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Abs t r ac t .  With the results of version 2.1 a consistent set of performance 
measurements of the NAS Parallel Benchmarks (NPB) are available. Un- 
changed portable MPI code was used for this set of 269 single measure- 
ments. In this study we investigate how this amount of information can 
be condensed. We present a methodology for analyzing performance data 
not requiring detailed knowledge of the codes. For this we study several 
different generic timing models and fit the reported data. We show that 
with a joint timing model for all codes and all systems the data can be 
fitted reasonable well. The timing model also contains only a minimal set 
of free parameters. This method is usable in all cases where the analysis 
of results from complex application code benchmarks is necessary. 

1 I n t r o d u c t i o n  

The set of NAS Parallel Benchmarks (NPB) is one of the best accepted bench- 
marks  for parallel processing [1]. End of 1995 a new version of this suite was 
released which asked for the first t ime for performance measurements  of the un- 
changed MPI  code which is available from the NASA Ames Research Center. In 
August 1996 a first set of such results was released [2]. I t  contained an almost 
complete set of measurements  of 4 codes on 4 different systems for 3 different 
problem sizes. Such a homogeneous big set of performance da ta  from application 
codes is the optimal  s tar t ing point for any in depth analysis of the benchmark  
and systems in the set. 

The number  of 269 single measurements  immediately brings up the question 
if and how this amount  of information can be condensed. In previous studies we 
already showed tha t  for the fully vendor optimized NPB 1.0 results a limited 
number  of benchmarks  would be sufficient and tha t  Amdahl ' s  Law describes 
these results very well [3]. 

In this paper  we study to which extend this is true for the measurements  
of unchanged portable  M P I  code. We propose a generic t iming model with a 
minimal number  of free parameters  and fit this model to the da ta  using nonlinear 
regression. We evaluate the quality of our model by comparison with simpler 
models with more free parameters  and careful examination of the statistical 
properties of the obtained fits 2. A basic introduction to the statistics terminology 
used may  be found in [4]. 

* e-mail: erich@cs.utk.edu 
2 All analysis discussed in this paper are done with the SAS statistical software package 
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2 T i m i n g  m o d e l s  f o r  s i n g l e  s y s t e m s  

Starting point for our analysis are the measured execution times Ts,c of a sample 
of n application codes c which are measured on m different systems s. These 
times are functions of the number of processors p and the problem size n. For 
simplicity reasons we consider in the following only the dependency on p and 
not on n. 3 

The measured times can be separated in times for different computational 
phases of the execution during which basic types of computational work j like 
parallel computation, serial computation or communication take place. We split 
each of these basic types of work j into a sum of products. One factor ui(p) of 
each term contains all the dependencies on p and is indexed independent of code 
or system. We normalize these functions such that  ui(1) = 1 or ui(1) = 0. The 
other factors tj, i are parameters depending on code and system. 

n J I 
81C tj, i u~(p) (1) 

j----1 j----1 i=1 

We call ui the "characteristic functions" as they contain all the dependencies 
of the performance on p. They therefor characterize the scaling behavior of the 
code with increasing processor number p. The set of the characteristic functions 
ul reflects the typical algebraic form of timing relations for parallel computing. 

We now continue by using the following general timing model for analyzing 
the measured data: 

I J 
8~C T~,~(p) = E S ; ' C u I ( P )  with 5; 'c = E t j ,  i (2) 

i----1 j = l  

If we analyze the performance data  of a single code on a single system we will 
only be able to fit the sums 5 i . With statistical methods we will not be able 
to gain information about the individual t j, i [5]. This can be achieved only by 
analyzing the results of a set of codes measured on a set of systems as done in 
section 5. 

