
Deteriorating Convergence for Asynchronous
Methods on Linear Least Squares Problems*

Trond Steihaug and Yasemin Yal~mkaya

University of Bergen,
Department of Informatics,

Bergen, Norway

Abst rac t . A block iterative method is used for solving linear least
squares problems. The subproblems are solved asynchronously on a dis-
tributed memory multiprocessor. It is observed that an increased number
of processors results in deteriorating rate of convergence. This deterio-
rating convergence is illustrated by numerical experiments. The dete-
rioration of the convergence can be explained by contamination of the
residual. Our purpose is to show that the residual is contaminated by
old information. The issues investigated here are the effect of the number
of processors, the role of essential neighbors, and synchronization. The
characterization of old information remains an open problem.

1 I n t r o d u c t i o n

In this paper, a block iterative method is used for solving sparse linear least
squares problems. A general framework for this method is introduced by Dennis
and Steihaug [4], and the preliminary tests in [4] indicate that this method leads
quickly to cheap solutions of limited accuracy.

Due to the rapid development and increasing usage of parallel computers and
distributed computing, it is now important to adapt the methods to the new
architectures. Baudet 's [1] experimental results on systems of linear equations
show a considerable advantage for iterative methods on parallel computers with
no synchronization. This leads to experimentation with totally asynchronous [2]
block iterative methods for the solution of linear least squares problems.

The block iterative method [4] partitions the columns of the coefficient matr ix
into disjoint blocks of columns and then projects the updated residual into each
column subspace. This algorithm, which is called column oriented successive sub-
space correction (CSSC) in [8], is, in fact, Gauss-Seidel iteration on the normal
equations. Each subproblem is substantially smaller than the original problem
and hence is solved directly using QR factorization [7] and semi-normal equa-
tions (SNE) [3] on one processor. Each processor computes a correction of the
solution vector restricted to the variables associated with the blocks of columns.
The computation requires the residual, which is the global data. Each processor
uses the residual available at the start of the computations without waiting for

* This research is supported by The Research Council of Norway.

751

the newest data. This way, the disadvantages resulting from the execution of
synchronization primitives are avoided.

We do not address the issues of timing and speedup in this paper. Some
timing and speedup results can be found in [11].

In the following, we first give the framework of the block iterative method
for the linear least squares problem and state the sequential algorithm. The sub-
problems in this algorithm are to be solved using a direct method. A discussion
of suitable factorization techniques for the subproblems is found in [10]. Then,
we introduce the totally asynchronous algorithmic model and the algorithm for
the asynchronous implementation of the method. In Section 4, the results of our
experiments are presented. In the asynchronous implementation it is observed
that increased number of processors results in contaminated residual and hence
deteriorating convergence. This is due to the existence of old information in the
system.

2 T h e L i n e a r L e a s t S q u a r e s P r o b l e m

Let A be an m by n real matrix, m > n, b 6]K m. Let M be an m by m positive
definite matrix. The weighted linear least squares problem is:

min IIAx - b IIM, (1)
x6IR ~

where Ilyll 2 = y T M y .
The columns of A are divided into g blocks A1,A2,. . . ,Ag, where Ai 6

] R m x n i . Assume, without loss of generality, that each Ai has full rank. The
least squares problem (1) is equivalent to

min{llAlxt + A2x2 + . . . + A z x , - bllM : xi 6 A TM,i = 1, 2 , . . . ,g} . (2)

Suppose that x k is an approximation to a solution x* to (1), and x k is divided
into x k, x2k,..., x k as above. Then from (2), the following successive replacements
iteration can be obtained:

for i = 1 ,2 , . . . , g do
_ k + l]Rnl

Solve for x i 6 :

minll ~j=li-I Ajxj-k+l + A'xk+l, i + ~j=i+ig Ajx~ - bllM .

This is equivalent [4, 12] to:

for i = 1 ,2 , . . . , g do
= r~+(i-1)/g.

min{l[Ais~-~-rUM : 8i E ~ n , } . Solve for s i :
Update the residual: r k+i/g ---- r k+(i-1)/g + Ai sk.

