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Abst rac t .  A block iterative method is used for solving linear least 
squares problems. The subproblems are solved asynchronously on a dis- 
tributed memory multiprocessor. It is observed that an increased number 
of processors results in deteriorating rate of convergence. This deterio- 
rating convergence is illustrated by numerical experiments. The dete- 
rioration of the convergence can be explained by contamination of the 
residual. Our purpose is to show that the residual is contaminated by 
old information. The issues investigated here are the effect of the number 
of processors, the role of essential neighbors, and synchronization. The 
characterization of old information remains an open problem. 

1 I n t r o d u c t i o n  

In this paper, a block iterative method is used for solving sparse linear least 
squares problems. A general framework for this method is introduced by Dennis 
and Steihaug [4], and the preliminary tests in [4] indicate that  this method leads 
quickly to cheap solutions of limited accuracy. 

Due to the rapid development and increasing usage of parallel computers and 
distributed computing, it is now important  to adapt  the methods to the new 
architectures. Baudet 's  [1] experimental results on systems of linear equations 
show a considerable advantage for iterative methods on parallel computers with 
no synchronization. This leads to experimentation with totally asynchronous [2] 
block iterative methods for the solution of linear least squares problems. 

The block iterative method [4] partitions the columns of the coefficient matr ix 
into disjoint blocks of columns and then projects the updated residual into each 
column subspace. This algorithm, which is called column oriented successive sub- 
space correction (CSSC) in [8], is, in fact, Gauss-Seidel iteration on the normal 
equations. Each subproblem is substantially smaller than the original problem 
and hence is solved directly using QR factorization [7] and semi-normal equa- 
tions (SNE) [3] on one processor. Each processor computes a correction of the 
solution vector restricted to the variables associated with the blocks of columns. 
The computation requires the residual, which is the global data. Each processor 
uses the residual available at the start  of the computations without waiting for 
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the newest data. This way, the disadvantages resulting from the execution of 
synchronization primitives are avoided. 

We do not address the issues of timing and speedup in this paper. Some 
timing and speedup results can be found in [11]. 

In the following, we first give the framework of the block iterative method 
for the linear least squares problem and state the sequential algorithm. The sub- 
problems in this algorithm are to be solved using a direct method. A discussion 
of suitable factorization techniques for the subproblems is found in [10]. Then, 
we introduce the totally asynchronous algorithmic model and the algorithm for 
the asynchronous implementation of the method. In Section 4, the results of our 
experiments are presented. In the asynchronous implementation it is observed 
that increased number of processors results in contaminated residual and hence 
deteriorating convergence. This is due to the existence of old information in the 
system. 

2 T h e  L i n e a r  L e a s t  S q u a r e s  P r o b l e m  

Let A be an m by n real matrix, m > n, b 6 ]K m. Let M be an m by m positive 
definite matrix. The weighted linear least squares problem is: 

min IIAx - b IIM, (1) 
x6IR ~ 

where Ilyll 2 = y T M y .  
The columns of A are divided into g blocks A1,A2,. . . ,Ag, where Ai 6 

] R  m x n i  . Assume, without loss of generality, that each Ai has full rank. The 
least squares problem (1) is equivalent to 

min{llAlxt + A2x2 + . . .  + A z x ,  - bllM : xi 6 A TM,i = 1, 2 , . . . ,g}  . (2) 

Suppose that x k is an approximation to a solution x* to (1), and x k is divided 
into x k, x2k,..., x k as above. Then from (2), the following successive replacements 
iteration can be obtained: 

for i = 1 ,2 , . . . , g  do 
_ k + l  ]Rnl  

Solve for x i 6 : 

minll ~j=li-I Ajxj-k+l + A'xk+l, i + ~j=i+ig Ajx~ - bllM . 

This is equivalent [4, 12] to: 

for i = 1 ,2 , . . . , g  do 
= r~+(i-1)/g. 

min{l[Ais~-~-rUM : 8i E ~ n , } .  Solve for s i : 
Update the residual: r k+i/g ---- r k+(i-1)/g + Ai sk. 

Update the solution: x k+i/g = x k+(i-1)/g + $k i . 

(3) 
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For si 6 lit TM , introduce the vector ~i 6 ]R n, which is obtained by starting with 
a zero vector and placing the nonzero entries of si in the right positions. 