We now want to use equation 2 to analyze the performance results of an ap- 
plication without inspecting the code. For this it is critical to select a reasonable 
set of characteristic functions ul such that  the set can effectively characterize 
the execution times of parallel applications. This set of functions together with 
the number and quality of measurements will determine how many of the pa- 
rameters 6~ 'c can be fitted in a meaningful way. As characteristic functions for 
the further analysis we use the following set which is collected from different 
sources [6, 7, 5] 

1 1 log(p) 1 
l t l  = - ~ ,  U2 -'~ P--' U3 ~-- - - , p  U4 = - ' ~ ,  U5 = 1, U6 = log(p) ,  U7 = p 

(3) 
3 I n  p r inc ipa l  a s imi la r  a p p r o a c h  as o u r s  can  be  chosen  to  a c c o u n t  for t h e  d e p e n d e n c y  

on  t h e  p r o b l e m  size n .  
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3 Preparation of the data 

Looking on the execution times of the NPB 2.1 we notice a big range in the mea- 
sured times 4. For class A problem size measured t imes range from 0.75 seconds 
up to 4873.7 seconds. This range of 4 magnitudes of orders poses a severe scale 
problem for any statistical method and a t ransformation of this scale is required 
for statistical reasons. We are using the following transformations.  

One major  source for the differences in measured times are the different 
number  of processors used. As we are dealing with well parallelized codes multi- 
plication of the measured times with the number  of processor 5 has a smoothening 
effect on the data.  

The variation in the floating-point operation count is one reason for the 
differences between the execution t ime of the different codes. Scaling measured 
times with the inverse of this operation count equalizes the scale for the different 
codes further. 

Using processor with different computat ional  power is another  reason for 
differences in execution times. A multiplication of the measured times with peak 
performance r p ~ k  provides additional correction of the scale. 

Applying all three t ransformation in sequence the measured execution times 
t (p)  get t ransformed in a value t ' (p)  which is given as 

t '  (p) - t(p) * p Wc * rp~ak. (4) 

t ~ is a dimensionless value which can be interpreted as inverse tempora l  efficiency. 
The values of t t now vary by a modera te  factor of 4 to 7 for the three different 
problem size classes. 

After removing two clear outliers from our sample of results we have for 
problem size class A and B on the average about  6 to 7 observations for each 
code on each system. This is sufficient for a statistical analysis. There are however 
almost no measurements  for two of the systems in problem class C which is a 
clear l imitation in the usability of this set of results. 

A final inspection of the plotted performance da ta  over the number  of pro- 
cessors shows the following observations: 

- Measurements for the Cray T3D often show unstable performance values 
over the number  of processors. Performance values per processor can drop 
or rise by about  30% for measurements  with similar processor numbers.  

- The PowerChallenge Array shows clearly two regimes of operat ion associated 
with i t 's  hierarchical architecture. Performance within a single SMP node 
tend to show super linear speedup while performance between SMP nodes 
can drop significantly. 

These two facts are limits for our analysis as none of our characteristic functions 
from equations 3 can model such behavior effectively. 

4 see http://www.nas.nasa.gov/NAS/NPB/ 
5 For our analysis we are using the number of active processors and not the number 

of allocated processors as done in the NPB report [2]. 
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Ul ~2 
log(p)/p 1/p ~ 

lip 1Iv ~ 
l i p  1 
1/p log(p)/p 
1/p Zog(p) 
1/p p 

SSE R ~ 
26.13 0.99289 
26.40 0.99282 
28.06 0.99237 
28.17 0.99234 
29.18 0.99206 
35.41 0.99037 

51 52 
3.616 64.056 

11.595 0.558 
14.066 O.O27 
6.443 2.422 

14.516 0.005 
15.304 0.000 

Tab le  1. All two parameter models with R 2 > 0.99 for the class A SP results on the 
Cray T3D. The total Sum of Squares (SST) is 3677.85. SSE: Sum of Squares of the 
remaining Error; R2: coefficient of determination; 51 are the fitted model parameter. 