Update the solution: x k+i/g = x k+(i-1)/g + $k i .

(3)

752

For si 6 lit TM , introduce the vector ~i 6]R n, which is obtained by starting with
a zero vector and placing the nonzero entries of si in the right positions.

This is block Gauss-Seidel iteration on the normal equations for (1). The
residual ~ = r k, gives block Jacobi iteration on the normal equations. The in-
termediate residual is a combined Jacobi and Gauss-Seidel method. With the
introduction of a relaxation parameter successive over-relaxation (SOR) method
is obtained.

A l g o r i t h m 1.
Subdiv ide A i n t o g b locks .
Choose 0 < u)i < 2, i = 1 , 2 , . . . , g .
Choose x ° , i = 1,2, . • ",g, x° = ~i=lg xi-0.
Compute r ° = A x ° - b.
for k = 0 s t e p 1 un t i l convergence do

for i = 1 , 2 , . . . , g do
f = rk+(i -1) /g .

k min([[Ais~ +~[[M}. Solve for s i :

r k+i/g = r k+(i -1) /g -b w i A i s ~ .
xk+i /g : x k+(i -1) /g + wi~ k.

Check f o r convergence .

The series of approximations {x k} from Algorithm 1 converge to x*, a so-
lution of the least squares problem (1), and [[rk[[M is strictly monotonically
decreasing [4].

3 P a r a l l e l i z a t i o n

In this section, we consider the parallel implementation of Algorithm 1, and
formulate the main algorithm used in the experiments. First, we will see how
we can get the parallel version of the sequential algorithm at hand, and then
we will point out some of the advantages and disadvantages of asynchronous
computation over the synchronous mode.

Jacobi type of iterations axe straightforward to implement in parallel. In
Algorithm 1, if use ~ -- r k, we get Jacobi method. The main computation in
the inner loop is the solution of (3). This system can be solved concurrently
for each block i on multiple processors provided that the submatrices Ai are
available on the processors. The processors, after computing their corrections
on block components of x have to synchronize at the end of the loop before
starting with the next loop. Now that we are able to compute the corrections
from each block in one step, we have gained a considerable advantage over the
sequential algorithm in terms of parailelization. In synchronized algorithms, the
faster processors waiting for the slower ones to complete their computations
causes an overhead. To get higher utilization of the available CPU power we
can remove synchronization and the restriction on the order of the updates. By
removing synchronization from the synchronous Jacobi algorithm and letting

753

get the latest available value of the residual in the system, we obtain a totally
asynchronous algorithm.

Asynchronous algorithms reduce the synchronization penalty caused by fast
processors waiting for slow processors to complete the computations, and for
slow communication channels to deliver messages. The reason is that processors
can execute more updates when they are not constrained to wait for the results of
the computation on other processors. The only requirement on the computation
of the updates is that, eventually, the values of an early update cannot be used
any more in further evaluations. This condition is met as long as no processor
falls out of the system. However, removing synchronization brings out the danger
that the updates are performed on the basis of outdated (old) information.

An important disadvantage of asynchronism is that it can impede conver-
gence properties that the algorithm may possess when executed synchronously
or sequentially. In some cases, it is necessary to place limitations on the size of
communication delays to guarantee convergence. Necessary conditions for the
convergence of linear problems is given in Bertsekas and Tsitsiklis [2].

Before giving the asynchronous implementation of Algorithm 1, we will in-
troduce the totally asynchronous algorithmic model.

3.1 The Total ly Asynchronous Algor i thmic Mode l

Let T = {1, 2, . . .} be a set of times at which one block xi of x is updated by
some processor, and 7 "i = set of times at which xi is updated.

The processor computing si may not have access to the most recent values
of x j at the time of the update. For t E T ~, s i (t) is computed using a residual

= ~-~j=l A j x j (T j) -- b, where ~-j(t) are times satisfying

o < j(t) < t - 1 .

At all times t tg T ~, xl is left unchanged and

x (t) = x (t - 1) + $i(t), t e T ~ .

