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Abstract. Instruction systolic arrays have been developed in 1987 [Lal] in 
order to combine the speed and the simplicity of systolic arrays with the 
flexibility of MIMD parallel computer systems. In this paper a new algorithm 
for line detection is presented which applies the morphological approach to the 
well known Hough transform. The quality of its results is significantly higher 
than that of the classical Hough transform. This new algorithm has been 
tailored towards the capabilities of the instruction systolic array. It has been 
implemented on the Systola 1024, the first parallel computer of this particular 
architecture on the market. Systola 1024 is an low cost add-on board for 
standard PC's with PCI slots. 

1 Introduction 

Instruction systolic arrays (ISAs) provide a programmable high performance hardware 
for specific computation intensive applications [DS1,Schl]. Typically, such an array is 
connected to a sequential host, thus operating like a coprocessor which solves only the 
computationally intensive tasks within a global application. The ISA model is a mesh 
connected processor grid, where the processors are controlled by three streams of 
control information: instructions, row-selectors and column-selectors. The concept of 
instruction systolic arrays is explained in detail in the second section. 

Hough transform is a standard technique for line detection in image processing. It is 
based on the accumulation of information about straight lines intersecting with points 
(pixels) of  the image plane. The details of Hough transform are given in section 3. The 
classical Hough transform creates artefacts if there are structures in the image like 
dashed lines or small line segments. Therefore, modifications of Hough transform have 
been developed [BPS1,Leal]. In this paper an approach based on mathematical 
morphology is taken to find an efficient implementation of Hough transform that 
minimises the number of  artefacts in the transform space. This algorithm is explained in 
section 4. 

The implementation of this new algorithm is presented in section 6. For this purpose 
the Systola 1024 is shortly explained in section 5. It is the instruction systolic computer 
architecture on which the algorithm has been implemented. 

Section 7 discusses the performance in comparison to implementations on a 
sequential architecture. The results of the original Hough transform and those of the 
new algorithm are demonstrated in an example. 
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2 Principle of  the ISA 

The ISA is a quadratic array of identical processors, each connected to its four direct 
neighbours by data wires. The array is synchronised by a global clock. The processors 
are controlled by instructions, row- and column-selectors. 

The instructions are input in the upper left comer of the processor array, and from 
there they move step by step in horizontal and vertical direction through the array. 
This guarantees that within each diagonal of the array the same instruction is active 
during a single clock cycle. Processor (i+l,j) and (i,j+l) execute in clock cycle k+l 
an instruction that has been executed by processor (i,j) in clock cycle k. 

The selectors also move systotically through the array: the row-selectors 
horizontally from left to right, the column-selectors vertically from top to bottom 
(Fig. 1). The selectors mask the execution of the instructions within the processors, 
i.e. an instruction is executed if and only if both selector bits, currently in that 
processor, are equal to one. 

i n s t r u c t i o n ~ , \  ~ c o l u m n  

[~  I selectors 

r ~ o w  - "  ISA 

selectors 
Fig. 1: Control flow in an ISA 

Every processor has read and write access to its own memory. Beside that, it has a 
designated communication register (C-register) that can also be read by the four 
neighbour processors. Two adjacent processors can exchange data by writing on their 
own C-register and afterwards reading the C-register of the other in two subsequent 
clock phases. Within one clock phase the reading access is always performed before 
the writing access. This convention on the one hand avoids read/write-conflicts, on 
the other hand it creates the possibility to broadcast information across a whole 
processor-row or -column with one single instruction. This property can be exploited 
for an efficient calculation of row-sums and row-ringshifts which are the key- 
operations in the parallel Hough transform implementation described in section 6: 

Row-sum. One important advantage of ISAs is the capability of performing aggregate 
functions within one (or a constant number of) instructions. Aggregate functions are 
operations where every processor needs information of all processors with smaller 
column index and the same row index (or vice versa). The simplest example is the 
computation of the row sums: Each processor computes the sum of the C-registers of 
its left neighbour and itself. Since the execution of this operation is pipelined along 
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the row each processor accumulates the sum of all C-registers up to its own which is 
identical to the prefix sum. 

Row-ringshift: The contents of the C-registers can be ringshifted along the processor 
rows by two instructions. Every two horizontally adjacent processors exchange data 
(using one read left and one read right operation). Because of the instruction flow 
from west to east this implements a ringshift. Of cause, a column-ringshift can be 
executed in the same way. 

