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Abstract.  Sophisticated algorithms for edge detection with built-in noise 
filtration and good localisation properties often require an inherently it- 
erative and/or adaptive processing structure, which is difficult to par- 
allelise for high speed operation. This paper describes a boundary en- 
hancement technique which can be adopted as a cascaded precursor for 
edge detection. In addition to the demonstrable efficacy in enhancing 
edge features, the precursor offers the distinct advantage of exploiting 
both the image and operator parallelism. Further, unlike many other en- 
hancement methods, its characteristics can be studied analytically. The 
performance of the proposed detector is examined and compared with 
established techniques. 

1 I n t r o d u c t i o n  

Improvements in speed and efficiency for edge detection continue to pose a chal- 
lenge in 2-D real-time image processing. The gradient operators most commonly 
used as a measure of edge profiles fall into three general categories: (1) Oper- 
ators such as Robert and Sobel which approximates image function derivatives 
using spatial differences with convolution masks. (2) More sophisticated algo- 
rithms with built-in noise filtering capabilities, as exemplified by Marr-Hildreth 
[12] and Canny [1] operators, based on the zero crossings of image function sec- 
ond derivatives. (3) Parametric operators, such as that of Hueckel [13] and Tan 
et al [16], which match and/or optimise an image function to a specific model 
of the edge profiles. Computationally many of these techniques apply an ap- 
propriate sequence of neighbourhood operations simultaneously on all pixels of 
an image, thus enabling them to exploit image parallelism when implemented 
on parallel computers [4]. In terms of algorithmic complexity, handling the first 
class of techniques is relatively simple, whilst the other two generally require 
significantly more iterative as well as adaptive processing [2]. In general, the 
approach to edge enhancement, followed by thresholding in a variety of forms, 
and characterising operators from the first class in particular, is largely heuris- 
tic in nature. Similarly the higher-order derivative and parametric approaches, 
although mathematically formulated, also suffer from this type of setback. 

This paper presents a parallel, computationally efficient boundary enhance- 
ment technique which can be adopted as an effective precursor for edge detection. 
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Here the precursor significantly steepens the sheerness of image discontinuities, 
thus enabling edges with widely varying strengths and qualities to be determined 
using a single, non-interactive thresholding operation after the application of a 
gradient-based detector. In terms of computational efficiency, the technique takes 
advantage of the combined robustness of non-linear mathematical techniques and 
the simplicity of gradient operators. Adding to these the uniformity of design 
and and regularity of operations, the characteristic blueprints for efficient par- 
allel algorithms for low-level image processing, makes the proposed precursor 
technique a practical approach to high-speed edge detection. 

The non-linear technique of generalised nearest-neighbour (GNN) transfor- 
mation which forms the mathematical basis of the enhancement method is dis- 
cussed in Section 2. An analytical treatment which leads to the development of 
the proposed precursor is also presented. Sections 3 and 4 examine and discuss 
techniques to exploit the intrinsic parallelism of the detector method devised. 
Section 5 describes the analytical tests and results for the proposed detector. 
Finally, concluding remarks are included in Section 6. 

2 G e n e r a l i s e d  N e a r e s t - N e i g h b o u r  T r a n s f o r m a t i o n  

The enhancement method of low pass filtering to suppress noise and eliminate 
spurious edges have introduced two major problems: Firstly, edges that appear 
in close proximity are merged and thus become indistinguishable. Secondly, the 
widening of an edge due to smoothing leads to a much weakened gradient am- 
plitude, which in turn restricts the practical range of thresholds at which edges 
can be detected. The boundary enhancement method presented here overcomes 
these limitations. On the one hand, it facilitates the minimisation of the local 
variance of pixel gray-level values, thus counteracting the undesirable effects of 
smoothing. On the other hand, it maximises the separation of boundaries be- 
tween relatively homogeneous image areas, thus causing the useful ranges of 
detection thresholds to overlap. 

