
D y n a m i c Program Descr ipt ion as a Basis for
R u n t i m e Opt imizat ion *

J5rn Gehring

Paderborn Center for Parallel Computing (PC2), D-33095 Paderborn, Germany,
joernQuni-paderborn.de

Abs t rac t . Dynamic load-balancing is an important topic for network-
computing. In order to get the best performance out of a networked
pool of dynamic resources, it is important to use as much information
as possible for load-balancing decisions. Parallel programs are usually
no "ex-and-hop" applications and a load-balancer that treats every ex-
ecution as if it had never seen this application before, cannot achieve
optimal results. We present an algorithm for generating formal descrip-
tions of the dynamic execution behavior of distributed programs. These
descriptions can then be used for a variety of tools, such as schedulers,
load balancers, or routing systems.

1 I n t r o d u c t i o n

Currently there exists a variety of cluster management systems that support the
distribution of sequential jobs on hundreds or thousands of networked computers.
However, there is only rudimentary support for the distribution of parallel appli-
cations [6, 1]. Since communicating distributed programs need additional effort
in scheduling, mapping, dynamic load-balancing, and message routing, much re-
search has been done in these fields. However, most strategies either ignore the
communication structure of the applications completely [3] or use a static repre-
sentation [7]. The latter approach achieves bet ter response times but it is still a
simplification of the real problem. Fig. 1 depicts an example of three communi-
cating processes. Looking at the dynamic program description, it is immediately
clear that all three processes should be mapped onto one single machine. How-
ever, this cannot be derived from the static description. Therefore, newer policies

Process Communica tior

Static Program Description

T~I@ AXiS

Dynamic Program Description

Fig. 1. Structure information of static vs. dynamic program description

* This work was supported by the Ministry for Science and Research of Northrhine-
Westfalia, project Metacomputing

959

try to consider the dynamics of parallel applications as well. [9] and [2] are some
examples of these. Both require dependency graphs which describe the dynamic
behavior of the program during a certain time period. However, the user needs
to provide these graphs for those sections of the algorithm that are worthwhile
the effort of specific optimizations.

With the concept of heterogeneous metacomputing the impact of improper
process assignments has increased essentially [5]. Consequently, the availability
of formal descriptions of dynamic program characteristics is important for the
performance of large WAN-distributed applications and thus for the acceptance
of metacomputing at all.

In the following we present a concept for describing characteristics of the dy-
namic execution behavior of distributed communicating programs automatically.
Since the general problem of extracting all features is known to be NP-complete,
we reduce the complexity by identifying the characteristics usable for optimiza-
tion purposes in Section 2. From this we derive an algorithm in Section 3 which
provably finds all usable traits of a distributed message-passing program in poly-
nomial time. This concept has been implemented in the context of the MARS [5]
project which is part of the international "Metacomputer Online"[8] initiative.

2 Dependency Graphs and Phases

A trace of a parallel program can be represented by a directed graph with the
nodes representing sequential computations and the edges standing for commu-
nications. In the following, we show how this representation can be used for
deriving information about the internal structure of the parallel application.

2.1 Dependency Graphs
We consider a parallel program as a number of sequential computations in-
terleaved by "critical" communications. These are blocking receive operations,
blocking sends, waiting for termination of non-blocking sends/receives, or block-
ing collective communications (broadcast, gather, . . .). For convenience, we also
consider start and termination of a process as critical communications. The block
of sequential statements between any sequence of two communications is called
an independent block.

d by sequence

edges

ent processes

Fig. 2. Example for a dependency graph (sequence edges omitted for the sake of clarity)

960

Definit ion 1 Let I be a sequence of instructions to be executed within a single
process. I is called an "independent block" (or IB for short), iff the statements
to be executed immediately before and after I are critical communications and
there are no critical communications in I.

Thus, all IBs are disjunct, no IB can start before all of its predecessors have
finished, and once the execution of an IB has started, it can continue until
completion. (See Fig. 2 for an example of a parallel sorting algorithm.)