3 Hough Transform 

The classical Hough transform (HT) [IK1] is a very powerful technique to detect 
straight lines in a binary image. It transforms the image into a parameter space by 
counting pixels on straight lines. For every possible straight line in the image a 
counter is introduced which accumulates the number of pixels which satisfy the line 
equation y = mx+ c. In the parameter space we represent a straight line by these two 
parameters: the slope m and the intercept (the intersection point with the y-axis) c. 
This representation is rather simple. The set of straight lines intersecting in one point 
of the original image is represented by a straight line in the m-c-space. The 
disadvantage of this representation is the fact that vertical lines (with infinite slope) 
cannot be represented. However, as shown in section 6, this does not cause problems 
in our implementation. 

The Hough transform algorithm proceeds now in the following way: An 
accumulator array B[mk, cJ is introduced to represent the parameter space. For every 
white pixel in the image and every slope mk the corresponding value c/is computed 
from the line equation and the counters B for all straight lines intersecting in this pixel 
are incremented by one. By that at the end of the execution the value of each counter 
represents the fraction of the corresponding straight line in the original image. The 
local maxima of the B array indicate the presence of lines of certain slopes and 
intersects in the image. 

The HT algorithm in the simplest form for a binary image I(i,j) of size NxN and an 
accumulator array B[mk, cJ, where k = O, .... M-l, mk = k/M, looks like this: 

Alg. 1: Standard HT 

for i:=0 to N-1 do 
for j:=0 to N-1 do 

if I(i,j)=l then 
for k:=0 to M-1 do increment B[mbround(j-i.k/M)] 

One disadvantage of HT is the high requirement in computing power such that on- 
line computations are impossible on existing sequential computers. The work is of the 
order ND M.. 

Therefore, a parallel implementation is useful and necessary for many 
applications. Another disadvantage is the fact that HT creates artefacts by counting 
structures in the image that finally turn out to be only very small fractions of straight 
lines (e.g. only one dot). In [BPS1] a new method to solve this problem is presented. 
Its basic idea and the new algorithm derived from it is presented in the next section. 
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4 Morphological  Hough  Transform 

From the point of mathematical morphology the identification of a white pixel is the 
erosion operation with a structural element that consists of only one dot. Whenever 
the Hough transform algorithms fEnds a white pixel, it increments the counter for 
every straight line containing this pixel. By using a structural element which 
represents a straight line by more than one dot we can significantly reduce the number 
of counter increments. In particular, all those cases where the white pixel was isolated 
or consists of only a small white segment do not lead to an increment of any counter. 
This suppresses the artefacts in the m-c-space. Ideally, a straight line can be 
represented by two pixels (because there is exactly one straight line intersecting with 
these two pixels). By using the morphological approach with a structural element 
consisting of two pixels for every possible slope we increase a counter if and only if 
both pixels match in the original image. 

Alg. 2 shows an implementation of this method (with l(i,j), B[mk, cJ like in Alg. 1 
and the structuring element for each slope k has the distance (qk, Pk) from the actual 
pixel-coordinates). In order to produce a parallel implementation on the ISA a much 
more efficient version of the morphological approach becomes possible if the loops in 
this program are swapped as in Alg. 3. 

AIg. 2: MHT AIg. 3: MHT with swapped loops 

for i:=0 to N-1 do 
for j:=0 to N-1 do 

if I(i,j)=l then 
for k:=0 to M-1 do 

if I(i+qk,j+qk)=l then 
increment B [mk,rOund(j-i'pk/qk)] 

for k:=0 to M-1 do 
for i:=0 to N-1 do 

for j:=0 to N-1 do 
if I(i,j)=l and I(i+qk,j+pk)=l then 

increment B [mk,round(j-i'pk/qk)] 

Now we perform the accumulation operations for the complete image slope by slope. 
Every slope is represented by a strucatral element of two pixels, e.g. (0, 0) and (x,y). 
By shifting the image by (-x,-y) we get two copies of the image on top of each other. 
Now the morphological erosion can be performed by one AND-operation of the 
original image with the shifted image. 

In reality, there may occur uncertainties due to rounding effects: Not every 
straight line has a slope which can be exactly represented by two pixels with a 
constant distance. The solution of [BPSI] selects a collection of structural elements 
that are almost equidistant. Skewing the image and choosing an appropriate structural 
element can avoid this problem. The details of this solution as well as the parallel 
implementation of the morphological erosion with the shifted image are given in the 
section 6. 

