
Optimal Parallel Algorithms for Solving
Tridiagonal Linear Systems

Eunice E. Santos I

Department of Electrical Engineering and Computer Science,
Lehigh University, Bethlehem, PA 18015, USA.

Research partially supported by an NSF CAREER Grant.

Abs t rac t . We consider the problem of solving tridiagonal linear systems
on parallel distributed-memory machines. We present tight asymptotic
bounds for solving these systems on the LogP model using two very com-
mon direct methods : odd-even cyclic reduction and prefix summing. For
each method, we begin by presenting lower bounds on execution time for
solving tridiagonal linear systems. Specifically, we present lower bounds
in which it is assumed that the number of data items per processor is
bounded, a general lower bound, and lower bounds for specific data lay-
outs commonly used in designing parallel algorithms to solve tridiagonal
linear systems. Moreover, algorithms are provided which have running
times within a constant factor of the lower bounds provided. Lastly, the
bounds for odd-even cyclic reduction and prefix summing are compared.

1 I n t r o d u c t i o n

Solving tridiagonal linear systems is a basic problem in scientific computing.
This problem is especially useful in solving ordinary or partial differential equa-
tions which occur naturally in many applications such as fluid dynamics, plasma
physics, etc. In this paper, we consider the problem of solving tridiagonal linear
systems using direct methods on distributed-memory machines. Although much
research has been spent exploring this problem, most deal with designing and
analyzing algorithms that solve these systems on specific types of interconnec-
tion networks [1, 7, 9, 10] such as hypercube or butterfly. Although some of
these algorithms are believed to be efficient, so far no formM proofs are avail-
able to substantiate them. One of the first a t tempts at establishing a lower
bound for solving tridiagonal linear systems using odd-even cyclic reduction on
distributed-memory machines was advanced by Johnsson [5] and subsequently
by Lakshmivarahan and Dhall [8]. However, their results are applicable only to
algorithms designed under severe constraints such as a very specific partitioning
of tasks onto processors.

The main objective of this paper is to present asymptotically tight bounds
on the running time for solving tridiagonal systems which utilize common direct
methods; in particular, odd-even cyclic reduction and prefix summing. The re-
sults obtained in this paper will provide not only a means for measuring efficiency
of existing algorithms but also provide a means of determining what kinds of
data layouts and communication patterns are needed to achieve optimal running
times.

701

In order to make our results applicable to a wide spectrum of distributed-
memory machines, we will work within LogP [2], a recently proposed model
for parallel distributed-memory machines. Important characteristics of parallel
machines can be represented using the parameters in the model. An important
feature of LogP is that the interconnection network of the machine is modeled by
its performance as viewed by the user, rather than its detailed interconnection
structure. Algorithms designed on this model are portable from one distributed-
memory machine to another and the running times of these algorithms will vary
from machine to machine according to the parameter values associated with
these machines.

We shall show, among other things, that using common data layouts and
straightforward communication patterns do not result in significantly higher
complexities than assuming that all processors have access to all data items
regardless of communication pattern. In fact, in most cases, common data lay-
outs and straightforward communication patterns can be used to obtain optimal
running times. We shall also show that the communication parameters of a net-
work have a significant effect on the complexity of this problem.

The paper is divided as follows. Section 2 contains a description of the LogP
model. In Section 3 we consider the odd-even cyclic reduction method for solv-
ing tridiagonal systems. We begin by deriving lower bounds on execution time
independent of the data layout for this method. Next, we derive lower bounds
for data layouts in which the number of data items per processor is bounded.
In particular we will show that the skewness of the distribution of data has no
significant effect on complexity. We then derive lower bounds for specific data
layouts commonly used in designing parallel algorithms for solving tridiagonal
linear systems. Lastly, running times for algorithms which are within a constant
factor of the lower bounds are provided. Section 4 considers the prefix summing
method and derives similar upper and lower bounds on running time. For brevity,
proofs and algorithms are not provided in this paper. Many of the proofs and
algorithms can be found in [11]. Section 5 gives the conclusion and summary of
results.