3.2 Asynchronous I m p l e m e n t a t i o n

The next algorithm is the asynchronous implementation of Algorithm 1 on an
MPMD machine with p -- g + 1 processors. In the algorithm, processor P0 is
used as the master and processors pi, i -- 1 ,2 , . . . , g act as slaves. Send and
Receive are communications with the master. Broadcas t is done by the master
processor.

Algorithm 2.
Subdivide A into g blocks.
Choose 0 < wi < 2,i = 1,2,...,g.
Choose x i (O) , i = 1 ,2 , . . . , g , x(0) = ~i=19 ~i(0).
Compute r(O) = Ax(O) - b.

754

I n i t i a t e each processor i = 1 ,2 , . . . , g :
Receive(A/, Po).
Receive (~% (0), P0)-
Reeeive(wi , po).
Preprocess.

Broadcast(r(0)).
{Let t be a g lobal counter of co r rec t ions and}

{let t~ azld t~ be tWO consecutive elements ill "T "i}
t = O .
while not termination d o

if slave t h e n
Solve for si :

min{llAisi + r(t~)llM : S i e]R~'}.
Update xi : xi = xi + O)iSi.
Send(Aisi ,po) .
Rece ive (r (t~), po).

else
Receive(A/s / , Pi).
r(t + 1) = r(t) + w/Ais/.
Check for termination.
if not termination t hen

t = t + l ;
Send(r(t) ,pi) .

master}
{s/ computed using r at t~}

= t }

4 E x p e r i m e n t s

Test problems used in the experiments are taken from Harwell-Boeing sparse
matrix test collection [5]. All the graphs refer to problem ASH958. Blocks are
formed by taking blocks of consecutive columns. For the specified problem, the
number of blocks g is 30. Each subproblem is solved using QR factorization and
SNE. Both parallel and sequential implementations are done on Intel Paragon.
Static assignment of blocks to processors is chosen to avoid the overhead of
assignments during the computation phase. The number of processors p reported
is the number of slave processors.

Algorithm 1 is a block Gauss-Seidel iteration which can be converted to Ja-
cob/ type iteration by taking ~ = r k , and the intermediate residual is a combined
Jacob/and Gauss-Seidel iteration. To verify this, the residual is "fixed" for p-
updates, i.e. ~ = r k+c/g in (3), where c = pli /pJ. The quantity /'] is the largest
integer not greater than its argument. Assume for simplicity that g mod p = 0.
This routine implements Gauss-Seidel updates with a Jacob/iteration on groups
of g/p block components. In this implementation p = g gives the block Gauss-
Seidel method, and p = 1 gives the block Jacob/ method. We see in Fig. 1
that the resulting convergence is between sequential Gauss-Seidel and Jacob/
methods acknowledging our statement. Increased number of processors results
in increased deterioration of the convergence of the residual.

755

In the second experiment, a "time-lag" of p is used, where P = r ~+(i-p)/g in
(3). The same block assignment as in the former case is used. Again, an increase
in the number of processors results in increased deterioration as seen in Fig. 2.
To state this result in a more formal way, let

p(p) = s u p l i ra s u p IIx k - x * II
x o k - -) . ~

be the average rate of convergence using p processors. For a special class of linear
systems Elsner, Neumann and Vemmer [6] prove p(p + 1) _> p(p).

In the next experiment, a totally asynchronous iteration on different number
of processors p, p <_ g, and g rood p ----- 0, is implemented. We see in Fig. 3 that
for a small number of processors the rate of convergence lies in the neighbor-
hood of sequential Gauss-Seidel method. If we increase the number of processors
further to make bet ter use of the available CPU power, the rate of convergence
is degraded. In an asynchronous implementation, the order of the updates may
change, and also the the total number of updates. In five different runs of the to-
tally asynchronous implementation on p = g processors, the number of updates
before convergence varies between 958 and 1046.