5 Architecture of  Systola 1024 

The parallel computer Systola 1024 is an low cost add-on board for standard PCs 
[LMS1], providing a 32x32-ISA. It consists of a 4x4 array of processor chips. Each 
chip contains 64 Processors, arranged as an 8x8 square. 
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In order to exploit the computation capabilities of this unit, it is necessary to 
provide data and control information at an extremely high speed. Therefore, a 
cascaded memory concept is implemented on board that forms a fast input and output 
environment for the parallel processing unit (Fig. 2). 

For the fast data exchange with the processor array there are rows of intelligent 
memory units at the northern and westem borders of the array. These units are called 
interface processors. Eight interface processors are integrated onto one chip. Each 
interface processor is connected to its adjacent array processor by a single wire for 
data transfer in each direction. 

The interface processors have access to an on board memory by means of special 
fast data channels, those at the northern interface chips with the northem board RAM, 
and those of the western chips with the western board RAM. The board RAM can 
communicate bidirectionally with the PC memory. The data transfer between every 
two memory units within this hierarchy is controlled by an on board controller chip. 
In particular, it controls the channels between the interface processors and the board 
RAMs as well as between the board RAMs and the PCI bus of the PC. 

r- 
I board memory 

board memory 

I J 

  alSA 
• \ 

interface 

Fig. 2: BRock diagram of the Systola1024-board 

In addition, the controller supplies the interface processors and the array processors 
with instructions and selectors that are stored in an additional memory on board, the 
ISA program memory. The ISA program memory can contain a large variety of  
programs for the processor array, according to the different tasks that may be 
necessary to perform during one application. Every word clock cycle the controller 
transmits one instruction, one row-selector and one column-selector from the ISA 
program memory to the interface processors. The instruction consists of 32 bits as 
well as the row-selector and the column-selector. A triple of instruction, row-selector 
and column-selector is called a program diagonal. The ISA program memory can 
contain 16 K program diagonals. 

The controller receives its instructions either directly from the PC as so board 
instructions, or it can operate autonomously. In the second case it receives controller 
instructions from an instruction queue, which is located on the board, too. The 
instruction queue can be loaded from the PC and it consists of up to 256 controller 
instructions, each of them in 16 bit format. 

Systola 1024 has a peak performance of 3200 MIPS. In practice the performance 
lies, dependent on the application, between 1000 and 3000 MIPS. 
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6 Parallel Implementation of Morphological Hough Transform 

For the implementation of the MHT we take a NxN, N=512, binary image. Every 
processor of  Systola 1024 stores a 16x16 subimage in 16 intemal registers. So each of 
this registers stores 16 adjacent pixels of the same row. The capabilities of ISAs to 
compute row (column)-sums and -ringshifts very efficient (see section 2) are 
exploited in the parallel implementation: 

The erosion and accumulation for horizontal (vertical) lines can be done very fast: 
For a structuring element of two pixels with distance d, we can shift a copy of the 
image above the origin by d pixels. Now a counter has to be incremented if a pixel of 
both, the origin and the shifted image are set. With shearing of the image other line 
angles are transformed in horizontal position, such that the efficient horizontal 
operations are always applied. 

Horizontal Accumulation. This operation means to sum up the pixels of each image- 
row. The implementation first builds the subrow-sum within each processor in its C- 
register. Afterwards the efficient processor-row-sum computes the whole image-row- 
sum. This operation is repeated 16 times for every subimage-row of each processor. 
At the end of the iteration the last processor-column stores the results. Because of the 
limited memory (32 registers) of each processor the results are shifted one processor- 
column to west in every second iteration step. The L th processor-column always 
collects accumulator-entries for the line-intercept i. When all processor-columns are 
covered the accumulator-array-results are transferred to the board-RAM. 

Horizontal Erosion. Let the structuring element have the distance d from the image- 
origin. Then an image-row-ringshift for d positions and an AND-Operation computes 
the horizontal erosion. In Systola an image-subrow is ringshifted one processor. 
Afterwards a shifting for (d mod  16) positions within each processor is performed. 
Then a ringshift for a (d div 16)-processor-distance computes the image-row-ringshift. 
Finally one AND-Operation between the origin sub-row-register and the ringshifted 
sub-row-register in each processor calculates the erosion. After that the result is 
vertical accumulated. 

Shearing. The shearing for line-angles between 0 ° and 45 ° is an image-column- 
ringshift, where each column has a different shifting-distance depending on the line- 
angle. To avoid complex operations this distances are precalculated. 

