
Morphological Hough Transform on the
Instruction Systolic Array

Bertil Schmidt 1, Manfred Schimmler 2 and Heiko Schr6der 3

1 1SATEC GmbH, D-24118 Kiel, Germany
2 Braunschweig University of Technology, Germany

3 Loughborough University of Technology, UK

Abstract. Instruction systolic arrays have been developed in 1987 [Lal] in
order to combine the speed and the simplicity of systolic arrays with the
flexibility of MIMD parallel computer systems. In this paper a new algorithm
for line detection is presented which applies the morphological approach to the
well known Hough transform. The quality of its results is significantly higher
than that of the classical Hough transform. This new algorithm has been
tailored towards the capabilities of the instruction systolic array. It has been
implemented on the Systola 1024, the first parallel computer of this particular
architecture on the market. Systola 1024 is an low cost add-on board for
standard PC's with PCI slots.

1 Introduction

Instruction systolic arrays (ISAs) provide a programmable high performance hardware
for specific computation intensive applications [DS1,Schl]. Typically, such an array is
connected to a sequential host, thus operating like a coprocessor which solves only the
computationally intensive tasks within a global application. The ISA model is a mesh
connected processor grid, where the processors are controlled by three streams of
control information: instructions, row-selectors and column-selectors. The concept of
instruction systolic arrays is explained in detail in the second section.

Hough transform is a standard technique for line detection in image processing. It is
based on the accumulation of information about straight lines intersecting with points
(pixels) of the image plane. The details of Hough transform are given in section 3. The
classical Hough transform creates artefacts if there are structures in the image like
dashed lines or small line segments. Therefore, modifications of Hough transform have
been developed [BPS1,Leal]. In this paper an approach based on mathematical
morphology is taken to find an efficient implementation of Hough transform that
minimises the number of artefacts in the transform space. This algorithm is explained in
section 4.

The implementation of this new algorithm is presented in section 6. For this purpose
the Systola 1024 is shortly explained in section 5. It is the instruction systolic computer
architecture on which the algorithm has been implemented.

Section 7 discusses the performance in comparison to implementations on a
sequential architecture. The results of the original Hough transform and those of the
new algorithm are demonstrated in an example.

799

2 Principle of the ISA

The ISA is a quadratic array of identical processors, each connected to its four direct
neighbours by data wires. The array is synchronised by a global clock. The processors
are controlled by instructions, row- and column-selectors.

The instructions are input in the upper left comer of the processor array, and from
there they move step by step in horizontal and vertical direction through the array.
This guarantees that within each diagonal of the array the same instruction is active
during a single clock cycle. Processor (i+l,j) and (i,j+l) execute in clock cycle k+l
an instruction that has been executed by processor (i,j) in clock cycle k.

The selectors also move systotically through the array: the row-selectors
horizontally from left to right, the column-selectors vertically from top to bottom
(Fig. 1). The selectors mask the execution of the instructions within the processors,
i.e. an instruction is executed if and only if both selector bits, currently in that
processor, are equal to one.

i n s t r u c t i o n ~ , \ ~ c o l u m n

[~ I selectors

r ~ o w - " ISA

selectors
Fig. 1: Control flow in an ISA

Every processor has read and write access to its own memory. Beside that, it has a
designated communication register (C-register) that can also be read by the four
neighbour processors. Two adjacent processors can exchange data by writing on their
own C-register and afterwards reading the C-register of the other in two subsequent
clock phases. Within one clock phase the reading access is always performed before
the writing access. This convention on the one hand avoids read/write-conflicts, on
the other hand it creates the possibility to broadcast information across a whole
processor-row or -column with one single instruction. This property can be exploited
for an efficient calculation of row-sums and row-ringshifts which are the key-
operations in the parallel Hough transform implementation described in section 6:

Row-sum. One important advantage of ISAs is the capability of performing aggregate
functions within one (or a constant number of) instructions. Aggregate functions are
operations where every processor needs information of all processors with smaller
column index and the same row index (or vice versa). The simplest example is the
computation of the row sums: Each processor computes the sum of the C-registers of
its left neighbour and itself. Since the execution of this operation is pipelined along

800

the row each processor accumulates the sum of all C-registers up to its own which is
identical to the prefix sum.

Row-ringshift: The contents of the C-registers can be ringshifted along the processor
rows by two instructions. Every two horizontally adjacent processors exchange data
(using one read left and one read right operation). Because of the instruction flow
from west to east this implements a ringshift. Of cause, a column-ringshift can be
executed in the same way.