2 T h e L o g P M o d e l

LogP [2] is a parallel distributed-memory model that specifies the performance
characteristics of an interconnection network without describing the structure
of the network. Communication between processors is assumed to be point-to-
point. The following description uses terminology specific to the problem on
hand. The main parameters of the model are:

P: the number of processor/memory modules.
L: an upper bound on the latency, or delay, incurred in communicating a mes-

sage containing a numerical value from its source module to its target mod-
ule.

o: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor
cannot perform other operations.

702

g: the gap, defined as the min imum t ime interval between consecutive message
transmissions or consecutive message receptions at a processor.1

The parameters L, o and g are measured as multiples of a processor cycle.
A processor cycle is the (unit) t ime a processor takes to execute an ari thmetic
operation not requiring communication. Also, at any t ime step, at most [L/g]
messages can be in transit to or from any particular processor. If an a t t empt
to exceed this limit is made by a processor by t ransmit t ing a message, the
processor stalls until the message can be sent without exceeding the capacity
limit. All algorithms discussed in this paper satisfy this capacity constraint, and
we do not mention it henceforth.

3 O d d - E v e n C y c l i c R e d u c t i o n M e t h o d

T h e P r o b l e m : Given M x = b solve for x, where M is a tridiagonal N x N
matr ix , b = (bj) is a vector of size N, and x = (x j) a vector of size N.

We assume for both the discussion of odd-even cyclic reduction and prefix
summing tha t 1 < P < N. An algorithm is simply a set of ar i thmetic opera-
tions such tha t each processor is assigned a sequential list of these operations.
An initial assignment of da ta to the processors is called a data layout. A list of
message transmissions and receptions between processors is called a communica-
tion pattern. These three components (algorithm, da ta layout, communicat ion
pat tern) are needed in order to determine running time.

Odd-even cyclic reduction [3, 4, 9] is a recursive method for solving tridiago-
nal systems of size N = 2 n - 1. This method is divided into two parts: reduction
and back substitution.

The first step of reduction is to remove each odd-indexed xi and create a
tridiagonal system of size 2 n-1 - 1. We then do the same to this new system and
continue on in the same manner until we are left with a system of size 1. This
requires n .phases. We refer to the tridiagonal matr ix of phase j as MJ and the
vector as bJ. The original M and b are denoted M ° and b 0. The three non-zero
i tems of each row i in MJ are denoted l~,m~,r~ (left, middle, right). Below are
the list of operations needed to determine the items of row i in mat r ix M s .

- 1 hi-1 + gb : j_l m i . : -m i + e i ~ _ 2 j _ l q-.i i i+2j-~, bi .~. t c i o i _ 2 j _ l

Clearly each system is dependent on the previous systems. In this paper, we
assume that if an algorithm employs odd-even cyclic reduction, we assume tha t
a processor computed items of whole rows of a matr ix (i.e. the three non-zero
data items) and the appropriate i tem in the vector.

1 We assume o < g.

703

The back substitution phase is initiated after the system of one equation has
been determined. We recursively determine the values of the xl 's. The first opera-

n u l

~2"-x For the remaining variables xi, let j denote the last phase tion is x2,-1 = m,_l •
2 . - - 1

in the reduction step before xi is removed then xi = m~_l
The serial complexity of this method is S (N) = 17N - 12 log(N + 1) + 11.
In Section 3.1, we present lower bounds on running time for odd-even cyclic

reduction algorithms. Specifically, this section contains the general lower bounds
on running t ime independent of data layout which are applicable to all algo-
ri thms utilizing odd-even cyclic reduction, lower bounds on running t ime for
data layouts in which the number of data items initially assigned to a processor
is bounded, and lower bounds on running time for common data layouts for this
problem. In Section 3.2 we present optimal algorithm running times.

3.1 L o w e r b o u n d s fo r O d d - E v e n Cyc l ic R e d u c t i o n

We begin by listing some definitions necessary for the discussion of lower bounds.

D e f i n i t i o n 1. The class of all communication patterns is denoted by C. The class
of all data layouts is denoted by 7). A data layout D is said to be a single-item
layout if each non-zero matrix-i tem is initially assigned to a unique processor.