This is block Gauss-Seidel iteration on the normal equations for (1). The 
residual ~ = r k, gives block Jacobi iteration on the normal equations. The in- 
termediate residual is a combined Jacobi and Gauss-Seidel method. With the 
introduction of a relaxation parameter  successive over-relaxation (SOR) method 
is obtained. 

A l g o r i t h m  1. 
Subdiv ide  A i n t o  g b locks .  
Choose 0 < u)i < 2, i  = 1 , 2 , . . . , g .  
Choose x ° , i  = 1,2, .  • ",g, x° = ~i=lg xi-0. 
Compute r ° = A x  ° - b. 
for  k = 0 s t e p  1 un t i l  convergence  do 

for  i = 1 , 2 , . . . , g  do  
f = rk+( i -1 ) /g .  

k min([[Ais~ +~[[M}. Solve for s i : 

r k+i/g = r k+( i -1) /g  -b w i A i s ~ .  
xk+i /g  : x k+( i -1 ) /g  + wi~  k.  

Check f o r  convergence .  

The series of approximations {x k} from Algorithm 1 converge to x*, a so- 
lution of the least squares problem (1), and [[rk[[M is strictly monotonically 
decreasing [4]. 

3 P a r a l l e l i z a t i o n  

In this section, we consider the parallel implementation of Algorithm 1, and 
formulate the main algorithm used in the experiments. First, we will see how 
we can get the parallel version of the sequential algorithm at hand, and then 
we will point out some of the advantages and disadvantages of asynchronous 
computation over the synchronous mode. 

Jacobi type of iterations axe straightforward to implement in parallel. In 
Algorithm 1, if use ~ --  r k,  we get Jacobi method. The main computation in 
the inner loop is the solution of (3). This system can be solved concurrently 
for each block i on multiple processors provided that  the submatrices Ai are 
available on the processors. The processors, after computing their corrections 
on block components of x have to synchronize at the end of the loop before 
starting with the next loop. Now that  we are able to compute the corrections 
from each block in one step, we have gained a considerable advantage over the 
sequential algorithm in terms of parailelization. In synchronized algorithms, the 
faster processors waiting for the slower ones to complete their computations 
causes an overhead. To get higher utilization of the available CPU power we 
can remove synchronization and the restriction on the order of the updates. By 
removing synchronization from the synchronous Jacobi algorithm and letting 
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get the latest available value of the residual in the system, we obtain a totally 
asynchronous algorithm. 

Asynchronous algorithms reduce the synchronization penalty caused by fast 
processors waiting for slow processors to complete the computations, and for 
slow communication channels to deliver messages. The reason is that processors 
can execute more updates when they are not constrained to wait for the results of 
the computation on other processors. The only requirement on the computation 
of the updates is that, eventually, the values of an early update cannot be used 
any more in further evaluations. This condition is met as long as no processor 
falls out of the system. However, removing synchronization brings out the danger 
that the updates are performed on the basis of outdated (old) information. 

An important disadvantage of asynchronism is that it can impede conver- 
gence properties that the algorithm may possess when executed synchronously 
or sequentially. In some cases, it is necessary to place limitations on the size of 
communication delays to guarantee convergence. Necessary conditions for the 
convergence of linear problems is given in Bertsekas and Tsitsiklis [2]. 

Before giving the asynchronous implementation of Algorithm 1, we will in- 
troduce the totally asynchronous algorithmic model. 

3.1 The  Total ly  Asynchronous  Algor i thmic  Mode l  

Let T = {1, 2, . . .} be a set of times at which one block xi  of x is updated by 
some processor, and 7 "i = set of times at which xi is updated. 

The processor computing si may not have access to the most recent values 
of x j  at the time of the update. For t E T ~, s i ( t )  is computed using a residual 

= ~-~j=l A j x j ( T j )  -- b, where ~-j(t) are times satisfying 

o <  j(t) < t - 1 .  

At all times t tg T ~, xl is left unchanged and 

x ( t )  = x ( t  - 1) + $i(t), t e T ~ . 

3.2 Asynchronous  I m p l e m e n t a t i o n  

The next algorithm is the asynchronous implementation of Algorithm 1 on an 
MPMD machine with p -- g + 1 processors. In the algorithm, processor P0 is 
used as the master and processors pi, i -- 1 ,2 , . . . , g  act as slaves. Send and 
Receive are communications with the master. Broadcas t  is done by the master 
processor. 