3 Hough Transform

The classical Hough transform (HT) [IK1] is a very powerful technique to detect
straight lines in a binary image. It transforms the image into a parameter space by
counting pixels on straight lines. For every possible straight line in the image a
counter is introduced which accumulates the number of pixels which satisfy the line
equation y = mx+ c. In the parameter space we represent a straight line by these two
parameters: the slope m and the intercept (the intersection point with the y-axis) c.
This representation is rather simple. The set of straight lines intersecting in one point
of the original image is represented by a straight line in the m-c-space. The
disadvantage of this representation is the fact that vertical lines (with infinite slope)
cannot be represented. However, as shown in section 6, this does not cause problems
in our implementation.

The Hough transform algorithm proceeds now in the following way: An
accumulator array B[mk, cJ is introduced to represent the parameter space. For every
white pixel in the image and every slope mk the corresponding value c/is computed
from the line equation and the counters B for all straight lines intersecting in this pixel
are incremented by one. By that at the end of the execution the value of each counter
represents the fraction of the corresponding straight line in the original image. The
local maxima of the B array indicate the presence of lines of certain slopes and
intersects in the image.

The HT algorithm in the simplest form for a binary image I(i,j) of size NxN and an
accumulator array B[mk, cJ, where k = O, M-l, mk = k/M, looks like this:

Alg. 1: Standard HT

for i:=0 to N-1 do
for j:=0 to N-1 do

if I(i,j)=l then
for k:=0 to M-1 do increment B[mbround(j-i.k/M)]

One disadvantage of HT is the high requirement in computing power such that on-
line computations are impossible on existing sequential computers. The work is of the
order ND M..

Therefore, a parallel implementation is useful and necessary for many
applications. Another disadvantage is the fact that HT creates artefacts by counting
structures in the image that finally turn out to be only very small fractions of straight
lines (e.g. only one dot). In [BPS1] a new method to solve this problem is presented.
Its basic idea and the new algorithm derived from it is presented in the next section.

801

4 Morphological Hough Transform

From the point of mathematical morphology the identification of a white pixel is the
erosion operation with a structural element that consists of only one dot. Whenever
the Hough transform algorithms fEnds a white pixel, it increments the counter for
every straight line containing this pixel. By using a structural element which
represents a straight line by more than one dot we can significantly reduce the number
of counter increments. In particular, all those cases where the white pixel was isolated
or consists of only a small white segment do not lead to an increment of any counter.
This suppresses the artefacts in the m-c-space. Ideally, a straight line can be
represented by two pixels (because there is exactly one straight line intersecting with
these two pixels). By using the morphological approach with a structural element
consisting of two pixels for every possible slope we increase a counter if and only if
both pixels match in the original image.

Alg. 2 shows an implementation of this method (with l(i,j), B[mk, cJ like in Alg. 1
and the structuring element for each slope k has the distance (qk, Pk) from the actual
pixel-coordinates). In order to produce a parallel implementation on the ISA a much
more efficient version of the morphological approach becomes possible if the loops in
this program are swapped as in Alg. 3.

AIg. 2: MHT AIg. 3: MHT with swapped loops

for i:=0 to N-1 do
for j:=0 to N-1 do

if I(i,j)=l then
for k:=0 to M-1 do

if I(i+qk,j+qk)=l then
increment B [mk,rOund(j-i'pk/qk)]

for k:=0 to M-1 do
for i:=0 to N-1 do

for j:=0 to N-1 do
if I(i,j)=l and I(i+qk,j+pk)=l then

increment B [mk,round(j-i'pk/qk)]

Now we perform the accumulation operations for the complete image slope by slope.
Every slope is represented by a strucatral element of two pixels, e.g. (0, 0) and (x,y).
By shifting the image by (-x,-y) we get two copies of the image on top of each other.
Now the morphological erosion can be performed by one AND-operation of the
original image with the shifted image.

In reality, there may occur uncertainties due to rounding effects: Not every
straight line has a slope which can be exactly represented by two pixels with a
constant distance. The solution of [BPSI] selects a collection of structural elements
that are almost equidistant. Skewing the image and choosing an appropriate structural
element can avoid this problem. The details of this solution as well as the parallel
implementation of the morphological erosion with the shifted image are given in the
section 6.

5 Architecture of Systola 1024

The parallel computer Systola 1024 is an low cost add-on board for standard PCs
[LMS1], providing a 32x32-ISA. It consists of a 4x4 array of processor chips. Each
chip contains 64 Processors, arranged as an 8x8 square.

802

In order to exploit the computation capabilities of this unit, it is necessary to
provide data and control information at an extremely high speed. Therefore, a
cascaded memory concept is implemented on board that forms a fast input and output
environment for the parallel processing unit (Fig. 2).

For the fast data exchange with the processor array there are rows of intelligent
memory units at the northern and westem borders of the array. These units are called
interface processors. Eight interface processors are integrated onto one chip. Each
interface processor is connected to its adjacent array processor by a single wire for
data transfer in each direction.

