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A b s t r a c t .  In this paper we introduce the DELFT-JAVA multithreaded 
processor architecture and organization. The proposed architecture pro- 
vides direct translation capability from the JAVA Virtual Machine in- 
struction set into the DELFT-JAVA instruction set. The instruction set 
is a 32-bit P~ISC instruction set architecture with support for multiple 
concurrent threads and JAVA specific constructs. The parallelism is ex- 
tracted transparently to the programmer. Except for kernel programs, 
programmers need only be concerned with the semantics of the JAVA pro- 
gramming language. In addition, programmers who desire to take greater 
advantage of parallelism can execute privileged instructions which pro- 
vide additional capabilities for Multimedia and DSP processing. 

1 I n t r o d u c t i o n  

The JAVA language provides processor architects with opportunities for exploit- 
ing Instruct ion Level Parallelism (ILP). Rather  than requiring the processor to 
extract  all ILP from a single executing thread, the JAVA language intrinsically 
supports  p rogrammer  specification of parallelism through threads. Our goal in 
the DELFT-JAVA architecture is to extract  maximal  parallelism as defined by 
the JAVA language without burdening the programmer  to specify any additional 
parallelism tha t  is not inherent in the language constructs. At the highest level, 
a p rogrammer  of a DELFT-JAVA processor views it as a JAVA Virtual Machine 
(JVM) 

Using RISC architectural concepts, we present a concurrent mult i threaded ar- 
chitecture and organization tha t  fully utilizes the JAVA programming paradigm. 
Furthermore,  the architecture allows mechanisms for increasing single thread 
performance by allowing a single thread to issue multiple instructions per cycle. 
The architecture is scalable in the number of concurrent threads tha t  can be 
supported and in the number of execution units that  can be implemented. In 
addition to JVM execution, the DELFT-JAvA architecture provides general sup- 
por t  for C compilers and other operations that  are required in general purpose 
processors. Architectural support  for Multimedia SIMD and DSP instructions is 
also incorporated into the architecture. 
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Fig. 1. Concurrent Multithreaded Organization. 

2 DELFT-JAVA A r c h i t e c t u r e  

The DELFT-JAVA architecture has two logical views: 1) a JVM Instruction Set 
Architecture (ISA) and 2) a RISC-based ISA. The JVM view is stack-based with 
support for standard datatypes, synchronization, object-oriented method invoca- 
tion, arrays, and object allocation[l]. An important property of JAVA bytecodes 
is that statically determinable type state enables simple on-the-fly translation 
of bytecodes into efficient machine code[2]. We utilize this property to dynam- 
ically translate JAVA bytecodes into DELFT-JAVA instructions. Programmers 
who wish to take advantage of other languages which exploit the full capabil- 
ities of the DELFT-JAVA processor may do so but require a specific compiler. 
Some additional architectural features in the DELFT-JAVA processor which are 
not directly accessible from JAVA code include pointer manipulation, Multime- 
dia SIMD instructions, unsigned datatypes, and rounding/saturation modes for 
DSP algorithms. The remaining sections of this paper refer to the DELFT-JAVA 
architecture and not to the JAVA architectural view. 

Ins t ruc t ions :  In DELFT-JAVA, nearly all instructions are executed as 32- 
bit fixed width instructions with an 8-bit opcode. A typical encoding useful for 
JAVA translation is add. ind. w32 idx[0] ,  ix ,  iy -1 ,  i t -1 .  This instruction 
specifies a 32-bit, 2's complement integer addition. Normally, the register file is 
accessed with a direct reference (e.g. add rx,  ry ,  r t ) .  The DELFT-JAVA pro- 
cessor facilitates JVM translation by allowing indirect access through 3 indices 
into the register file which create a circular address. Using this mechanism, it is 
possible to provide both LIFO stack and FIFO vector operations. 
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3 Concurrent Mult i threaded Organization 

An organization of the DELFT-JAVA architecture which supports multiple con- 
current execution of threads and shared global execution units is shown in Figure 
1. We define a context as a hardware supported thread unit. A context does not 
include shared resources such as a first level (L1) cache, execution units, a reg- 
ister file, global instruction schedulers, nor global issue units. The term thread 
is generally used to refer to the programmer's view of a thread - a possibly con- 
current stream of independent executing instructions[3]. In this paper, the term 
context denotes the hardware on which a thread may run. 

Operation: All instructions are fetched from global shared memory and 
placed into a global L1 on-chip instruction cache. Each context also assumes 
a (logical) zero level (L0) instruction cache to provide concurrent per context 
instruction fetch capacity. During normal user-level operation, all instructions 
are fetched as JAVA instructions. The control unit is responsible for synchro- 
nization, cache locking, dynamic linking, I /O,  loading instructions, and general 
system functions. Since the JVM does not provide all the functionality generally 
required by a full operating system, many of these functions have been grouped 
into a special control unit. A control unit is analogous to a context except tha t  
it contains additional resources that  are not necessarily required within a JAVA 
context. After being fetched, most JAVA instructions are dynamically translated 
into the DELFT-JAVA instruction set. Because the instructions are stored in cache 
memory as JAVA instructions, branching and method invocation code produced 
by JAVA compilers will execute properly on the DELFT-JAVA architecture. Af- 
ter translation, the instructions are decoded and placed in a local instruction 
window which keeps track of issued and pending instructions. The local instruc- 
tion scheduler takes translated instructions in a RISC form and schedules them 
for execution. The local issue unit determines if the instructions that  have been 
locally scheduled can be issued to the global instruction scheduler. 