D e f i n i t i o n 2 . Let A be an odd-even cyclic reduction algorithm. For i = 1, 2, • • • n
and j = 1 , 2 , . . . 2 ~-i+1 - 1, define TA,D,C(i,j) to be the minimum time at
which the items of row j of level i are computed using algorithm A and com-
munication pattern C and assuming data layout D, and define TA,D,C(i) =
min l < j <_2,-i+l- l TA,D,C(i, j) .

It follows that for all odd-even cyclic algorithms A, data layout D, commu-
nication pattern C, and any i < n, TA,D,C(i + 1) > TA,D,C(i).

D e f i n i t i o n 3 . Let A be an odd-even cyclic reduction algorithm and let O de-
note the class consisting of all odd-even cyclic reduction algorithms. For all
i <_ n, TA,D(i) = mincecTA,D,C(i), TA(i) = m i n n c o T A , n (i) and To(i) =
minAeoTA(i) .

In the following sections we shall provide lower bounds o n TA,D(n) for al-
gorithms A E 0 and certain types of data layouts D. The lower bounds hold
regardless of the choice of communication pattern. For simplicity, we state our
results in the special case L = g of the LogP model. Although the proofs of the
lower bounds are based on the assumption that o = O, they are clearly applicable
to arbitrary o.
3.1.1 A G e n e r a l L o w e r B o u n d for O d d - E v e n Cyc l i c R e d u c t i o n

In this subsection we assume the data layout is the one in which each pro-
cessor has a copy of every non-zero entry of M ° and b 0. We denote this layout
b y /) . Since D is the most favorable data layout, To(i) = minAeoTA,B(i) .

704

T h e o r e m 4 . Let A be an odd-even cyclic reduction algorithm. The following is
a lower bound for A regardless of data layout and communication pattern:

14(N - n) : Y2(N) i fg > 14(N - n)
max(g(n - n'), s p_.(ff.)., n) = Y2(g log(N) + N + log N) otherwise

where n ~ is the smallest integer i such that g < 14(2 i + i - 1).

In Section 3.2 we will provide optimal algorithms, i.e. the running times are
within a constant factor of the lower bounds.
3.1.2 L o w e r B o u n d s fo r O on ~ - d a t a l a y o u t s

Many algorithms designed for solving tridiagonal linear systems assume that
1 th the data layout is single-item and that each processor is assigned roughly ~ of

the rows of M ° where P is the number of processors available. In this section,
we consider single-item data layouts in which each processor is assigned at most

P of the rows of M where 1 < c < ~-. a fraction

D e f i n l t i o n 5 . Consider c where 1 < c < P . A data layout D on P processors
is said to be a ~-data layout if D is single-item, no processor is assigned more

c of the rows of M °, and each processor is assigned at least one than a fraction
r o w o f M °. Denote the class of ~ data layouts b y /) (~) .

T h e o r e m 6 . If D E 7) (~), then for any A E O,

N [l o g ~] - 6 s (g) , n) = Y2(glog g +--P)" TA,D(n) >_ max(g[log(P- 1)],g 4 ' P

Analyzing the result given in the above theorem, we see that for any odd-
even cyclic algorithm and any ~-da ta layout, the running time (regardless of
communication pattern) is aq(ng + N). Comparing results against the general
lower bound, we see that for sufficiently large N, the lower bounds are within
constant factors of one another. In Section 3.2, we present algorithms that are
within constant factors of the bounds.

Since c < P , every ~ -da ta layout is a ½-data layout. This leads to the
following corollary:

C o r o l l a r y T . If D E :D(½), then for any A E O,

TA,D(n) > max(g[log(P - 1)], g [log p--~] - 7 S(N) , n).
- 4 ' P

The complexity of any algorithm A E O using a ~ -d a t a layout is ~(g log N +
N). We see that the "communication part" of the bound grows only logarithmi-
cally in problem size N and is independent of P (> 1), whereas the "computation
part" grows linear in N and is dependent on P. In addition, although the number
of rows assigned to different processors may vary from one to ½ of the total num-
ber of initial rows, the above results and the algorithms in Section 3.2 show that

705

the skewness of the distribution of data has no significant effect on complexity.
3.1.3 L o w e r B o u n d s fo r O on s t a n d a r d d a t a l a y o u t s

In this section we present lower bounds on the running time for odd-even
cyclic reduction algorithms using specific data layouts commonly used by algo-
r i thm designers, namely cyclic and blocked data layouts. Definitions are given
below.