4 R e s u l t s  f o r  i n d i v i d u a l  f i t s  

We start  the analysis with two parameter  models which are a compromise be- 
tween the very limitations of one parameter models and the limited number of 
observations available for each analysis. We fit each possible timing model based 
on two characteristic functions separately for each code and each system to the 
data. As the number of observations for many cases is quite low (< 6) there are 
always several models which explain the same fraction R 2 of the total sum of 
squares in the model. As example we show in table 1 all meaningful combina- 
tions with an R 2 > 0.99 for the class A S P  results on the Cray T3D. We have 
chosen this example as it contributes the most to the total  Sum of Squares of 
this problem size class. For class A the Sum of Squares (SS) of SP on the Cray 
T3D is 3677.85 which is equivalent to 26.4% of the total  Sum of Squares (SST) 
of this class. 

Not only in this example but in most cases a precise selection of a single 
best model is not possible. There is however a clear trend to models containing 

1 u2 = 7 which is characteristic for parallel work. To find out which characteristic 
functions might be good candidates for a joint model for all codes and systems 
we fitted the same model to all combinations of code and systems and calculated 
the total SSE. In table 2 we show the SSE values for the 5 best models for each 
class together with the SSE value if taking the best individual model for each 

1 Models pair of code and system. Again most of the models contain u2 -- ~. 
1 which contain a second function characteristic for limited parallelism u4 = 

or u3 = tog(p) or for serial work u5 -- 1 tend to fit the data  bet ter  then models 
P 

including parallel overhead functions like u6 = log(p) or u7 = p. 

5 J o i n t  t i m i n g  m o d e l  f o r  a l l  s y s t e m s  

We now proceed the analysis by making the additional assumption that  the tj,i 
from equation 2 are the quotient of factors which only depend on the code w~,~ 
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Ul U2 SSE R~[I ul u2 SSE R 2 
Class A SST = 13937.17 Class B SST = 10769.02 

best best 
lip 1/x/~ 
lip 1 
1/p log(p) 
1/p log(p)/p 

log(p)/p l/p 2 

85.17 0.99209 
95.44 0.99114 
96.95 0.99100 
99.15 0.99079 

101.51 0.99057 
124.63 0.98843 

best best 
1/p 1 
1/p log(p) 
lip 1/v/-~ 
1/p log(p)/p 

log(p)/p X/p 2 

39.14 0.99719 
47.04 0.99663 
48.59 0.99651 
52.39 0.99624 
80.87 0.99420 

103.91 0.99254 

Table  2. The SSE values for the best 5 two parameter models used for all observations 
compared to the SSE value when using the best individual model for each pair of code 
and system. The best models for class C are the same as for class B. 

(amount of work) or the system r~,i (power of the system). 

s,c w;,, (5) 
t j ,  i =- r~,i 

The total  execution time can now be written as 
J I c .  I J c 

= E E ~  = E h i  u~(p) with ~ = ~  s (6) T~,~(p) ui(p) ~'~ ~,~ w j# 
j = l  i=l  rJ, i i.=1 j:---l= ~'j,i 

By using this product  representation we have introduced an additional degree 
of freedom for each characteristic function in equation 6. This follows as each 
5~ 'c is invariant if we multiply the values of w~, i and r~, i for all j by an arbi t rary 
factor. This degree of freedom has to be fixed by an additional condition on 
the parameters w~, i and r~#. We choose for this study to fix one of the system 
parameters w c equal to 1. This additional degree of freedom also implies tha t  
the absolute values of the parameters w~, i and r~, i by them self have no meaning 
as they can be manipulated by changing the normalizat ion.  Only the ratios of 
these parameters are invariant to such changes and can be interpreted in a safe 
way. 

Analyzing the full set of results Ts,c we can now fit values to the individual 
w~, i and r~#. The two sets of parameters work w$,, and speed r~, i together with 
the characteristic functions ui(p) fully describe the timing models for all codes 
on all systems included in the analysis. 