Algorithm 2. 
Subdivide A into g blocks. 
Choose 0 < wi < 2,i = 1,2,...,g. 
Choose x i (O) , i  = 1 ,2 , . . . , g ,  x(0) = ~i=19 ~i(0). 
Compute r(O) = Ax(O)  - b. 
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I n i t i a t e  each processor  i = 1 ,2 , . . . , g  : 
Receive(A/, Po). 
Receive (~% (0), P0)- 
Reeeive(wi ,  po ). 
Preprocess.  

Broadcast(r(0)).  
{Let t be a g lobal  counter  of co r rec t ions  and} 

{let t~ azld t~ be tWO consecutive elements ill "T "i} 
t = O .  
while not  termination d o  

if  slave t h e n  
Solve for si : 

min{llAisi + r(t~)llM : S i e  ]R~'}. 
Update xi : xi = xi + O)iSi. 
Send(Aisi ,po) .  
Rece ive ( r (  t~ ), po ). 

else 
Receive(A/s / ,  Pi). 
r(t + 1) = r(t) + w/Ais/. 
Check for termination. 
if  not  termination t hen  

t = t + l ;  
Send(r( t ) ,pi) .  

master} 
{s/ computed using r at t~} 

= t }  

4 E x p e r i m e n t s  

Test problems used in the experiments are taken from Harwell-Boeing sparse 
matrix test collection [5]. All the graphs refer to problem ASH958. Blocks are 
formed by taking blocks of consecutive columns. For the specified problem, the 
number of blocks g is 30. Each subproblem is solved using QR factorization and 
SNE. Both parallel and sequential implementations are done on Intel Paragon. 
Static assignment of blocks to processors is chosen to avoid the overhead of 
assignments during the computation phase. The number of processors p reported 
is the number of slave processors. 

Algorithm 1 is a block Gauss-Seidel iteration which can be converted to Ja- 
cob/ type iteration by taking ~ = r k , and the intermediate residual is a combined 
Jacob/and Gauss-Seidel iteration. To verify this, the residual is "fixed" for p- 
updates, i.e. ~ = r k+c/g in (3), where c = pli /pJ.  The quantity /'] is the largest 
integer not greater than its argument. Assume for simplicity that g mod p = 0. 
This routine implements Gauss-Seidel updates with a Jacob/iteration on groups 
of g/p block components. In this implementation p = g gives the block Gauss- 
Seidel method, and p = 1 gives the block Jacob/ method. We see in Fig. 1 
that the resulting convergence is between sequential Gauss-Seidel and Jacob/ 
methods acknowledging our statement. Increased number of processors results 
in increased deterioration of the convergence of the residual. 
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In the second experiment, a "time-lag" of p is used, where P = r ~+(i-p)/g in 
(3). The same block assignment as in the former case is used. Again, an increase 
in the number of processors results in increased deterioration as seen in Fig. 2. 
To state this result in a more formal way, let 

p(p) = s u p  l i ra  s u p  IIx k - x *  II 
x o k - - ) . ~  

be the average rate of convergence using p processors. For a special class of linear 
systems Elsner, Neumann and Vemmer [6] prove p(p + 1) _> p(p). 

In the next experiment, a totally asynchronous iteration on different number 
of processors p, p <_ g, and g rood p ----- 0, is implemented. We see in Fig. 3 that  
for a small number of processors the rate of convergence lies in the neighbor- 
hood of sequential Gauss-Seidel method. If we increase the number of processors 
further to make bet ter  use of the available CPU power, the rate of convergence 
is degraded. In an asynchronous implementation, the order of the updates may 
change, and also the the total  number of updates. In five different runs of the to- 
tally asynchronous implementation on p = g processors, the number of updates 
before convergence varies between 958 and 1046. 

An asynchronous implementation on homogeneous processors with negligible 
communication delays will, after some time, be almost cyclic in the updates. Let 
tl  and t2 be two consecutive updates of block i, t l ,  t2 E .]-i. At t2 the correction 
s i ( t l )  is the solution of: 

min{llA~sl + r( t l  ) )llM ) • 

The updated solution and residual are: 

x(t2) = x(t2 - 1) + wiSe(t1), r(t2) = r(t2 - 1) + w~Aisi( t l ) ,  

and for a cyclic implementation with cycle length g with p processors, an update  
will be computed with a residual which is p time units old. Hence, tl = t2 - p ,  
and we have a sequential implementation with time-lag of p. 