All instructions which require access to shared resources must be forwarded to 
the global instruction scheduler. This unit schedules the aggregated instructions 
destined for execution units. The JAVA language specifies that  in the absence 
of explicit synchronization, a JAVA implementation is free to update the main 
memory in any order[4]. This relaxed memory consistency model allows the 
scheduler to reorder the instructions from individual contexts to optimize the 
utilization of the shared execution units. The global issue unit ensures that  global 
resources are available prior to issuing instructions. Instructions may be issued 
in one of two forms: single independent instructions and compound parcels[5]. 

After execution, all results are forwarded to the global retire unit. This unit 
removes the requirement for a general interconnection unit between all contexts 
and execution units. If instructions were not executed speculatively, the global 
retire unit writes the results to the register file. Otherwise, the result is main- 
rained in the retire unit until the conditional outcome is known. The local retire 
unit removes the instruction from the window and commits state in the context. 
Each context may retire multiple instructions per cycle. 

Translation: Most JVM bytecodes are translated. However, some more corn- 
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Fig. 2. Concurrent Multithreaded Registers. 

plex instructions are directly incorporated into the DELFT-JAVA ISA. In particu- 
lar, the following categories of instructions are not translated: a) synchronization, 
b) array management c) object management, d) method invocation, e) exception 
handling, and f) complex branching. Indirect access to the register file plays the 
largest role in the translation of JAVA bytecodes to DELFT-JAVA instructions. 
As shown in Figure 2, when executing JAVA instructions, the register file in- 
dex registers create a circular buffer that is mapped to the stack in memory. A 
set of valid and modified bits are associated with each register. These bits are 
maintained logically within the local context. A JAVA instruction such as J_add 
goes through two intermediate translation phases. The first phase translates the 
instruction into a valid DELFT-JAVA instruction. In this case, an add. ind.w32 
idx[0] i t ,  i t - l ,  ±t-1 is generated by the translation logic. As an example, 
assume the top of stack referenced by ±dx [0]. r t  points to r5. The second phase 
decodes the indirect register reference and places the decoded instruction into 
the instruction window as add.w32 r5, r4,  r4. When the instruction is placed 
in the window, the ±dx [0]. r t  is modified by the destination decrement. Func- 
tionally, this performs r5 + r4 -+ r4. In the DELFT-JAVA processor, the stack 
grows upward in both memory and in register file references. These registers 
automatically prefetch and spill as the stack size changes. 

Link Translation Buffer: An important consideration in accelerating JAVA'S 
dynamic linking and polymorphic method invocation is a Link Translation Buffer 
(LTB). The LTB acts as a global repository for dynamically resolved names. Dur- 
ing dynamic invocation, the name to be resolved is contained in the constant 
pool. After a process called resolution[4], the name contained within the constant 
pool can be associated with a physical location in memory for each object. This 
association is placed in the Link Translation Buffer. If the control unit finds the 
constant pool address of the requesting object in the LTB and the requesting 
class has access permissions to the data, then the LTB efficiently returns the 
resolved address. A programmer may also completely disable the LTB or more 
judiciously issue fhshLTB instructions. 
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4 R e s u l t s  a n d  C o n c l u s i o n s  

We present preliminary results for a 32-bit full complex 4-point F F T  kernel. 
The results are based on a C + +  model of the DELFT-JAVA processor and rep- 
resent figures for preresolved classes with single-cycle execution units. The F F T  
is compiled using Sun's javac -O. The F F T  algorithm is based on Pease's tensor 
product  decomposition. For a single-issue, single context, inorder processor, 226 
cycles are required. For a single-issue, four context, inorder processor, 84 cycles 
are required when amortized over 4 concurrent FFT 's  with adequate execution 
units. Because the javac compiler is conservative in optimizing loads and stores, 
a number of instructions are generated that  could be further optimized. Because 
we are accelerating JAVA programs produced directly from a JAVA compiler, we 
do not use any of the multimedia datatypes which would enhance the F F T  per- 
formance. We anticipate with better  optimizations and multiple issue per thread, 
the F F T  performance of the DELFT-JA~VA processor will improve by 10x based 
on a similar algorithm used in [6]. 

In this paper we have introduced the DELFT-JAVA processor architecture 
and organization. The goal of the processor is to exploit the parallelism inherent 
in JAVA multi threaded programs without requiring the programmer to specify 
any additional information. We have accomplished this by designing a concur- 
rent multi threaded organization using modern RISC techniques with multiple 
instruction issue capability per context. Compared to current techniques, our 
processor efficiently exploits the JAVA programming language to provide a very 
high performance JAVA processor architecture. 

R e f e r e n c e s  

1. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java 
Series. Addison-Wesley, Reading, MA, USA, 1997. 

2. James Gosling. Java Intermediate Bytecodes. In ACM SIGPLAN Notices, pages 
111-118, New York, NY, January 1995. Association for Computing Machinery. 
ACM SIGPLAN Workshop on Intermediate Representations (IR95). 

3. Bil Lewis and Daniel J. Berg. Threads Primer: A Guide to Multithreaded Program- 
ming. SunSoft Press - A Prentice Hall Title, Mountain View, California, 1996. 

4. James Gosling, Bill Joy, and Guy Steele, editors. The Java Language Specification. 
The Java Series. Addison-Wesley, Reading, MA, USA, 1996. 

5. S. Vassiliadis, B. Blaner, and R. J. Eickemeyer. SCISM: A Scalable Compound 
Instruction Set Machine. IBM Journal of Research and Development, 38(1):59-78, 
January 1994. 

6. C. J. Glossner, G. G. Pechanek, S. Vassiliadis, and J. Landon. High-Performance 
Parallel FFT Algorithms on M.f.a.s.t. Using Tensor Algebra. In Proceedings of the 
Signal Processing Applications Conference at DSPx'96, pages 529-536, San Jose 
Convention Center, San Jose, Ca., March 11-14 1996. 