Defini t ion 2 A directed graph is called a "dependency graph", if its nodes are
independent blocks and for any two nodes a and t3 there is an edge from a to
iff at least one of the following conditions holds:

1. Both belong to the same process and fl follows immediately after a (a "pre-
cedes" fl). These edges are called "sequence edges". (Fig. 3.1)

2. The instruction after a is a blocking send which is received by the instruction
directly before/3. The latter is either a blocking receive or a wait for the
termination of a non-blocking receive. (Fig. 3.P)

3. The instruction after a and that before fl are both part of the same collective
communication. (Fig. 3.3)

4. fl waits for the termination of a blocking or non-blocking send initiated by a
preceding IB and received immediately after a. (Fig. 3.4)

In [5] we have shown, how dependency graphs can be collected from program
runs without significant impact on the execution speed. Note that applications
produce different dependency graphs in different execution runs. These have to
be merged together for consolidating the statistical data of the application [4].

2.2 Phases

Our strategy is to perform oftiine analysis on dependency graphs in order to
detect repeating patterns and store them into a knowledge base. In [5] we have
shown, how this knowledge can be used for speeding up distributed programs
by dynamic migration decisions. During the offiine analysis we are looking for
"phases" in the dependency graphs. A phase is a subgraph of a dependency
graph that represents a set of instructions performing a closed subtask. It is
considered to be of high quality, if it occurs frequently and covers a large amount
of the program's overall resource usage. Concerning sequential or data parallel

1) 2) 3)

r-;

l~celvcr~
4)

Fig. 3. Different edges of a dependency graph

961

programs, high quality phases are closely related to loop- and function-bodies
and can therefore be detected during compile time. This is not possible for
distributed MIMD programs, because the dynamic interaction between different
modules can usually not be predicted by the compiler.

Since we are going to use phases for the prediction of runtime behavior, a
phase which has started execution must not be interrupted by communications
with IBs that are out of scope of this phase. I.e., the predecessors of an IB are
either all inside the phase or all outside. This leads us to the following formal
definition:

Definit ion 3 Let 7) = (];, E) be a dependency graph with]2 being the set of
nodes and E being the set of edges. A connected subgraph P = (];p, go) of 7) is
a "phase of 7)", iff

1. For all v, u E]2~,: I f (v, u) E E, then (v, u) E $p
2. For all (~, v) • E~, ~' • V: I/(u', v) • E, then u' • V~ and (u', v) • E..

Consequently, a single IB is also a phase, which we call an "atomic phase".

3 Detecting Phases

In the following we introduce an order on the quality of phases and describe
a deterministic algorithm that extracts all valuable phases from a dependency
graph. Although there may be a total of 2 Iwl phases in a dependency graph, we
will prove that at most O(I];t 2) of them are usable for optimization purposes.

3.1 The Quality Function

As mentioned in Section 2.2, a phase is "good", if it describes a large part of
the internal structure of the program. I.e., it occurs frequently and covers a high
percentage of the overall resource usage. The algorithm presented in Section
3.3 constructs large phases out of smaller ones. Thus, the quality function has
to make small frequently occurring phases attractive during the first iterations
of the algorithm, while larger phases ought to become better to the end (see
Sec. 3.4). This leads us to the following definition:

Definit ion 4 Let :D = (~;, $) be a dependency graph and A C_ 7) a phase. We
define the "quality of A" Q(A) to be Q (d) := (Occ (A), IAI) with

0 , / f A = 0
Oce(A) :-- I{A' C_ 7) I A, A' are isomorph}l , else

Two quality values are compared using lexicographical comparison.

Phase A is consequently considered to be of higher quality than B, if it
appears more frequently or if A and B have the same number of instances but
A is larger than B. In Section 3.4 we will show, how this definition directs the
phase-detection algorithm on its search for valuable phases.

962

1) Let i :--- 0; So :=)2; S~ := $
2) While S* ¢ 0 Do
3) Find (Ai, Bi) E S* with Q(Ai @ B~) = max(,,~)es*{Q(a @/~)}
4) Let Si+l := Si U {Ai @ Bi}
5) Let Ti := { (C, Ai @ Bi) I C E Si\(Ai G Bi) A

[9 a E C , f l e (A i ® B i) : (a ,~)E$] } U
{ (A, @B~,C) I C E Si\(Ai @S~) A

[g a e (A i @ B ~) , f l c C : (a,13) E£] }
6) LetU~:={(~,G) eS~ I FC_Ai@Bi A GC_Ai@Bi}
7) Let S*+1 :-- (~* U Ti)\Ui
8) Let i :---- i + 1
9) Let I := i

Fig. 4. The phase-detection algorithm

3.2 Creating Complex Phases

Complex phases are created by the concatenation of at least two simpler phases.
Due to Def. 3 the union of two phases does not have to be a phase by itself.
Other IBs that precede one phase but are not part the other one may have to
be added. These additional IBs are covered by the following relation:

Definition 5 Let A and B be phases of a dependency graph :D = (12, $) and let
~/ E 1) be a node of :D. We say ~/ --+ (A U B) ("~/ feeds (A U B) "), if ~/ has to be
added to A U B in order to make it a phase:

7--~ (A U B) <=~ 3 a, fl E1) with a E A A fl E B A (a, fl) E $ A (7, fl) EE

We can now define the concatenation of two phases A and B as:

{~Au i f f l a ' ~ E)) w i t h c ~ E A A ~ E B A (a , ~) E E
A @ B := B U { f E 1) IT - -+(AUB)} ,otherwise

Thus, A ® B is the smallest possible phase that includes A U B.

3.3 The Phase-Detection Algorithm

The phase-detection algorithm starts with a set S containing all atomic phases.
It then successively merges the best pair out of all known phases and inserts
it into S. Thus, after the algorithm has terminated, S will hold all extracted
phases. In order not to do superfluous work, we exclude pairs lying entirely
within a phase that has already been created. Fig. 4 gives a formal description
of the algorithm which takes a dependency graph :D = (1), 8) as input.

Si contains all phases known after the i-th iteration and S* holds all pairs
of phases in Si that may have to be considered during later iterations. Lines 5)
and 6) may look somewhat complicated, but their purpose is simple. Ti includes
all pairs to be added to S* due to the creation of (Ai @ Bi). Ui, on the other
hand, incorporates all pairs having become superfluous.

963

3.4 A Close r L o o k at t he A l g o r i t h m

Looking at Def. 4, it is obvious that Occ(A) cannot increase, when phase A is
extended. Furthermore, all pairs added to S* in line 5) and 7) will be extensions
of phases already contained in S~. Thus, we can conclude that the greater the
value of i is, the less often the newly constructed phases occur in 7). Since
Occ(A) e {0 , . . . , IV[} for any phase A, we have now shown that

3 civ] , . . . ,c0 E { 0 , . . . , I - 1} with 0 = clv I _< cwl_l _< . . . _< Co = I and

VIE{1 IV[} : [Vke[ci;cj-l[: Occ(Ak ®Bk)----j] (1)
I.e., from iteration cj inclusive to iteration cj-1 exclusive the algorithm creates
only phases occurring exactly j times within the dependency graph.

The phases constructed in line 4) are connected subgraphs of 7). Since 7:) is
finite, there exist at most nj <_ FPl disjunct phases P1, P2 , - . . , Pnj which occur
precisely j times in 7) such that

Occ(P1) Occ (Pnj) = j and [Vk,te{1 ~j},k#j : Occ(Pk • Pl) < j]
(2)

During the cj-th iteration, the algorithm constructs the so far largest phase
appearing j times in 7). Because the quality function is defined to judge on
the size of two phases, if their occurrence is identical, the algorithm will try
to extend Act @ Bcj during the next iteration. If this is not possible, because
there is no phase C with [(C, Acj ®Bcj) E Sc*+I Y (Act @Bcj,C) E S*j+I] A
Occ((Acj @Bcj)@C) = j, it tries extending another phase with the same number
of instances that is not connected to Act ® B~j.

Lines 6) and 7) remove all pairs of inner phases from S* and therefore ensure
that once a phase with occurrence j has been extended to its maximum, it
will no longer be considered throughout iterations [cj; cj-1 [. Thus, during the
next iteration, the algorithm will continue extending the last phase or it starts
inflating a completely new one. From Def. 4 we conclude that each IB v E V
belongs to at most one Pi E {PI , - . . ,Pnj} and during each iteration of [cj;cj-l[
at least one of these IBs will be assigned to its corresponding Pi. Lines 6) and
7) ensure that this IB will no longer be considered until at least iteration cj-1.
Since there are at most [V t IBs to assign, we have now shown that

Vj~{1 iv,) : O<_cj_ l -c j <_ lVl (3)

Combining (3) and (1) we conclude that I < IVl 2 and therefore the algorithm
extracts ISll < lVl + 1 = o (t v l 2) phases. Fig. 5 depicts an example run of
the phase-detection algorithm. All IBs are the same and thus there is only one
atomic phase with 12 instances. This phase is then iteratively extended until the
algorithm has generated the last phase which is always the complete dependency
graph.