The interface processors have access to an on board memory by means of special
fast data channels, those at the northern interface chips with the northem board RAM,
and those of the western chips with the western board RAM. The board RAM can
communicate bidirectionally with the PC memory. The data transfer between every
two memory units within this hierarchy is controlled by an on board controller chip.
In particular, it controls the channels between the interface processors and the board
RAMs as well as between the board RAMs and the PCI bus of the PC.

r-
I board memory

board memory

I J

 alSA
• \

interface

Fig. 2: BRock diagram of the Systola1024-board

In addition, the controller supplies the interface processors and the array processors
with instructions and selectors that are stored in an additional memory on board, the
ISA program memory. The ISA program memory can contain a large variety of
programs for the processor array, according to the different tasks that may be
necessary to perform during one application. Every word clock cycle the controller
transmits one instruction, one row-selector and one column-selector from the ISA
program memory to the interface processors. The instruction consists of 32 bits as
well as the row-selector and the column-selector. A triple of instruction, row-selector
and column-selector is called a program diagonal. The ISA program memory can
contain 16 K program diagonals.

The controller receives its instructions either directly from the PC as so board
instructions, or it can operate autonomously. In the second case it receives controller
instructions from an instruction queue, which is located on the board, too. The
instruction queue can be loaded from the PC and it consists of up to 256 controller
instructions, each of them in 16 bit format.

Systola 1024 has a peak performance of 3200 MIPS. In practice the performance
lies, dependent on the application, between 1000 and 3000 MIPS.

803

6 Parallel Implementation of Morphological Hough Transform

For the implementation of the MHT we take a NxN, N=512, binary image. Every
processor of Systola 1024 stores a 16x16 subimage in 16 intemal registers. So each of
this registers stores 16 adjacent pixels of the same row. The capabilities of ISAs to
compute row (column)-sums and -ringshifts very efficient (see section 2) are
exploited in the parallel implementation:

The erosion and accumulation for horizontal (vertical) lines can be done very fast:
For a structuring element of two pixels with distance d, we can shift a copy of the
image above the origin by d pixels. Now a counter has to be incremented if a pixel of
both, the origin and the shifted image are set. With shearing of the image other line
angles are transformed in horizontal position, such that the efficient horizontal
operations are always applied.

Horizontal Accumulation. This operation means to sum up the pixels of each image-
row. The implementation first builds the subrow-sum within each processor in its C-
register. Afterwards the efficient processor-row-sum computes the whole image-row-
sum. This operation is repeated 16 times for every subimage-row of each processor.
At the end of the iteration the last processor-column stores the results. Because of the
limited memory (32 registers) of each processor the results are shifted one processor-
column to west in every second iteration step. The L th processor-column always
collects accumulator-entries for the line-intercept i. When all processor-columns are
covered the accumulator-array-results are transferred to the board-RAM.

Horizontal Erosion. Let the structuring element have the distance d from the image-
origin. Then an image-row-ringshift for d positions and an AND-Operation computes
the horizontal erosion. In Systola an image-subrow is ringshifted one processor.
Afterwards a shifting for (d mod 16) positions within each processor is performed.
Then a ringshift for a (d div 16)-processor-distance computes the image-row-ringshift.
Finally one AND-Operation between the origin sub-row-register and the ringshifted
sub-row-register in each processor calculates the erosion. After that the result is
vertical accumulated.

Shearing. The shearing for line-angles between 0 ° and 45 ° is an image-column-
ringshift, where each column has a different shifting-distance depending on the line-
angle. To avoid complex operations this distances are precalculated.

For the implementation we take N slopes between 0 o and 45 o. So the following line
equations are considered: y = (k/(N-1)).x + c; k=O...N-1; c=O...N-1. The different
line-angles are handled in increasing order. Then the shear operation only needs to
incorporate the relative shear between neighbouring angles. So the image-column-
ringshift only has to consider the next column. The precalculated shearing-distances
turns to a binary image-row-mask: Only the image-columns with an entry in the
corresponding mask-position has to be ringshifted.

The angles between 0 ° and -45 ° are computed by loading the input image with
transposed rows on the ISA and applying the same program. The angles between 45 °
and 90 ° (-45 ° and -90 9 are calculated by storing the 16xl 6-subimage column-wise in

804

each processor and applying the reflected ISA-program (swapping row- and column-
selectors, changing west and north, east and south) for 0 °to 45 ° (0 ° and -45°). The
finally accumulator size is 4N (slopes) x N (intercepts).

7 Performance and Experimental Results

To compare the performance of the parallel algorithm in section 6, we compare the
implementation on Systola 1024 with two sequential versions on a PC (Pentium
Processor, 200 MHz, optimised code). The first version is the standard version of the
HT-algorithm (referred to as "P200 Standard" in Table 1). The second version is a
sequential simulation of the algorithm implemented on Systola 1024 (referred to as
"P200 Parallel" in Table 1). For a comparison to other parallel architectures for the
Hough transform see [Ferl].

