
Statistical Performance Modeling:
Case Study of the NPB 2.1 Results

Erich Strohmaier*

Computer Science Department, University of Tennessee, Knoxville, TN 37996

Abs t r ac t . With the results of version 2.1 a consistent set of performance
measurements of the NAS Parallel Benchmarks (NPB) are available. Un-
changed portable MPI code was used for this set of 269 single measure-
ments. In this study we investigate how this amount of information can
be condensed. We present a methodology for analyzing performance data
not requiring detailed knowledge of the codes. For this we study several
different generic timing models and fit the reported data. We show that
with a joint timing model for all codes and all systems the data can be
fitted reasonable well. The timing model also contains only a minimal set
of free parameters. This method is usable in all cases where the analysis
of results from complex application code benchmarks is necessary.

1 I n t r o d u c t i o n

The set of NAS Parallel Benchmarks (NPB) is one of the best accepted bench-
marks for parallel processing [1]. End of 1995 a new version of this suite was
released which asked for the first t ime for performance measurements of the un-
changed MPI code which is available from the NASA Ames Research Center. In
August 1996 a first set of such results was released [2]. I t contained an almost
complete set of measurements of 4 codes on 4 different systems for 3 different
problem sizes. Such a homogeneous big set of performance da ta from application
codes is the optimal s tar t ing point for any in depth analysis of the benchmark
and systems in the set.

The number of 269 single measurements immediately brings up the question
if and how this amount of information can be condensed. In previous studies we
already showed tha t for the fully vendor optimized NPB 1.0 results a limited
number of benchmarks would be sufficient and tha t Amdahl ' s Law describes
these results very well [3].

In this paper we study to which extend this is true for the measurements
of unchanged portable M P I code. We propose a generic t iming model with a
minimal number of free parameters and fit this model to the da ta using nonlinear
regression. We evaluate the quality of our model by comparison with simpler
models with more free parameters and careful examination of the statistical
properties of the obtained fits 2. A basic introduction to the statistics terminology
used may be found in [4].

* e-mail: erich@cs.utk.edu
2 All analysis discussed in this paper are done with the SAS statistical software package

986

2 T i m i n g m o d e l s f o r s i n g l e s y s t e m s

Starting point for our analysis are the measured execution times Ts,c of a sample
of n application codes c which are measured on m different systems s. These
times are functions of the number of processors p and the problem size n. For
simplicity reasons we consider in the following only the dependency on p and
not on n. 3

The measured times can be separated in times for different computational
phases of the execution during which basic types of computational work j like
parallel computation, serial computation or communication take place. We split
each of these basic types of work j into a sum of products. One factor ui(p) of
each term contains all the dependencies on p and is indexed independent of code
or system. We normalize these functions such that ui(1) = 1 or ui(1) = 0. The
other factors tj, i are parameters depending on code and system.

n J I
81C tj, i u~(p) (1)

j----1 j----1 i=1

We call ui the "characteristic functions" as they contain all the dependencies
of the performance on p. They therefor characterize the scaling behavior of the
code with increasing processor number p. The set of the characteristic functions
ul reflects the typical algebraic form of timing relations for parallel computing.

We now continue by using the following general timing model for analyzing
the measured data:

I J
8~C T~,~(p) = E S ; ' C u I (P) with 5; 'c = E t j , i (2)

i----1 j = l

If we analyze the performance data of a single code on a single system we will
only be able to fit the sums 5 i . With statistical methods we will not be able
to gain information about the individual t j, i [5]. This can be achieved only by
analyzing the results of a set of codes measured on a set of systems as done in
section 5.

We now want to use equation 2 to analyze the performance results of an ap-
plication without inspecting the code. For this it is critical to select a reasonable
set of characteristic functions ul such that the set can effectively characterize
the execution times of parallel applications. This set of functions together with
the number and quality of measurements will determine how many of the pa-
rameters 6~ 'c can be fitted in a meaningful way. As characteristic functions for
the further analysis we use the following set which is collected from different
sources [6, 7, 5]

1 1 log(p) 1
l t l = - ~ , U2 -'~ P--' U3 ~-- - - , p U4 = - ' ~ , U5 = 1, U6 = log(p) , U7 = p

(3)
3 I n p r inc ipa l a s imi la r a p p r o a c h as o u r s can be chosen to a c c o u n t for t h e d e p e n d e n c y

on t h e p r o b l e m size n .