Of course, the algorithm does not have to be implemented as it was described
in Fig. 4. In [4] we show that it can be implemented with an overall time com-
plexity of o(Iv14). This sounds still very much, but experimental results have

964

12 x 8 x 4 x 2 x

Fig. 5. Example run of the phase-detection algorithm

demonstrated that for two reasons the algorithm ,is usually much faster: First,
the Q-operation most of the time produces larger phases than Ai U Bi and sec-
ond, not for every j 6 [1; I121] there exist Ai and B~ with Occ(Ai @ B~) = j.
Analyzing the dependency graph depicted in Fig. 5 for example, the algorithm
generates only 26 occurrences of four valuable phases out of 12 IBs.

4 Experimental Results

Fig. 6 depicts the behavior of a distributed CG solver with different process
mappings. We used two different clusters of four workstations each that were
connected by a 32 Mbit/s wide area network. The bandwidth within the clus-
ters was 155 Mbit/s. This configuration was used, because it demonstrates the
absence of an optimal static mapping.

Both mappings shown in Fig. 6 are optimal for a particular range of problem
sizes. Mapping A is optimal for problem sizes below 2 s and mapping B is optimal
for larger problems. Mapping A uses only one of the two clusters. Therefore, it
is well suited for small problems, because the slow WAN connection cannot
have any effect on the computation. For larger problems however, it is better
to use all the computing power that is available. The optimal mapping for each
problem size depends on the current network and computer configuration which
changes dynamically in the shared environment. A process mapping tool that
does not take advantage of any information about the program dynamics can
only choose a mapping at random. Using dynamic program descriptions however,
we first make a good guess according to the statistics stored in the knowledge
base. I.e., if we have already seen a lot of runs with large problem sizes, we
choose mapping B. Then, the application is monitored during the first few phases
(iterations) and its behavior is matched against the knowledge base. From these

3000

~ 2500

2000

1500

i000

u 500

0 T

2^4 2^5 2^6 2^7 2^8

prob 3~n s~e

@ M appi%g A

+ M appi%g B

Fig. 6. Two different task mappings of a distributed CG solver

965

observations we decide, if B was the correct choice. Since the knowledge base
provides estimations of the expected execution time, too, the load balancer can
decide, if the application is likely to run long enough to be re-mapped. (More
detailed experiments can be found in [5].)

5 S u m m a r y

We have demonstrated how characteristic features of a distributed program can
be detected by analyzing dependency graphs. We presented a deterministic algo-
ri thm which provably detects all valuable characteristics within polynomial time.
The algorithm considers results from previous runs of the same application and
thereby produces bet ter results each time the application is invoked. The ex-
tracted features are stored in a knowledge base which can be exploited by a
variety of supporting tools like schedulers, load balancers, or routing systems for
minimizing the response time. The consideration of d, laracteristic phases enables
these tools to adapt their optimization strategies to the dynamic communication
behavior of the application. This is especially important for WAN-distributed
applications arising in metacomputing environments.

R e f e r e n c e s

1. M.A. Baker, C.G. Fox, and H.W. Yau. Cluster computing review. Technical report,
Syracuse Univ., nov 1995.

2. W. Becker and G. Waldmann. Exploiting inter task dependencies for dynamic load
balancing. In Proc. HPCN-95, pages 407-412. Springer LNCS 919, 1995.

3. T. Decker, R. Diekmann, R. Liiling, and B. Monien. Towards developing universal
dynamic mapping algorithms. In Proc. of the 7th IEEE Symposium on Parallel and
Distributed Processing, pages 456-459, 1995.

4. J. Gehring. Dynamic program description as a basis for runtime optimization. Tech-
nical Report PC2/TR-002-97, Paderborn Center for Parallel Computing (PCe),
1997.

5. J. Gehring and A. Reinefeld. Mars - a framework for minimizing the job execu-
tion time in a metacomputing environment. Future Generation Computer Systems,
12(1996)(1):87-99, may 1996.

6. J.A. Kaplan and M.L. Nelson. A comparison of queueing, cluster and distributed
computing systems. Technical memo, NASA, jun 1994.

7. Soo-Young Lee and J.K. Aggarwal. A mapping strategy for parallel processing.
IEEE Transactions on Computers, C-36(4):433-442, apr 1987.

8. A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme,
T. RSmke, and J. Simon. The MOL project: An Open, Extensible Metacomputer.
In Heterogenous computing workshop HCW'97 at IPPS'97, 1997.

9. G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems, 4(2):175-187, feb 1993.