For the implementations we use binary images of size NxN, N=512, and an 8-bit
accumulator array consisting of 4N slopes and N intercepts. Systola needs 0,25 s (375
processor instructions per slope) for the standard HT and 0,31 s (471 instructions per
slope) for the MHT. Since computing time dominates communication time in this
application, data transfers can be almost totally hidden as it can be executed
concurrently to the computation.

The standard HT (Alg. 1) depends on the number of white pixels in the input
image, but has the disadvantage of a complex computation of the accumulator bins to
be incremented. This means a computing time of 70, 0 s in the worst case (all pixels
white). The used edge images from the pick-and-place process of multichip-modules
(Fig. 7) have 10% seeded pixels on an average, which corresponds to a computing
time of 7, 0 s.

The standard MHT (Alg. 2) depends on the number of seeded pixels in the input
image and in each eroded image. An average multichip-module edge image (Fig. 7)
has 10% seeded pixels in the input and 1% in each eroded image, which leads to a
computing time of 5, 7 s in the average case.

The sequential version of the parallel algorithm in section 6 is independent of the
number of white pixels, but has the advantage of an easier accumulation. This leads to
a constant computing time of 5, 0 s for the HT and 6,2 s for the MHT for each image.

Table 1. Comparisons of the average performance of HT/MHT for a 512x512 image and 2048
different slopes on Systola 1024 (including data transfers) and Pentium 200

Systola 1024
HT 0,25 s

MHT 0,31 s

P200Standard P200Parallel
7,0s 5,0s
5,7s 6,2s

Speedup
28 / 20
18 / 20

In order to evaluate the qualitative performance of the MHT we have compared it with
the HT on several different images.

Fig. 3 shows three lines close together. The relevant part of the accumulator array
from the HT and MHT (with distance d=50 for the structuring element) is displayed
as a height field in Fig. 4 and 5. It can be seen that both, HT and MHT produce
artefacts (in the Figures they are behind the three peaks representing the lines). In case

805

of MHT these artefacts are significantly reduced. The MHT also creates an enhanced
accumulator contrast, which simplifies the higher order image analysis.

Fig. 3: Original Image

Fig. 4: Accumulator from HT Fig. 5: Accumulator from MHT

Comparisons of the effectiveness of the HT and MHT methods are displayed in
Fig. 6-9. Fig. 6 shows an image from the pick-and-place process of rnultichip-
modules. Fig. 7 shows the result after an edge detector is performed on the image.
Fig. 8 and 9 show the result after a HT and MHT (d=lO), where accumulator entries
greater than 90 and 80 are detected. The resulting lines are displayed after an AND-
operation with the edge image. It can be readily seen that the HT picks up many more
false lines than the MHT in the dotted areas.

Obviously there is still lots of scope for free tuning the combination of HT and
morphology to best fit a given application. For example, the structuring elements
could be optimised to search for lines of a given thickness (using larger structuring
elements), of a given length or which are dotted. We attempt to work with this method
further in the area of automatic quality control and image classification [Kol].

References

1. Beresford-Smith, B., Pham, B., Schrtider, H.: A parallel morphological implementation
of the Hough transform, Proc. 25th. HICSS, 111-119 (1992).

2. Dittrich, A., Schmeck, H.: Given's Rotation on the Instruction Systolic Array. In: Wolf,
G., Legendi, T., Schendel, U. (eds.): PARCELLA '88, Mathematical Research, Bd. 48,
Akademie Verlag, Berlin, 340-346 (1988)

806

3. Ferretti, M., Albanesi, M.G.: Architectures for the Hough transform, Computer Vision,
Graphics and Image Processing 44 (1996) 542-551

4. Illingworth, J., Kittler, J.: A survey of the Hough transform. Computer Vision, Graphics
and Image Processing, 44, 87-116 (1988)

5. Kolbe, W.: Online Qualit~itskontmlle von Oberfl/~chen mit den ISATEC Surface Quality
Scannern SQS, Journal ftir Oberfl~ichentechnologie, 3 (1997)

6. Laug, H.-W., The Instruction Systolic Array, a parallel architecture for VLSI,
integration, the VLSI Journal 4, 65-74, (1986)

7. Lang, H.-W., Maat3, R., Schimmler, M.: The Instruction Systolic Array
implementation of a low cost parallel architecture as add-on board for Personal
Computers, Proc. HPCN 94, Munich (1994)

8. Leavers, V.F.: Which Hough transform, Computer Vision, Graphics and Image
Processing 58 (1993) 250-265

9. Schimmler, M.: Fast sorting on the Instruction Systolic Array, Technical Report No.
8709, Christian-Albrechts-University, Kiel, (1987)

Fig. 6: Original image Fig. 7: Edge image

Fig. 8: Result from a HT Fig. 9: Result from a MHT