987

3 Preparation of the data

Looking on the execution times of the NPB 2.1 we notice a big range in the mea-
sured times 4. For class A problem size measured t imes range from 0.75 seconds
up to 4873.7 seconds. This range of 4 magnitudes of orders poses a severe scale
problem for any statistical method and a t ransformation of this scale is required
for statistical reasons. We are using the following transformations.

One major source for the differences in measured times are the different
number of processors used. As we are dealing with well parallelized codes multi-
plication of the measured times with the number of processor 5 has a smoothening
effect on the data.

The variation in the floating-point operation count is one reason for the
differences between the execution t ime of the different codes. Scaling measured
times with the inverse of this operation count equalizes the scale for the different
codes further.

Using processor with different computat ional power is another reason for
differences in execution times. A multiplication of the measured times with peak
performance r p ~ k provides additional correction of the scale.

Applying all three t ransformation in sequence the measured execution times
t (p) get t ransformed in a value t ' (p) which is given as

t ' (p) - t(p) * p Wc * rp~ak. (4)

t ~ is a dimensionless value which can be interpreted as inverse tempora l efficiency.
The values of t t now vary by a modera te factor of 4 to 7 for the three different
problem size classes.

After removing two clear outliers from our sample of results we have for
problem size class A and B on the average about 6 to 7 observations for each
code on each system. This is sufficient for a statistical analysis. There are however
almost no measurements for two of the systems in problem class C which is a
clear l imitation in the usability of this set of results.

A final inspection of the plotted performance da ta over the number of pro-
cessors shows the following observations:

- Measurements for the Cray T3D often show unstable performance values
over the number of processors. Performance values per processor can drop
or rise by about 30% for measurements with similar processor numbers.

- The PowerChallenge Array shows clearly two regimes of operat ion associated
with i t 's hierarchical architecture. Performance within a single SMP node
tend to show super linear speedup while performance between SMP nodes
can drop significantly.

These two facts are limits for our analysis as none of our characteristic functions
from equations 3 can model such behavior effectively.

4 see http://www.nas.nasa.gov/NAS/NPB/
5 For our analysis we are using the number of active processors and not the number

of allocated processors as done in the NPB report [2].

988

Ul ~2
log(p)/p 1/p ~

lip 1Iv ~
l i p 1
1/p log(p)/p
1/p Zog(p)
1/p p

SSE R ~
26.13 0.99289
26.40 0.99282
28.06 0.99237
28.17 0.99234
29.18 0.99206
35.41 0.99037

51 52
3.616 64.056

11.595 0.558
14.066 O.O27
6.443 2.422

14.516 0.005
15.304 0.000

Tab le 1. All two parameter models with R 2 > 0.99 for the class A SP results on the
Cray T3D. The total Sum of Squares (SST) is 3677.85. SSE: Sum of Squares of the
remaining Error; R2: coefficient of determination; 51 are the fitted model parameter.

4 R e s u l t s f o r i n d i v i d u a l f i t s

We start the analysis with two parameter models which are a compromise be-
tween the very limitations of one parameter models and the limited number of
observations available for each analysis. We fit each possible timing model based
on two characteristic functions separately for each code and each system to the
data. As the number of observations for many cases is quite low (< 6) there are
always several models which explain the same fraction R 2 of the total sum of
squares in the model. As example we show in table 1 all meaningful combina-
tions with an R 2 > 0.99 for the class A S P results on the Cray T3D. We have
chosen this example as it contributes the most to the total Sum of Squares of
this problem size class. For class A the Sum of Squares (SS) of SP on the Cray
T3D is 3677.85 which is equivalent to 26.4% of the total Sum of Squares (SST)
of this class.

