case : A let expression of form l e t  v = exp in  f v 

=let v = (run . r e t u r n )  exp in  f v 
= l e t  v = (run . r e t u r n )  exp in  (run . r e t u r n )  (f  v) 
----(run . r e t u r n ) ( f  ( ( run  . r e t u rn )  exp)) 
----run (do {return (f ((run . return) exp))}) 

----run (do {v <- return exp; return (f v)}) 

(r) 
(r) 

(9)  
( l o )  

Induc t ive  Step : A let expression of form 3 
let v = exp in let v' = exp' in ~ v 

----let v = (run . return) exp in let v' = exp' in E v (7) 

=let v = (run . return) exp in 

run . return)(let v' = exp' in ~ v) (7) 

--= (run . return) (let v' = exp' in ~ ((ran . return) exp)) 

= run (do { r e tu rn  ( l e t  v '  = exp' i n  ~ ( ( run  . r e t u r n )  exp))} (9) 
= run (do {v <- return exp; return (let v' = exp' in E v)}) (10) 

----run (do {v <- return exp; 

r e t u r n  (run (do {v' <- r e t u r n  exp ' ;  r e t u r n  (C v)}))}  (ind. hyp.) 
=run (do {v <- return exp; v' <- return exp'; return (C v)}) (8,11) 

[] 

2 A mutually recursive definition is indicated by two values such that a :>>: b A b :>>: a 
a Any non-mutually recursive let expression can be expressed in this form 
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T r a n s f o r m i n g  D o  t o  Le t  A similar transformation can be made from a do 
statement to a let expression. However, a let expression's execution can only be 
ordered by data  dependencies: thus a complete transformation is only possible 
when every state dependency in the do statement is shadowed by a similar value 
dependency. 

4 A Formal Mode l  of  a Message Passing Sys tem 

In a distributed memory implementation of a Haskell specification, values must 
be communicated explicitly between computations running as separate tasks. 
This is because there is no common heap underlying the entire program. This 
section presents a simple model of a message passing system. 

A task is a distinct unit of work within the system. A task may create, destroy 
and communicate with other tasks. Let T A S K  be the set of tasks in the system, 
and Tl[C~, where T1 E T A S K  denote that  T1 performs the computation c at some 
time during its existence. Similarly, T[c~ denotes the i th time that  computation 
c has been performed by T. The system call myTid returns an identifier, of type 
T I D ,  to the calling task. The following law states that  we require that  this 
identifier is unique for each task within the system. 
L a w  6 : T a s k  E q u a l i t y .  

VT1, T2 e T A S K .  Tl~myTid~ = T2~nyTid~ ¢e~ T1 = T2 • 

It follows from Law 6 that  a value of type T I D  can be used to select a task from 
T A S K .  Let TASK[tio~ select an element from T A S K  such that  - -  

Vtl G T I D S .  TASK[tl][t2 <- myTid~ ¢:~ t~ = t2 • 

4.1 T a s k  C r e a t i o n  

The operation t a s k  : : a -> I0 TID takes an expression, and creates a task 
to evaluate it, in parallel to the main program, t a s k  returns the identifier of 
the newly created task. If the expression to evaluate is a function, the new task 
will expect to receive messages, from the parent, containing arguments. After 
evaluating the expression, the task sends a result back to the parent. There are 
different ways to define the behaviour of t a s k .  Does the task compute once and 
then die, or does it persist and live to compute another day? For simplicity, 
we choose a 'one shot' task, which will evaluate once, and then terminate. The 
following lemma states that  no computation can be performed by a task until it 
has been created. 
L e m m a 7  : Task  E x i s t e n c e .  

VT E T A S K ,  x : :  a .  T ~  <- t a s k  c~:>>:sTASK[t]~x~ . 

The following law gives the behaviour of the system call pa ren t .  When called 
by a child task, it returns the identifier of the task which created it. 
L a w  8 : P a r e n t  a n d  Chi ld .  

VT e T A S K ,  x : :  a .  7~t <- t a s k  x~ ==~ T~myTid~ = TdSK[t]~parent~ . 
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4.2 C o m m u n i c a t i o n  

Message passing is performed using the operations r e c e i v e  : : TID -> I0 a 
and send : : TID -> a -> Ifl ( ) .  send transfers a message from one task to 
the message buffer of another, r e c e i v e  searches the message buffer for the first 
message from the specified task. The ordering of messages in a task 's  buffer is 
defined in the following law. 

L a w  9 : M e s s a g e  O r d e r i n g .  If  m' is the i th message sent by T1 to T2 and m "  
is the i th message received by T2 from T1 then m '  = m".  

If no messages from TASK[t1] are present in the message buffer, r e c e i v e  tl 
blocks until a message becomes available. Thus there is a state dependency 
between r e c e i v e  and send, as given in the next lemma. 
L e m m a  10 : R e c e i v e  D e p e n d e n c y .  

Vtl , t2 e T I D S  . TASK[t l ] [ send  t2 m~ :>>:sTASK[t2][receive  t]] ~ . 

4.3 Task Introduction 

We now present t ransformations for the introduction of message passing opera- 
tions into a Haskell program. 

exp ~ r u n  (do {t  <- t a s k  exp; r e c e i v e  t } )  (12) 
,, > (do{ t  <-  t a s k  f ;  . end t rec iw t } ) ( 1 3 )  

These laws state tha t  an expression or function can be transformed into a task 
which evaluates separately. A function's arguments must be sent to the new 
task before it can return a result. The transformation given is for an uncurried 
function; a curried function can be parallelised in a similar way, or by using a 
send operat ion for each argument.  

4.4 Dialogues 

A dialogue is a two-way communication between two tasks, and is comprised of 
two coupled s t reams of requests to the system. A process may simultaneously 
hold dialogues with many  different processes. The interleaving of dialogues is 
constrained only by da ta  dependencies between dialogues. 

The order in which one dialogue may  be executed is constrained by the data  
dependencies of the messages passed between the two tasks. Nonetheless, reorder- 
ing a dialogue may  enable further parallelisation. Provided these dependencies 
are satisfied, the dialogue can be re-ordered in any way. 

T h e o r e m  l l  : D i a l o g u e  R e o r d e r i n g .  Two tasks, T1, T2 in a dialogue pro- 
duce streams SI,S2. Let cl, c2 be the computations executed by T1 and T2 to 

t produce these streams of requests. Cl and c2 can be transformed, using ~ ,  thus 
reordering the system requests in the dialogue, producing new streams S~,S~ The 
dialogue has the same semantics if, given Cl is reordered so that the ith request 
in $1 is now executed as the j t h  request in S~, c2 is reordered likewise. 
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For optimisation it is useful to know the dependencies between message pass- 
ing operations. The following law only reasons about state dependencies; da ta  
dependencies must also be considered. 

L a w  1 2  : D e p e n d e n c i e s  b e t w e e n  O p e r a t i o n s .  

x l ,x2 : :  a .  task xl :ll:s task x2 . (14) 
Vh, t2  6 T I D S  . tl # t2 

=,,=s m }4 (15) 
Vtl ,  t2 E T I D S  . t l  # t2 

{receive tl  I send t] m } :l]:S {receive t2 I send t2 m } . (16) 

5 C o n c l u s i o n  

We have presented a methodology for formally deriving a message passing pro- 
gram from a pure Haskell specification. Sections of this methodology are me- 
chanical in nature, and could be supported by transformation tools. Using this 
methodology, we have derived small parallel programs from specifications. The 
message passing model has been implemented using PVM; with this the derived 
programs have been executed on a group of workstations. A direction for future 
work is to extend this methodology to other communication models. 
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