D e f i n i t i o n & A single-item data layout on (1 _<)P(_< N) processors p l , . . . p p
0 l o, b 0 are assigned to processor pj where j + 1 --= i is cyclic if for all i <_ N, r °, mi,

mod P. We denote this layout by De.

D e f i n l t i o n 9 . A single-item data layout on (1 <) P (< N) processors Pl,'" "PP
is blocked if for all i < P, pi is assigned the nonzero items in rows (i - 1) g + 1
to i N of M ° and b 0. We denote this layout by DB.

The following definitions are needed for the discussion of lower bounds in
this section.

D e f i n i t i o n 10. A row j of level i is said to be an original row of some processor
p if the items of rows j - 2 i-1 + 1 to j + 2 i-1 - 1 of level 0 are originally assigned
to p. If a row is not an original o f p it is said to be a non-original row ofp .

D e f i n i t i o n l l . Two rows j and j + 1 of level i are referred to as neighbors.

T h e o r e m 12. Let A be an algorithm in O, i.e. A is an odd-even cyclic reduction
algorithm. The following are lower bounds assuming the appropriate data layout:

max(g[-~], S_~_)_pN , n) Blocked Data Layout
g N , S(N) n) Cyclic Dala Layout.

Analyzing these lower bounds, we see that blocked and cyclic data layouts
have lower bounds 12(g l o g g + N) and 12(g(log N + N)) respectively. In Sec-
tion 3.2 we provide an algorithm using blocked data layout whose running t ime
is O(g log N + N). This clearly shows that the complexity for blocked data layout
is as good as and in most cases better than that of cyclic data layout. Therefore,
we are able to formally confirm, for the first time, that the widely held belief
that cyclic layout is no better than block layout is indeed true for a wide range
of parallel machines.

Comparing the complexity of blocked layout with the lower bounds for 2 -
data layouts, we see that the complexity of blocked layout is within a constant
factor of the lower bounds for ~ -da ta layouts. Furthermore, comparing the com-
plexity of blocked layout with the general lower bound (which we show is achiev-
able up to a constant factor in Section 3.2), we see that for sufficiently large n
the complexity of blocked layout is within a constant factor of the general lower
bound. Therefore we can use the much more realistic blocked data layout rather
t h a n / 3 and still achieve the lower bounds (up to a constant factor).

706

3.2 Algorithms and Communicat ion Patterns

We have designed algorithms and communication patterns where when used with
the appropriate data layouts have running times matching the lower bounds
presented, i.e. the running times differ from the lower bounds by at most a small
constant factor. Below is a table of running times. For brevity, algorithms and
communication schedules have been omitted. Full algorithm and communication
schedules can be found in [11].

Running Time: Data Layout
10n(g + 20) + ~ = O (g l o g g + -~) Blocked Layout
10(n - n')(g + 20) + m a x (S ~ p N , 19n) /) - Best Layout

= O(g log N + N + log N)
S(N) = O(N) Serial Algorithm

4 P r e f i x S u m m i n g M e t h o d

T h e P re f ix S u m m i n g P r o b l e m : Given N items sl , s2 , . . . , SN and an oper-
ator (~, determine $1, $2 , - ' ' SN where Si = xl (~) x2 ~ X3 @ ' ' " ~) Xi.

We describe below how we can solve a tridiagonal system of equations by
transforming it into a non-commutative prefix summing problem [10]. We assume
that I < P < N .

We begin by reformulating every equation in the system as a matrix-vector
product. Specifically, consider the i t h equation li xi_ 1 + mi xi + rizi+ 1 = bi where
1 < i < N and 11 = 0. The corresponding matrix-vector product is the following:

~ 1 i =ai xi11 whereai= O0 01 (assumell=O)

From repeated substitution, we see that

l i = Hi where Hi = G i ' " G2G1.

To solve the tridiagonal system, after HN-1 is computed, we solve the fol-
lowing system:

XNl-1 = HN-1 , INxN- t + mNXN = bN.