Not only in this example but in most cases a precise selection of a single
best model is not possible. There is however a clear trend to models containing

1 u2 = 7 which is characteristic for parallel work. To find out which characteristic
functions might be good candidates for a joint model for all codes and systems
we fitted the same model to all combinations of code and systems and calculated
the total SSE. In table 2 we show the SSE values for the 5 best models for each
class together with the SSE value if taking the best individual model for each

1 Models pair of code and system. Again most of the models contain u2 -- ~.
1 which contain a second function characteristic for limited parallelism u4 =

or u3 = tog(p) or for serial work u5 -- 1 tend to fit the data bet ter then models
P

including parallel overhead functions like u6 = log(p) or u7 = p.

5 J o i n t t i m i n g m o d e l f o r a l l s y s t e m s

We now proceed the analysis by making the additional assumption that the tj,i
from equation 2 are the quotient of factors which only depend on the code w~,~

989

Ul U2 SSE R~[I ul u2 SSE R 2
Class A SST = 13937.17 Class B SST = 10769.02

best best
lip 1/x/~
lip 1
1/p log(p)
1/p log(p)/p

log(p)/p l/p 2

85.17 0.99209
95.44 0.99114
96.95 0.99100
99.15 0.99079

101.51 0.99057
124.63 0.98843

best best
1/p 1
1/p log(p)
lip 1/v/-~
1/p log(p)/p

log(p)/p X/p 2

39.14 0.99719
47.04 0.99663
48.59 0.99651
52.39 0.99624
80.87 0.99420

103.91 0.99254

Table 2. The SSE values for the best 5 two parameter models used for all observations
compared to the SSE value when using the best individual model for each pair of code
and system. The best models for class C are the same as for class B.

(amount of work) or the system r~,i (power of the system).

s,c w;,, (5)
t j , i =- r~,i

The total execution time can now be written as
J I c . I J c

= E E ~ = E h i u~(p) with ~ = ~ s (6) T~,~(p) ui(p) ~'~ ~,~ w j#
j = l i=l rJ, i i.=1 j:---l= ~'j,i

By using this product representation we have introduced an additional degree
of freedom for each characteristic function in equation 6. This follows as each
5~ 'c is invariant if we multiply the values of w~, i and r~, i for all j by an arbi t rary
factor. This degree of freedom has to be fixed by an additional condition on
the parameters w~, i and r~#. We choose for this study to fix one of the system
parameters w c equal to 1. This additional degree of freedom also implies tha t
the absolute values of the parameters w~, i and r~, i by them self have no meaning
as they can be manipulated by changing the normalizat ion. Only the ratios of
these parameters are invariant to such changes and can be interpreted in a safe
way.

Analyzing the full set of results Ts,c we can now fit values to the individual
w~, i and r~#. The two sets of parameters work w$,, and speed r~, i together with
the characteristic functions ui(p) fully describe the timing models for all codes
on all systems included in the analysis.

Overall this product representation reduces the number of free parameters
in the analysis effectively by a factor of ~ compared to fitting individual
models for each pair of the m systems and the n codes. The number of free
parameters is indeed quite small as we have for each "type of work" described
by the characteristic functions only one parameter for each code and one for
each system. This reduction in the free parameters represent the possible value
of this model as it potentially can explain the same number of observations with
less or even a minimal set of free parameters.

990

~1 ?22 SSE R 2 721 U2 SSE R z
Class A SST --- 13937.17 Class B SST=10769.02

1/p 1 / ~
1/p 1
lip log(p)/p
1/p log(p)

~og(p)/p 1/p ~

1/pzog(p)/p
1/p 1/v~
1/p 1
1/p 1/p
1/p log(p)

130.28 0.99065
142.02 0.98981
146.24 0.98951
148.84 0.98932
261.88 0.98121

134.73 0.98749
156.03 0.98551
179.27 0.98335
180.67 0.98322
185.13 0.98281

Table 3. The 5 best two function models using the product representation from equa-
tion 5.