2.1 R a n k  filters 

Earlier work on the properties and applications of these filters for noise suppres- 
sion and image enhancements can be found in [7,9-10]. The extremum operators, 
min,~, and max,~, which compute rank positions at the two extremes, have the 
important effect of reducing the gray-scale variance of an image. Here, for a 
square neighbourhood window W p  of g(=- L 2) pixels, P = {p~j, k =- 1..g}, 
centered upon pixel p~j, we evaluate m i n p  = R I ( P )  and m a x p  = R N ( P ) ,  

1 <  2 <  where R~ gives the r-th element of the N ordered values such that Pij - Pij - 
...p;~ < . . . p~ .  Without loss of generality, the effect of m a x p  and m i n p  on 
the image gray-levels can be analysed with a 1-D sequence~ say {x i , i  = 1..n}, 
using a moving window max~ of extent 3. This is depicted in Fig. 1 below. With 
xk+2 = x,~ = m a x { x i ,  k - 1  < i < k+5}, it is clear that max¢ has the net effect of 
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Fig. 1. The effect of max~ operating on {x} 

reducing the statistical variance Var(x)  of {x}, since, Vat(x)  = E(x  ~) - E 2 (x), 
is a decreasing function which attains its minimum (=0) when 

x l  = x 2  = x 3  . . . .  = x ~  ( 1 )  

It can be shown by induction proof that the equality of (1) is the only condition 
whereby Vat (x )  is a minimum. 

2 . 2  I n t e g r a t i n g  t h e  m a x  a n d  r a i n  o p e r a t o r s  

The min and max operators can be integrated to take advantage of the char- 
acteristics illustrated in the preceding section. Here the principal objective is 
to maximise separation of the gray-scale boundaries between the relatively ho- 
mogeneous image areas achieved by the min/max transformation. The Nearest- 
Neighbour (NN) approach offers a mathematically robust technique to achieve 
this. Analytically, let d(x~,xj) be the distance between x~ and xj in the 1-D Eu- 
clidean space, the operator g(x), defined as, g(x) = min{d(x,  x l ) , . . . . d ( x ,  x~)}, 
represents the nearest neighbour of x amongst {x~}. The generalisation of NN 
provides a key to the unification of the two operators for the characterisation 
of individual image points. The essence of the principle is illustrated in Fig. 
2, where pixels are categorised with reference to the a priori measurement of 
focal points within a predefined neighbourhood of pixels. Individual pixel gray- 
levels can then be determined according to their proximity to these focal points 
computed by the extremum operators. 

The net effects of integrating the min/max operators using the NN method 
are two-fold; Firstly, variations in brightness values across different edges is sig= 
nificantly reduced. Secondly, characterisation of the boundaries of gray-scale dis- 
continuities representing the separation of distinctively monotonic image areas 
is achieved. These results are also confirmed by the analytical experiments pre- 
sented in Section 5. Combining the discussion above with that of the preceding 
section, the GNN-based precursor transformation can now be stated as follows. 
If S and D represents the source and destination image respectively, then; 

M, if (S~,j - m) > (M - S~,j) 
D~,j = m, otherwise. (2) 

where M = max[S,,~; (x ,y)  e Wp] and m -- min[S,,y; (x ,y)  e Wp]. Equation 
(2) gives a rounding down condition if Si j  is equidistant from m and M. 
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Fig. 2. Principle of the GNN method 

3 P a r a l l e l i s m  w i t h i n  t h e  C a s c a d e d  P r e c u r s o r  

The boundary enhancement algorithm comprises of two stages of point-wise 
image operation; an edge-preserving smoothing and the Generalised Nearest- 
Neighbour transformation (GNN) as discussed earlier. The first processing stage 
facilitates a noise-smoothing filtration for the source image. As well as possess- 
ing both powerful noise reduction and good edge-preserving properties [3], the 
K-AVE operator selected and the succeeding GNN transformation are both de- 
rived from the same class of mathematical techniques and so they are highly 
compatible in terms of computational characteristics and requirements. The lat- 
ter consideration is particularly desirable from a theoretical viewpoint, since the 
GNN is formulated to "sharpen" the spatial features of the K-AVE filtered im- 
age, thereby counteracting the effect of the much weakened edge gradients that 
critically limits the practicality of subsequent gradient calculations. To facili- 
tate demonstrating the technique as an effective precursor to edge detection, the 
well-known Sobel operator [14] is chosen in this work primarily because of its 
relatively high accuracy and robustness [5]. More importantly, the convolution 
operation required is well suited to high-speed (parallel) implementation [11]. 