Overall this product  representation reduces the number of free parameters 
in the analysis effectively by a factor of ~ compared to fitting individual 
models for each pair of the m systems and the n codes. The number of free 
parameters is indeed quite small as we have for each "type of work" described 
by the characteristic functions only one parameter  for each code and one for 
each system. This reduction in the free parameters represent the possible value 
of this model as it potentially can explain the same number of observations with 
less or even a minimal set of free parameters.  
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~1 ?22 SSE R 2 721 U2 SSE R z 
Class A SST --- 13937.17 Class B SST=10769.02 

1/p 1 / ~  
1/p 1 
lip log(p)/p 
1/p log(p) 

~og(p)/p 1/p ~ 

1/pzog(p)/p 
1/p 1/v~ 
1/p 1 
1/p 1/p 
1/p log(p) 

130.28 0.99065 
142.02 0.98981 
146.24 0.98951 
148.84 0.98932 
261.88 0.98121 

134.73 0.98749 
156.03 0.98551 
179.27 0.98335 
180.67 0.98322 
185.13 0.98281 

Table 3. The 5 best two function models using the product representation from equa- 
tion 5. 

6 R e s u l t s  f o r  t h e  c o m b i n e d  m o d e l  

We now fit all possible timing models of the form of equation 6 based on two 
characteristic functions to all measurements. It turns out that  for problem size 
class C because of the high number of missing measurements for two of the 
systems no analysis comparable to class A and B is possible. We compare the 
results show in table 3 to the results for fitting individual models in table 2. 

The values of SSE are higher for the combined model. This was to expected 
as we now have only 14 free parameters instead of 32. The absolute increase 
compared to SST is quite small for each problem size class. This is a first strong 
confirmation that  our factorization assumption from equation 5 works quite well. 

We discuss now three of the overall best models in more detail. All three 
models contain u2 -- ~ as first characteristic function. As second function they 

contain u5 -- 1 or u4 = -~p, u3 = zog(p).p This sequence of second functions is 
equivalent from going from serial work to bet ter  and bet ter  parallel execution. 

In table 4 we show the actual fitted values for the 14 free parameters together 
with their asymptotic standard error for the class A and B. The parameters 
are fitted for the transformed t' from equation 4 and can be interpreted as the 
inverse of processor efficiencies and as code overhead factors. The absolute value 
of the parameters is however without any meaning. Only appropriate chosen 
ratios of them represent measurable values. 

We notice that  the standard errors for most parameters are in the range of 
5% to 20% of the fitted value. For Class A only the second system parameter  
of the SGI PowerChallenge Array shows quite big error bars. This is certainly 
related to the previous mentioned special behavior of the measured data  for this 
system. For class B the same is t rue for the second system parameter  of the Intel 
Paragon. As an inspection of the measured data  shows no special behavior of 
this system the most likely explanation of this large error is the small number 
of measurements for this system (16 out of 102). 

For all systems the first system parameter  varies only little between the three 
different models. If we interpret it as computational power then the IBM SP2 
shows always performance efficiencies twice as large as the other systems. This 
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Parameter[ 

7.PaPQgo~ I rCI ~'~yT3D 

,Uj~ "L" 

~MC 

~2~MSP2 

r C2 J'aTIT3D 

7" 2 l l j~  r,L 

.w~ a 

1. 
0.406 "+ 0.026 
0.425 4. 0.024 
0.482 4. 0.031 
4.572 4. 0.297 
4.023 4. 0.249 
5.355 4- 0.308 
4.672 ± 0.293 

Class A 
ul = I /p  

1. 1. 
0.370 -{- 0.032 0.365 ----. 0.041 
0.410 -4- 0.031 0.466 -4- 0.047 
0.408 -{- 0.037 0.372 -4- 0.041 
4.009 ::l: 0.365 3.714 ± 0.416 
3.506 ~- 0.297 3.430 -- 0.367 
4.120 :}: 0.337 '3.521 ~-- 0.389 

I. 
0.401 4.0.033 
0.4794.0.035 
0.4574.0.034 
4.8404.0.390 
4.2274-0.317 
;.7294.0.402 

Class B 
u, =I/p 

I. 
0.382 ± 0.038 
0.5414.0.053 
0.4524.0.041 
4.563 4. 0.426 
4.268 4. 0.386 
5.166 4. 0.460 

0.381 
0.669 
0.445 
4.306 
4.309 
4.987 

1. 
4-0.042 
4-0.102 
4. 0.042 
4- 0.413 
4-0.403 
4- 0.475 

u2=l  
1. 