6 R e s u l t s f o r t h e c o m b i n e d m o d e l

We now fit all possible timing models of the form of equation 6 based on two
characteristic functions to all measurements. It turns out that for problem size
class C because of the high number of missing measurements for two of the
systems no analysis comparable to class A and B is possible. We compare the
results show in table 3 to the results for fitting individual models in table 2.

The values of SSE are higher for the combined model. This was to expected
as we now have only 14 free parameters instead of 32. The absolute increase
compared to SST is quite small for each problem size class. This is a first strong
confirmation that our factorization assumption from equation 5 works quite well.

We discuss now three of the overall best models in more detail. All three
models contain u2 -- ~ as first characteristic function. As second function they

contain u5 -- 1 or u4 = -~p, u3 = zog(p).p This sequence of second functions is
equivalent from going from serial work to bet ter and bet ter parallel execution.

In table 4 we show the actual fitted values for the 14 free parameters together
with their asymptotic standard error for the class A and B. The parameters
are fitted for the transformed t' from equation 4 and can be interpreted as the
inverse of processor efficiencies and as code overhead factors. The absolute value
of the parameters is however without any meaning. Only appropriate chosen
ratios of them represent measurable values.

We notice that the standard errors for most parameters are in the range of
5% to 20% of the fitted value. For Class A only the second system parameter
of the SGI PowerChallenge Array shows quite big error bars. This is certainly
related to the previous mentioned special behavior of the measured data for this
system. For class B the same is t rue for the second system parameter of the Intel
Paragon. As an inspection of the measured data shows no special behavior of
this system the most likely explanation of this large error is the small number
of measurements for this system (16 out of 102).

For all systems the first system parameter varies only little between the three
different models. If we interpret it as computational power then the IBM SP2
shows always performance efficiencies twice as large as the other systems. This

991

Parameter[

7.PaPQgo~ I rCI ~'~yT3D

,Uj~ "L"

~MC

~2~MSP2

r C2 J'aTIT3D

7" 2 l l j~ r,L

.w~ a

1.
0.406 "+ 0.026
0.425 4. 0.024
0.482 4. 0.031
4.572 4. 0.297
4.023 4. 0.249
5.355 4- 0.308
4.672 ± 0.293

Class A
ul = I /p

1. 1.
0.370 -{- 0.032 0.365 ----. 0.041
0.410 -4- 0.031 0.466 -4- 0.047
0.408 -{- 0.037 0.372 -4- 0.041
4.009 ::l: 0.365 3.714 ± 0.416
3.506 ~- 0.297 3.430 -- 0.367
4.120 :}: 0.337 '3.521 ~-- 0.389

I.
0.401 4.0.033
0.4794.0.035
0.4574.0.034
4.8404.0.390
4.2274-0.317
;.7294.0.402

Class B
u, =I/p

I.
0.382 ± 0.038
0.5414.0.053
0.4524.0.041
4.563 4. 0.426
4.268 4. 0.386
5.166 4. 0.460

0.381
0.669
0.445
4.306
4.309
4.987

1.
4-0.042
4-0.102
4. 0.042
4- 0.413
4-0.403
4- 0.475

u2=l
1.

1.5384.0.360
1.9134.0.266
2.3514-3.628

3.9704-0.3473.408±0.373

1. 1.
1.221-4-0.2331.0124-0.200
1.106:1:0.126!0.699-+'0.079
3.8784-4.9184.037±3.781

4.0494-0.324
u2=l

3.455-~0.375
~,~ = 1 / ¢ ~

3.161 4- 0.368

0.013±0.006 0.172::h0.056;0.480-{-0.114
0.0334- 0.007 0.319±0.06410.577±0.126
0.0674.0.007 0.7534.+'0.07111.535 ±0.154
0.0144.0.007 0.235::}::0.067!0.750 ----.0.132

1.
6.5214.18.08
1.0634.0.328
0.1824-0.086
0.0044-0.005
0.0074.0.006
0.0294-0.009
).020 ±0.007

I .
2.902 4. 3.864
0.537 4- 0.143
0.343 4- 0.126
0.089 4- 0.044
0.059 ± 0.047
0.306 ± 0.081
0.260 4. 0.075

~,2 = Zogb,)/p
1.