For the implementation we take N slopes between 0 o and 45 o. So the following line 
equations are considered: y = (k/(N-1)).x + c; k=O...N-1; c=O...N-1. The different 
line-angles are handled in increasing order. Then the shear operation only needs to 
incorporate the relative shear between neighbouring angles. So the image-column- 
ringshift only has to consider the next column. The precalculated shearing-distances 
turns to a binary image-row-mask: Only the image-columns with an entry in the 
corresponding mask-position has to be ringshifted. 

The angles between 0 ° and -45 ° are computed by loading the input image with 
transposed rows on the ISA and applying the same program. The angles between 45 ° 
and 90 ° (-45 ° and -90 9 are calculated by storing the 16xl 6-subimage column-wise in 
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each processor and applying the reflected ISA-program (swapping row- and column- 
selectors, changing west and north, east and south) for 0 °to 45 ° (0 ° and -45°). The 
finally accumulator size is 4N (slopes) x N (intercepts). 

7 Performance and Experimental Results 

To compare the performance of the parallel algorithm in section 6, we compare the 
implementation on Systola 1024 with two sequential versions on a PC (Pentium 
Processor, 200 MHz, optimised code). The first version is the standard version of the 
HT-algorithm (referred to as "P200 Standard" in Table 1). The second version is a 
sequential simulation of the algorithm implemented on Systola 1024 (referred to as 
"P200 Parallel" in Table 1). For a comparison to other parallel architectures for the 
Hough transform see [Ferl]. 

For the implementations we use binary images of size NxN, N=512, and an 8-bit 
accumulator array consisting of 4N slopes and N intercepts. Systola needs 0,25 s (375 
processor instructions per slope) for the standard HT and 0,31 s (471 instructions per 
slope) for the MHT. Since computing time dominates communication time in this 
application, data transfers can be almost totally hidden as it can be executed 
concurrently to the computation. 

The standard HT (Alg. 1) depends on the number of white pixels in the input 
image, but has the disadvantage of a complex computation of the accumulator bins to 
be incremented. This means a computing time of 70, 0 s in the worst case (all pixels 
white). The used edge images from the pick-and-place process of multichip-modules 
(Fig. 7) have 10% seeded pixels on an average, which corresponds to a computing 
time of 7, 0 s. 

The standard MHT (Alg. 2) depends on the number of seeded pixels in the input 
image and in each eroded image. An average multichip-module edge image (Fig. 7) 
has 10% seeded pixels in the input and 1% in each eroded image, which leads to a 
computing time of 5, 7 s in the average case. 

The sequential version of the parallel algorithm in section 6 is independent of the 
number of white pixels, but has the advantage of an easier accumulation. This leads to 
a constant computing time of 5, 0 s for the HT and 6,2 s for the MHT for each image. 

Table 1. Comparisons of the average performance of HT/MHT for a 512x512 image and 2048 
different slopes on Systola 1024 (including data transfers) and Pentium 200 

Systola 1024 
HT 0,25 s 

MHT 0,31 s 

P200Standard P200Parallel 
7,0s 5,0s 
5,7s 6,2s 

Speedup 
28 / 20 
18 / 20 

In order to evaluate the qualitative performance of the MHT we have compared it with 
the HT on several different images. 

Fig. 3 shows three lines close together. The relevant part of the accumulator array 
from the HT and MHT (with distance d=50 for the structuring element) is displayed 
as a height field in Fig. 4 and 5. It can be seen that both, HT and MHT produce 
artefacts (in the Figures they are behind the three peaks representing the lines). In case 
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of MHT these artefacts are significantly reduced. The MHT also creates an enhanced 
accumulator contrast, which simplifies the higher order image analysis. 

Fig. 3: Original Image 

Fig. 4: Accumulator from HT Fig. 5: Accumulator from MHT 

Comparisons of the effectiveness of the HT and MHT methods are displayed in 
Fig. 6-9. Fig. 6 shows an image from the pick-and-place process of rnultichip- 
modules. Fig. 7 shows the result after an edge detector is performed on the image. 
Fig. 8 and 9 show the result after a HT and MHT (d=lO), where accumulator entries 
greater than 90 and 80 are detected. The resulting lines are displayed after an AND- 
operation with the edge image. It can be readily seen that the HT picks up many more 
false lines than the MHT in the dotted areas. 

Obviously there is still lots of scope for free tuning the combination of HT and 
morphology to best fit a given application. For example, the structuring elements 
could be optimised to search for lines of a given thickness (using larger structuring 
elements), of  a given length or which are dotted. We attempt to work with this method 
further in the area of automatic quality control and image classification [Kol]. 
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Fig. 6: Original image Fig. 7: Edge image 

Fig. 8: Result from a HT Fig. 9: Result from a MHT 