1.5384.0.360 
1.9134.0.266 
2.3514-3.628 

3.9704-0.3473.408±0.373 

1. 1. 
1.221-4-0.2331.0124-0.200 
1.106:1:0.126!0.699-+'0.079 
3.8784-4.9184.037±3.781 

4.0494-0.324 
u2=l 

3.455-~0.375 
~,~ = 1 / ¢ ~  

3.161 4- 0.368 

0.013±0.006 0.172::h0.056;0.480-{-0.114 
0.0334- 0.007 0.319±0.06410.577±0.126 
0.0674.0.007 0.7534.+'0.07111.535 ±0.154 
0.0144.0.007 0.235::}::0.067!0.750 ----.0.132 

1. 
6.5214.18.08 
1.0634.0.328 
0.1824-0.086 
0.0044-0.005 
0.0074.0.006 
0.0294-0.009 
).020 ±0.007 

I .  
2.902 4. 3.864 
0.537 4- 0.143 
0.343 4- 0.126 
0.089 4- 0.044 
0.059 ± 0.047 
0.306 ± 0.081 
0.260 4. 0.075 

~,2 = Zogb,)/p 
1. 

1,888 4- 1.829 
0.335 4- 0.088 
0.422 4- 0.132 
0.271 ± 0.086 
0.1,58 ± 0.087 
0.615 4- 0.155 
0.548 4- 0.143 

Table 4. The fitted parameter with their asymptotic standard error for the best three 
combined models. The values shown are parameters for transformed t'. This means 
that system parameters are scMed by the peak performance and code parameters by 
the single processor floating point operation count. 

is not always true in the second set of system parameters. 
Looking on the first set of code parameters we see a larger influence of the 

chosen model on the parameter. This corresponds to the effect of the second 
functions which represent gradually different limited parallelism. The second 
code parameter increases as the second function changes to more parallel work. 
At the same time the first code parameter decreases. If the single processor 
floating point count which we used for scale transformation would accurately 
describe the amount of the total computational work then all code parameters 
should be equal. The values for BT, LU and MG seem indeed to be roughly 
equal. The values for SP are however consistently higher especially in the second 
parameter. This indicates that  SP contains a substantial additional amount of 
computational work which is only partially parallelized. 

A check of the statistical quality of the obtained fits shows that  the correla- 
tion matrix of the parameters for the three models have typical values of about 
0.5-0.7 for the first parameters and much smaller values for all other entries. 
The quantile-quantile plots for the errors are quite straight but show typically 
some outliers at the higher end of the curve. The maximum relative error of 
the predicted values is about 30% with only one value above 30% and the mean 
value of the relative error is only 7%. 
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7 C o n c l u s i o n s  

In this paper we present a methodology for analyzing performance measurements 
without detailed knowledge of the used codes. It is based on the usage of generic 
timing models build with characteristic function which are typical for the alge- 
braic form of timing equation in parallel computing. We use this methodology 
to analyze the NPB 2.1 results. Our results can be summarized as follows: 

- Using a sequence of transformations solves the statistical scale problems. 
- Analyzing each pair of system and code separately between 99.2% and 99.7% 

of the total  Sum of Square (SST) can be explained with individual two 
parameter  functions. This model has 32 free parameters for each class. 

- Using a joint timing model with only 14 free parameter  99.1% of the SST of 
class A and 98.7% of the SST of class B can be explained by this model. 

- Typical s tandard error for the fitted parameter  are in the range of 10%. Only 
one parameter  per class is not significantly different from 0. 

- The maximum relative error of the predicted values is about  30% and the 
mean value of the relative error is 7%. 

- The average efficiency of the SP2 processor is more than twice as high as for 
the other processors. 

- The simulated CFD application SP contains a substantial amount of work 
which is not included in the single processor floating point counts. 

This methodology for empiric modeling of performance measurements does 
not require detailed analysis of the implementations of the code. This makes 
this method to a good alternative in all cases where the analysis of results from 
complex application code benchmarks is necessary. 
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