1,888 4- 1.829
0.335 4- 0.088
0.422 4- 0.132
0.271 ± 0.086
0.1,58 ± 0.087
0.615 4- 0.155
0.548 4- 0.143

Table 4. The fitted parameter with their asymptotic standard error for the best three
combined models. The values shown are parameters for transformed t'. This means
that system parameters are scMed by the peak performance and code parameters by
the single processor floating point operation count.

is not always true in the second set of system parameters.
Looking on the first set of code parameters we see a larger influence of the

chosen model on the parameter. This corresponds to the effect of the second
functions which represent gradually different limited parallelism. The second
code parameter increases as the second function changes to more parallel work.
At the same time the first code parameter decreases. If the single processor
floating point count which we used for scale transformation would accurately
describe the amount of the total computational work then all code parameters
should be equal. The values for BT, LU and MG seem indeed to be roughly
equal. The values for SP are however consistently higher especially in the second
parameter. This indicates that SP contains a substantial additional amount of
computational work which is only partially parallelized.

A check of the statistical quality of the obtained fits shows that the correla-
tion matrix of the parameters for the three models have typical values of about
0.5-0.7 for the first parameters and much smaller values for all other entries.
The quantile-quantile plots for the errors are quite straight but show typically
some outliers at the higher end of the curve. The maximum relative error of
the predicted values is about 30% with only one value above 30% and the mean
value of the relative error is only 7%.

992

7 C o n c l u s i o n s

In this paper we present a methodology for analyzing performance measurements
without detailed knowledge of the used codes. It is based on the usage of generic
timing models build with characteristic function which are typical for the alge-
braic form of timing equation in parallel computing. We use this methodology
to analyze the NPB 2.1 results. Our results can be summarized as follows:

- Using a sequence of transformations solves the statistical scale problems.
- Analyzing each pair of system and code separately between 99.2% and 99.7%

of the total Sum of Square (SST) can be explained with individual two
parameter functions. This model has 32 free parameters for each class.

- Using a joint timing model with only 14 free parameter 99.1% of the SST of
class A and 98.7% of the SST of class B can be explained by this model.

- Typical s tandard error for the fitted parameter are in the range of 10%. Only
one parameter per class is not significantly different from 0.

- The maximum relative error of the predicted values is about 30% and the
mean value of the relative error is 7%.

- The average efficiency of the SP2 processor is more than twice as high as for
the other processors.

- The simulated CFD application SP contains a substantial amount of work
which is not included in the single processor floating point counts.

This methodology for empiric modeling of performance measurements does
not require detailed analysis of the implementations of the code. This makes
this method to a good alternative in all cases where the analysis of results from
complex application code benchmarks is necessary.

R e f e r e n c e s

1. D. Bailey, J. Barton, T. Lasinski, and H. Simon (editors). The NAS parallel bench-
marks. Technical Report RNR-91-02, NASA Ames Research Center, January 1991.

2. W. Saphir, A. Woo and M. Yarrow. The NAS parallel benchmarks 2.1 Results.
Technical Report NAS-96-01, NASA Ames Research Center, August 1996.

3. Horst D. Simon and Erich Strohmaier. Statistical Analysis of NAS Parallel Bench-
marks and LINPACK Results. In Bob Hertzberger and Guiseppe Serazzi, editors,
High-Performance Computing and Networking, pages 626-633, May 1995.

4. Raj Jain. The Art of Computer Systems Performance Analysis. Wiley, 1991
5. Strohmaier, Erich. Extending the Concept of Computational Similarity for Analyz-

ing Complex Benchmarks. Technical Report 43, Rechenzentrum der Universitaet
Mannheim, April ,1995,

6. Vipin Kumar et al.. Introduction to Parallel Computing: Design and analysis of
parallel algorithms. Benjamin/Cummings, 1994.

7. Jurgen Brehm and Patrick H. Worley and Manish Madhukar. Performance Mod-
eling for SPMD Message-Passing Programs. Technical Report TM-13254, Oak
Ridge National Laboratory, June 1996