Therefore, once HN-1 is computed we can compute the value of xl in 9 steps.
We then determine the remaining values of xi in a similar fashion.

The values of Hi can be computed by prefix summing where si = Gi and (~
is 3× 3 matrix multiplication (an associative, non-commutative operator).

The serial complexity of this method is O(N).

707

In Section 4.1, we present a general lower bound (independent of data layout)
on running time for prefix summing by considering the complexity of summing.
Also, a lower bound for single-item layouts (and therefore a lower bound for c
data layouts) is provided. Furthermore, a lower bound for blocked data layout
is provided. In Section 4.2 we present running times for optimal or near optimal
algorithms which use specific types of data layouts for prefix summing. One of
the data layouts considered is blocked data layout.

4.1 Lower b o u n d s for Pref ix Summing
We present lower bounds on running time for prefix summing algorithms. These
lower bounds are based on the lower bounds for summation of N items and for
broadcasting an item to P processors. Lower bounds for summation, broadcast
and prefix summing are presented in [6, 12]. For simplicity, we state our results
in the special case L = g of the LogP model.

T h e o r e m 13. Any algorithm which solves a tridiagonal linear system of size N
using prefix summing requires at least Tps(N, P) where

fg-1, _l)ifN<g
Tps(N,P) = ~maz(~log(N),_p__ if N > g.

T h e o r e m 14. Any algorithm which solves a tridiagonal linear system of size N
using prefix summing and using a single-item data layout requires at least

max(glog(P- 1),--ff--'2N - 1 g log g)N = 12(g logp(N)½ + 7) . N

Clearly the lower bound for single-item layouts is the lower bound for ~-data
layouts

T h e o r e m 15. Any algorithm which solves a tridiagonal linear system of size N
using prefix summing and using a blocked data layout requires at least Tps,z). (N, P)
where

TpS'DB(N'P) = max(gl°g(P-1) ' N-1p '2 g l ° g N - ' g -) = D (g l ° g P () ½ + - ~) .

We see that the lower bound for single-item data layouts (and for ~-data
layouts) is within a constant factor of the lower bound for blocked layout.
Moreover, when N is sufficiently large TpS,DB (N, P) = max((g + 1)log(P -
1), N - 1 g I N , --P-, 2 log 7) = 12(g log N + N) . Since algorithms are presented in Section 4.2
whose running times are within a constant factor of the lower bounds derived
in this section, clearly (1) the complexity for blocked data layout is within a
constant factor of the lower bound for ~-data layouts, and (2) for sufficiently
large N, the complexity for blocked data layout is within a constant factor of
the general lower bound. (3) although the number of rows assigned to different
processors may vary from 1 to N - P + 1 of the total number of initial rows, the
above results and the algorithms presented in the following section show that
the skewness of the distribution of data has no significant effect on complexity
(in fact, the skewness of distribution that we have proven for prefix summing is
greater than the one we've proven for odd-even cyclic reduction).

708

4.2 A l g o r i t h m s a n d C o m m u n i c a t i o n P a t t e r n s

In this section, we provide a table of running times for algorithms for prefix
summing which are within a constant factor of the lower bounds derived in
Section 4.1. All of these algorithms are based on the optimal summing, prefix
summing and broadcast algorithms presented in [6, 12]. Below is a table of
running times. For brevity, algorithms and communication schedules have been
omitted. Algorithms and communication schedules can be found in [11].

Running Time: Data Layout
O(Tps,DB(N,P)) Blocked Layout
O(Tps(N, P)) b - Best Layout
N - 1 Serial Algorithms

5 C o n c l u s i o n

We considered the problem of solving tridiagonal linear systems using two very
common direct methods: odd-even cyclic reduction and prefix summing. We were
able to derive tight asymptotic bounds on the execution time for these problems
and provided algorithms which achieve these bounds.