The detector described above is inherently parallel; the directly cascadable 
operation of the GNN precursor results in a computationally efficient processing 
structure which can exploit two levels of parallelism, namely the image and 
operator parallelism [4]. 

1. Image Parallelism is directly derivable from the K-AVE, GNN and Sobel 
operators and offers a fine-grained parallelism which is characteristic of many 
low-level image processing algorithms. Specifically individual processors can 
apply the appropriate sequence of computations specified by each operator 
to different (sets of) pixels concurrently. 

2. Operator Parallelism is achievable by pipeline processing successive stages 
of the K-AVE, GNN and Sobel computation. This offers a coarse-grained 
parallelism in that individual sets of processors may be cascaded in the form 
of a pipeline whereby each set operates on its inputs independently. 
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As with many iconic image transformations, it is evident that the relative multi- 
plicity of data arising from each of of the spatial operators in 1. above determines 
the maximum parallelism achievable, ie. the totality of data in a practical image 
offers maximum units of parallelism [15]. In this respect, the most CPU-intensive 
is the calculation of different ranks required by the K-AVE filter and the GNN 
transformation. Adopting the notations in Section 2, the former entails the se- 
lection of Rj, j = 1..K, from the defined window neighbourhood of Wp, whilst 
the latter requires the determination of R1 and RN. 

4 S o r t - A n d - M e r g e  T e c h n i q u e  

Previous work has demonstrated that the data-parallel model of computation 
can be used effectively in realising a general class of rank filters on massively 
parallel platforms [8]. For the GNN transformation, it can be shown that the 
two-phase divide-and-conquer algorithm described in [8] can easily be adapted to 
facilitate an efficient data-parallel implementation. Specifically the computation 
of the extrema in a LxL window is performed by first sorting L subsequences 
along one dimension, say the column, of the moving window, then merging them 
in the orthogonal direction. A simple sorting method is used as L is small. 
Similarly, values of R1 and RN are determined by comparing the smallest and 
largest elements of the appropriate groups of L sorted columns respectively. A 
representation of the method is depicted in Fig. 3. Since each of the L sorted 

Phmm o n e :  

p h u e  t w o :  

[--~ Processor I 
S o r t  t o  f o r m  ~ processor co/umns 

ExchanEe • 
D Processor 

~ • • ~ Merge to obtain 
M i n  a n d  M a x  

Processor Processor Processor h 
Fig. 3. The two-stage Sort-and-Merge selection method 

columns can again be used for computing a further L - 1 calculations of extrema 
in the neighbourhood, the method thus facilitates O(klL 2) comparisons to be 
executed on L processors with an O(k2L) complexity, where kl and k~ are small 
constants. 
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In performing the K-AVE filtration, it should be pointed out that the sorted 
subsequences obtained in the first phase have to be re-computed by their L - 
1 immediate neighbours, since the reference centre pixel Pi,j from which the 
nearest distances are derived changes as the window Wp moves across the image. 
Further, it should also be noted that, for a relatively large K, ~ << K < N, it 
would be more advantageous to compute the N - K  largest elements in P, since 

N N ~,~1 R~ = ~'~=1 R~ - ~=K+Z R~. Consequently, the K-AVE operator can be 
computed as a spatial convolution with unity mask weights (cf. Average-filter), 
less the sum total of the individual ranks RK+I +.. --b RN. These rank values are 
determined using the Sort-and-Merge method depicted in Fig. 3. 