We need to consider the effect of dependence between blocks on the con- 
vergence rate in the asynchronous implementation. Let Ei = {j]  block i and 
block j have nonzero elements on the same row positions) be called the essential 
neighbors [9] of block i. Let t l ,  t2 E T i be consecutive times of update from 
block i. When we update  the residual and approximate the solution at t ime 
t2, ATr( t2)  = 0 and 8i ( t2)  = 0, unless any block j , j  E Ei has sent an update 
between t l  and t2. In the next experiment, to avoid zero corrections, block i is 
forced to wait until an update from block j,  j E E i  arrives at the master. We use 
p = g processors in a heterogeneous environment with each processor's speed 
varying with a factor between 1 and 7. In Fig. 4, the curve marked W F E illus- 
trates the implementation where the processors wait for their essential neighbors. 
The time between two nonzero updates of block i will be shorter if the processor 
waits for an essential neighbor of block i. Hence, we expect that  the time-lag on 
the average will be reduced. In the numerical experiments, we see a decrease in 
the deteriorations, and as a result, an improvement in the convergence. 
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Fig.  2. "Time-lag" ofp. (1): Gauss-Seidel (2 = 1) (2): p -- 2 (3): p = 3 (4): p --- 6 
(5):  p = 10 (6): p = 15 (7): p = 30  

The numerical testing depicted in Fig. 2 shows that  increasing the number 
of processors means that  older information is used to calculate any new iterate. 
This reduces the rate of convergence. To avoid that  too old information is used 
to update  the residual in the asynchronous implementation, we introduce a limit 
(Np) on the magnitude of time-lag, i.e., t - N p  < Tj(t) _< t - -  1 for all i and 
j ,  and all t > 0 , t  E T i. In [2], this is called a partially asynchronous iterative 
method. We use p = g processors in a heterogeneous environment as in the former 
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Fig. 4. Heterogeneous environment with p -- g. 
(1): "Wait-for-essential-neighbor"(WFE) (2): Totally asynchronous 

experiment. When each processor has updated the residual a fixed number of 
times (N), we flush the queue at the master  and broadcast the new residual. 
Letting N = 1,2,3,  we observe that  N = 1 gives (approximately) Jacobi's 
method and N > 3 gives (approximately) totally asynchronous method (Fig. 5). 
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Fig. 5. Synchronization after N updates in a heterogeneous environment with p = g. 
(1): N = 1 (~ Jacobi) (2): N = 2 (3): Totally asynchronous (4): N = 3 

5 Concluding Remarks 

Elsner, Neumann and Vemmer [6] have proved, under certain assumptions, that  
increasing the number of processors decreases the convergence rate. This is shown 
in the implementation of asynchronous iterations on linear least squares problems 
and is explained as a result of using old information. 

The heterogeneous environment had no significant effect on the rate of con- 
vergence. However, the changes in the residual is damped (compare curve 2 in 
Fig. 4 and curve 7 in Fig. 3). 

The role of essential neighbors is also a factor that  has to be taken into 
consideration. Blocks are forced to wait before receiving a new residual until a 
correction from their essential neighbors is received, and in the long run the time- 
lag is decreased. The result is an improvement in convergence and degradation 
in the deteriorations. 

It is shown [4] that  [[r(t)[[M is monotonically decreasing for the sequential 
case. In [12], the relaxation parameter  wi is chosen such that  [[r(t)[[M is mini- 
mized for every update. This reduces the effect of old information. 

Another a t tempt  to decrease deteriorations in the residual is the introduction 
of synchronization into the system. It is seen that  synchronization after an a 
priori chosen number of corrections on the solution vector lessens the effect of 
old information and improves the convergence rate. However, the effect of the 
synchronization decreases rapidly with the "age" of the updates. 

To our knowledge, the results of using asynchronous iterations on linear least 
squares problems have not been discussed in literature. There is no theory to 
characterize old information, only heuristics. A relaxation parameter  can be used 
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to reduce the deteriorations. Synchronization is needed in many cases, but there 
is no theory to support when to synchronize. Synchronization after only one or 
two updates from each block reduces the effect of old information, but later 
synchronizations do not cure the deteriorations. 

In [10, 12] and in this paper several issues were studied to reduce the deteri- 
oration in convergence. However, the single most influential factor based on the 
numerical testing is the existence of old information in the computation of the 
updates. 
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