Specifically, we proved that the complexity for solving tridiagonal linear sys-
tems for both methods regardless of data layout is O(g log g + N) for N = ~(g)
and O(N) for N = O(g). When we added the realistic assumption that the
data layouts are single-item and the number of data items assigned to a proces-
sor is bounded, we derived the following bounds for odd-even cyclic reduction
and prefix summing respectively, O(g log N + pg_) and O(g log P(-~)½ + g) . An-
alyzing these bounds we see that for sufficiently large N the complexity for
solving these systems using odd-even cyclic reduction and prefix summing are
both O(g log N + N). Next comparing these bounds to one another suggests that
except for extreme values of P the decision to choose one method over the other
may be based on other factors such as numerical stability. We also see that the
skewness of data distribution does not significantly affect the complexity of the
problem. Specifically, for odd-even cyclic reduction this result is true for single-

1 of the rows. item data layouts in which no processor is assigned more than
For prefix summing, the result holds for data layouts which only need to be
single-item. In fact, comparing these bounds with the general lower bounds, we
see that restricting the proportion of data items assigned to a processor to _N P
does not result in a significantly higher complexity than assuming all processors
have all the data items for sufficiently large N.

We also derived bounds for blocked and cyclic data layouts. Although it is
widely believed that cyclic data layout is no better than blocked data layout,
using our results we were able to formally confirm, for the first time, that the
"belief" is indeed valid for a wide range of parallel machines.

Lastly, we show that there are algorithms, data layouts, and communication
patterns whose running times are within a constant factor of the lower bounds
provided. This provides us with the O-bounds stated above. To achieve the gen-
eral lower bound, i.e. the complexity for these methods regardless of data layout,
we use /) the best data layout, i.e. the data layout in which every processor is

709

assigned all the da ta items. For the ½-data layout lower bound for odd-even
cyclic reduction and for the single-item layout lower bound for prefix summing,
we use blocked da ta layout. Clearly blocked da ta layouts is more realistic than D
and is easy to assign across processors. Also, since for sufficiently large N these
two lower bounds are asymptot ic to their respective general lower bounds, this
makes the algorithms and communication pat terns provided for blocked da ta
layout practical and efficient for these methods.

Since all of the opt imal algorithms discussed were variants of s tandard algo-
r i thms using straightforward communicat ion patterns, this shows that it is futile
to search for sophisticated techniques, and complicated communicat ion pat terns
to significantly improve the running times of algorithms which solve tridiagonal
systems using odd-even cyclic reduction or prefix summing.

Many of the lower bounds obtained in this paper hold for an extended model
with mult i-broadcast capability, i.e. the lower bounds hold even under the as-
sumption that any value computed by a processor p is available to that processor
immediate ly and to all other processors L + 20 steps later.

References

1. C. Amodio and N. Mastronardi. A parallel version of the cyclic reduction algo-
rithm on a hypercube. Parallel Computing, 19, 1993.

2. D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. Santos, K. E. Schauser,
R. Subramonian, and T. yon Eicken. LogP: A Practical Model of Parallel Com-
putation. Communications of the ACM, May 1996.

3. D. Heller. A survey of parallel algorithms in numerical finear algebra. SIAM J.
Numer. Anal., 29(4), 1987.

4. A. W. Hockney and C. R. Jesshope. Parallel Computers. Adam-Hilger, 1981.
5. S. L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J.

Sci. Stat. Comput., 8, 1987.
6. R. M. Karp, A. Sahay, E. E. Santos, and K.E. Schauser Optimal Broadcast and

Summation on the LogP Model. In Proceedings of the Fifth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, 1993.

7. S. P. Kumar. Solving tridiagonal systems on the butterfly parallel computer. In-
ternational J. Supercomputer Applications, 3, 1989.

8. S. Lakshmivarahan and S. D. Dhall. A Lower Bound on the Communication Com-
plexity for Solving Linear Tridiagonal Systems on Cube Architectures. In Hyper-
cubes 1987, 1987.

9. S. Lakshmivarahan and S. D. Dhall. Analysis and Design o] Parallel Algorithms :
Arithmetic and Matrix Problems. McGraw-Hill, 1990.

10. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays-
Trees-Hypercubes. Morgan Kaufmann, 1992.

11. E. E. Santos. Direct methods for solving tridiagonal linear systems in parallel.
Technical Report TR-95-029, International Computer Science Institute, 1995.

12. E. E. Santos. Optimal and efficient parallel algorithms for summing and prefix
summing. In Proceedings of the Eighth Annual IEEE Symposium on Parallel and
Distributed Processing, 1996.