5 P e r f o r m a n c e  a n d  D i s c u s s i o n  

The approach of Pratt [14] is used to quantify the efficacy of the proposed GNN 
precursor. A 64x64 gray-scale (256 levels) image is constructed, which contains a 
steep ramp edge of height 30, separating two uniform regions of gray values 100 
and 130 respectively in fixed steps of 15. The noise used is additive Gaussian, 
N(0,a) ,  with signal-to-noise ratio (SNR) = (h/a) 2, where h(= 30) represents 
the edge height. The quality of edge detection, ¢, is defined as: 

(100) ~ 1 
¢ =  IN .= l + ad2 (3) 

where In  = max(Ir, IA), I i  = number of ideal edge points, IA = number of 
detected edge points, a = scale factor to penalise offset edge points, taken as 
1/9 here and in [14], and d = distance of the detected edge point from the true 
edge. Of particular interest here is the variation of ¢ with the threshold T of edge 
detection following the Sobel operator. Using a 3x3 window mask, ie. L = 3, 
with K = 6 for computational efficiency and good results [6], plots of ¢ vs. T are 
presented in Fig. 4 for SNR = 7.5 and 15 respectively. These plots clearly show 
that whilst the K-AVE filtration smooths edges, the GNN precursor significantly 
widens the range of detectable thresholds as predicted. In particular, a plateau 
generally develops, showing that edges can be detected with over 90% quality 
from about a wide range of thresholds 30 < T < 120. 

For comparison purposes, the cascaded precursor approach is also consid- 
ered with the Canny operator, using several real-world digitised images. The 
scene was captured using a portable camera unit whose frame buffer size is 
754x502, with 0-255 gray-levels. Thus picture degradation from input circuitry 
provides an approximately Gaussian additive noise field. Computationally the 
GNN-based detector method is inexpensive; using the techniques described in 
Section 4 where applicable, the total processing time required to produce a good 
edge image ranges 1.26-1.99 seconds on a P166 CPU, the maximum corresponds 
to a double application of K-AVE and GNN operators. The Canny algorithm 
typically requires 34 - 52 seconds, depending upon the image and a used. In all 
cases, the GNN process has kept close edges narrow, with weak edges steepened 
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Fig. 4. SNR-7.5 and SNR-15 respectively 

and the noise suppressed sufficiently so that they become distinguishable within 
the overlapped detection ranges for strong edges. 

6 S u m m a r y  a n d  C o n c l u s i o n  

The detection of edges is simplified if the edge strengths are suitably enhanced. 
Many edge operators approximate local derivatives with spatial differencing tech- 
niques, which emphasise high frequency features including false edges due to 
noise points. If the noise is smoothed by low-pass filters, the strength of edges de- 
tected can be significantly weakened. Also such a non-selective smoothing causes 
close edges to merge, limiting the threshold range at which true edges may be 
detected. The proposed GNN precursor resolves these problems by adopting a 
non-linear mathematical technique to enhance spatial discontinuities of an im- 
age. When combined with the edge-preserving K-AVE filter, it has been shown 
to exhibit the desirable properties of sharpening edge features, thus enabling 
them to be determined irrespective of the widely varying strengths and qual- 
ities. These characteristics have been shown analytically, and the preliminary 
experimental results obtained confirm the analysis. 

Computationally the characteristics of the proposed GNN match well with 
that of the K-AVE, both being derived from the same class of operators. By 
adopting the data-parallel technique developed in an earlier work, it has been 
shown that the uniformity of the K-AVE and GNN computations has the impor- 
tant advantage that they could both be implemented efficiently on highly parallel 
platforms. Further, given the the relative robustness and ease of parallelisation 
of the Sobel operator, the precursor-based edge detection method has consider- 
able potential for real-time applications in in practical situations. Moreover, the 
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investigation of precursor method also raises the interesting possibilities that the 
general class of rank operators could be further developed to facilitate selective 
removal and retention of image edge features for optimal detection (cf. WMF in 
[8]). This warrants further research. 
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