An asynchronous implementation on homogeneous processors with negligible
communication delays will, after some time, be almost cyclic in the updates. Let
tl and t2 be two consecutive updates of block i, t l , t2 E .]-i. At t2 the correction
s i (t l) is the solution of:

min{llA~sl + r(t l))llM) •

The updated solution and residual are:

x(t2) = x(t2 - 1) + wiSe(t1), r(t2) = r(t2 - 1) + w~Aisi(t l) ,

and for a cyclic implementation with cycle length g with p processors, an update
will be computed with a residual which is p time units old. Hence, tl = t2 - p ,
and we have a sequential implementation with time-lag of p.

We need to consider the effect of dependence between blocks on the con-
vergence rate in the asynchronous implementation. Let Ei = {j] block i and
block j have nonzero elements on the same row positions) be called the essential
neighbors [9] of block i. Let t l , t2 E T i be consecutive times of update from
block i. When we update the residual and approximate the solution at t ime
t2, ATr(t2) = 0 and 8i (t2) = 0, unless any block j , j E Ei has sent an update
between t l and t2. In the next experiment, to avoid zero corrections, block i is
forced to wait until an update from block j, j E E i arrives at the master. We use
p = g processors in a heterogeneous environment with each processor's speed
varying with a factor between 1 and 7. In Fig. 4, the curve marked W F E illus-
trates the implementation where the processors wait for their essential neighbors.
The time between two nonzero updates of block i will be shorter if the processor
waits for an essential neighbor of block i. Hence, we expect that the time-lag on
the average will be reduced. In the numerical experiments, we see a decrease in
the deteriorations, and as a result, an improvement in the convergence.

10 ~

10 ~

ld

10'

10 -t
=

10 ~
).

200 400 600
nr, of updates

r i
800 1000 1200

Fig. 1. Residual "fixed" for p updates. (1): Gauss-Seidel (p = 1)
(2) : p = 2 (3) : p = 3 (4) : p = 6 (5) : p = 1 0 (6) : p = 1 5 (7) : p = 3 0
(8): Jacobi

t
2OO

10 ~

100

= 10 -~

lo '

10'

756

400 600 800 1000
hr. of updates

1200

Fig. 2. "Time-lag" ofp. (1): Gauss-Seidel (2 = 1) (2): p -- 2 (3): p = 3 (4): p --- 6
(5): p = 10 (6): p = 15 (7): p = 30

The numerical testing depicted in Fig. 2 shows that increasing the number
of processors means that older information is used to calculate any new iterate.
This reduces the rate of convergence. To avoid that too old information is used
to update the residual in the asynchronous implementation, we introduce a limit
(Np) on the magnitude of time-lag, i.e., t - N p < Tj(t) _< t - - 1 for all i and
j , and all t > 0 , t E T i. In [2], this is called a partially asynchronous iterative
method. We use p = g processors in a heterogeneous environment as in the former

7 5 7

10 =

101

l o o

10-~

10 -z

10- i
2OO 1200

6

400 600 800 1000
hr. of upda tes

Fig. 3. Totally asynchronous on p processors. (1): p ---- 6 (2): p = 3
(3): Gauss-Seidel (4): p = 10 (5): p = 15 (6): Jacobi (7): p = 30

10 z

101

l o 0

= 10 -1
_--=

lO-~

10" I i I i f
2OO 4OO 6OO 8OO 1000

no. of upda tes
1200

Fig. 4. Heterogeneous environment with p -- g.
(1): "Wait-for-essential-neighbor"(WFE) (2): Totally asynchronous

experiment. When each processor has updated the residual a fixed number of
times (N), we flush the queue at the master and broadcast the new residual.
Letting N = 1,2,3, we observe that N = 1 gives (approximately) Jacobi's
method and N > 3 gives (approximately) totally asynchronous method (Fig. 5).

758

101 i

10 -~

10;

10"

1 4

2OO 4O0 6OO BOO 1000
nr.ofupd'ales

Fig. 5. Synchronization after N updates in a heterogeneous environment with p = g.
(1): N = 1 (~ Jacobi) (2): N = 2 (3): Totally asynchronous (4): N = 3

5 Concluding Remarks

Elsner, Neumann and Vemmer [6] have proved, under certain assumptions, that
increasing the number of processors decreases the convergence rate. This is shown
in the implementation of asynchronous iterations on linear least squares problems
and is explained as a result of using old information.

The heterogeneous environment had no significant effect on the rate of con-
vergence. However, the changes in the residual is damped (compare curve 2 in
Fig. 4 and curve 7 in Fig. 3).

The role of essential neighbors is also a factor that has to be taken into
consideration. Blocks are forced to wait before receiving a new residual until a
correction from their essential neighbors is received, and in the long run the time-
lag is decreased. The result is an improvement in convergence and degradation
in the deteriorations.

It is shown [4] that [[r(t)[[M is monotonically decreasing for the sequential
case. In [12], the relaxation parameter wi is chosen such that [[r(t)[[M is mini-
mized for every update. This reduces the effect of old information.

Another a t tempt to decrease deteriorations in the residual is the introduction
of synchronization into the system. It is seen that synchronization after an a
priori chosen number of corrections on the solution vector lessens the effect of
old information and improves the convergence rate. However, the effect of the
synchronization decreases rapidly with the "age" of the updates.

To our knowledge, the results of using asynchronous iterations on linear least
squares problems have not been discussed in literature. There is no theory to
characterize old information, only heuristics. A relaxation parameter can be used

759

to reduce the deteriorations. Synchronization is needed in many cases, but there
is no theory to support when to synchronize. Synchronization after only one or
two updates from each block reduces the effect of old information, but later
synchronizations do not cure the deteriorations.

In [10, 12] and in this paper several issues were studied to reduce the deteri-
oration in convergence. However, the single most influential factor based on the
numerical testing is the existence of old information in the computation of the
updates.

References

1. Bandet, G. M.: Asynchronous Iterative Methods for Multiprocessors. Journal of
the ACM. 25 (1978) 226-244

2. Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation, Numerical
Methods. Prentice-Hall Inc., Englewood Cliffs, N. J. (1989)

3. BjSrck,/~.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
PA (1996)

4. Dennis, J. E. Jr., Steihaug, T.: On the Successive Projections Approach to Least
Squares Problems. SIAM J. Numer. Anal. 23 (1986) 717-733

5. Duff, I., Grimes, R. G., Lewis, J. G.: User's Guide for the Harwell-Boeing Sparse
Matrix Collection. Technical Report TR/PA/92/86, CERFACS (1992)

6. Elsner, L., Neumann, M., Vemmer, B.: The Effect of the Number of Processors on
the Convergence of the Parallel Block Jacobi Method. Lin. Alg. Appl. 154-156
(1991) 311-330

7. George, J. A., Heath, M. T.: Solution of Sparse Linear Least Squares Problems
Using Givens Rotations. Lin. Alg. Appl. 34 (1980) 69-83

8. Kolm, P., Arbenz, P., Gander, W.: Generalized Subspace Correction Methods for
Parallel Solution of Linear Systems. Technical Report TRITA-NA-9509, C2M2,
Nada, KTH, Sweden (1995)

9. Savari, S. A., Bertsekas, D. P.: Finite Termination of Asynchronous Iterative Al-
gorithms. Parallel Computing. 22 (1996) 39-56

10. Steihang, T., Yal~mkaya, Y.: Asynchronous Methods and Least Squares: An Ex-
ample of Deteriorating Convergence. Technical Report No. 131. Department of
Informatics, University of Bergen, Bergen, Norway (1997)

11. Yal~mkaya, Y.: Asynchronous Solution of Linear Least Squares Problems Using
Generalized Group Iterative Methods. Master's thesis. University of Bergen, Nor-
way (1995)

12. Yal§mkaya, Y., Steihaug, T.: Asynchronous Methods and Least Squares: An Exam-
ple of Deteriorating Convergence. Proceedings of the 15th IMACS World Congress
on Scientific Computation, Modelling and Applied Mathematics, August 24-29,
1997, Berlin, Germany (to appear) [part of [10]]

