
A General  Performance  Mode l  for Mul t i s tage  
Interconnect ion  N e t w o r k s  * 

C.J. Bouras, J.D. Garofalakis, P.G. Spirakis and V.D. Triantafillou 

Department of Computer Engineering and Informatics, 
and Computer Technology Institute, 
P.O. Box 1122, 261 l0 Patras, Greece 

E-mall : {bouras, garo f ala, spirakis, trianta f }@cti.gr 

A b s t r a c t . .  In this paper we analyze the general case of Multistage 
Interconnection Networks (MINs), made of k × k switches with finite, 
infinite or zero length buffers (unbuffered). The exact solution of the 
steady state distribution of the first stage is derived for all cases. We 
use this to get an approximation for the steady state distributions in the 
second stage and beyond. In the case of unbuffered switches we reach 
the known exact solution for all the stages of the MIN. Our results are 
validated by extensive simulations. 
Keywords :  analytical models, queueing theory models, evaluation. 

1 I n t r o d u c t i o n  

Multistage Interconnection Networks (MINs) have attracted from tile early '80s 
the attention of the designers of highly parallel multiprocessor systems with a 
large number of processors. MISs (which are packet-switched) have been adopted 
in the past in several machines ([2],[9]) and are expected also to play an im- 
portant  role in the development of high-speed networks based on Asynchronous 
Transfer Mode (ATM) . The performance of a MIN is of crucial importance, thus 
a lot of research has been dedicated to the study of how these networks perform 
under various conditions, through analytic techniques or simulation ([8], [10], [1], 
[6], [5], [7], [4]). Analytic results can be found for s1)eci~ic cases of MiSs, which 
mainly rely on approximation methods. 

The basic building block of the packet-switched MISs considered here, is 
a k-input, k-output (k x k) switch grouped in stages. We examine MISs that  
provide a unique path from each source (processor) to each sink (memory mod- 
ule), which belong to the class of Banyan MISs [3]. Our work considers general 
MINs, that  is, MISs made by switches with finite, infinite or zero length buffers 
(unbuffered), arbitrary switch size (k × k) and variable injection rate p at the 
sources. Assuming that the tragic (requests for memory modules) is uniform, 
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that  at each cycle a packet is generated with fixed probability p, and that pack- 
ets are lost when they are at tempted to be queued at a full buffer (relaxed 
blocking model), we derive for the general MIN, the exact steady-state distri- 
bution of queue lengths in the first stage, and of course exact formulas for the 
expected number of packets lost per cycle, and the mean queue length. We then 
use the results for the first stage and an operational approximation hypothesis 
to get the (approximate) distributions of the queue sizes of the second stage and 
beyond. Extensive simulations verify our results, ms we discuss in Section 6.Our 
analysis, based on the theory of recurrence equations, explicitly provides the 
form of the queue length distribution, which is a linear mixture of geometries. 

2 Our Approach 

2.1 T h e  M o d e l  

MINs are packet switched and they are required to provide high bandwidth 
to support  the communication between processors and memory modules. We 
consider that  the network is built by switches connected by mddireetional lines. 
General MINs consist of a number of k × k switches (nodes) grouped into stages. 
A k-input, k-output switch, can receive packets at each of its k input ports 
and send them through each of its k output ports. In each output  port  there 
is a buffer. We assume that tile buffers may be of infinite, finite or zero length 
(unbuffered switches). 

If there is a unique path fl'om each processor to each memory module then 
a MIN belongs to the class of Banyan Networks (BNs). We assume oblivious 
routing algorithms, i.e. algorithms in which the path of a packet through the 
network is fixed at the source node issuing it. The path can be encoded as a 
sequence of labels of the successive switch outputs of the path (path descriptor). 
Packets are generated at each processor by independent, identically distributed 
random processes. In our analysis we assume that each processor generates a 
packet with probability p at each cycle, and sends this with equal probability 
to any memory module (uniform access). The switches have a FIFO policy for 
their servers (outputs). Conflicts between packets simultaneously routed to the 
same output  port are resolved by queueing the packet. Our analysis assumes 
that  packets are lost when they are a t tempted to be queued at a full queue or 
in the case with nnbuffered switches. In actual parallel machines, the sending 
processor is notified, in order to resubmit the packet later on. The service time of 
the output  queues of each switch is assumed constant and equM to the network 
cycle time. The uniform access assumption allows us to represent any k × k switch 
as a system of k queues working in parallel, with a deterministic server each (of 
service time equal to 1). Any packet which enters any of the k inputs of the 
switch, goes with probability 1/k to any of the (output)  queues of the switch. In 
our analysis we assume that the buffer length b includes the server (output).  So, 
an unbuffered switch is referred with b = 1. We assume that  arrivals happen at 
the end of each cycle (thus first the queue is served and then new packets arrive, 
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if any). The routing logic at each switch is assumed to be fair, i.e. conflicts are 
randomly resolved. 

2.2 T h e  E q u i l i b r i u l n  a n d  I n t e r s t a g e  D e p e n d e n c i e s  

Most authors that  have used analytic approaches for the analysis of MIN's, 
have remarked the basic difficulty for any analytic approach. Except for the 
case of unbuffered switches ([8], [6]) in all other cases, the traffic flow between 
consecutive stages depends upon time, that  is the distribution of packet arrivals 
at the second and the subsequent stages is not tiIne independent, as is the case 
for the first stage which is feeded by the independent "Bernoulli" processors. 
([10], [6]). However, in [10] it is pointed out that the behaviour, say bt, of a 
stage at t ime t depends mainly upon the present, a little bit (bt-i/4) upon the 
situation at t ime t - 1, and is nearly independent (bt_r/4 r) from ancient events 
at t ime t - r. So, the dependency from history is exponentially desreasing. This 
last observation, together with the assuinption that every stage of the MIN will 
reach an equilibrium (steady-state), leads to the marcovian approximation which 
we present in section 5: The output queues of stage m that feed the stage m + 1, 
are assumed to operate like independent "Bernoulli" processors with a packet 
generation probability equal to their utilization. Clearly, this hypothesis equates 
the dynamics of the output  process of a stage with its "macroscopic" averages, 
ignoring any time dependency of it, s behaviour. 

3 T h e  G e n e r a l  R e c u r r e n c e  R e l a t i o n  f o r  t h e  F i r s t  S t a g e  

Let C be the random variable denoting tile nulnber of packets arriving to an 
arbitrary output  queue of an k x k switch of the first stage, at the end of a cycle 
and xk,c = P r ( C  = c). Some of these arriving packets may be lost due to a full 
queue. 

L e m m a l .  The arrival process of packets at the output queues of the first stage 
of the network, is given by a Bernoulli distribution B(p/k,k) ,  where p is the 
fixed probability of a packet generated by a processor at each cycle. Therefore we 
have 

D e f i n i t i o n 2 .  Let q(n) be tile number of packets in all arbitrary output  queue 
at the end of the cycle n and let q be the steady state limit of q('0. 

D e f i n i t i o n 3 .  Let v(n) be the number of packets that are entering an arbitrary 
output  queue at the end of cycle n and let v the steady state limit of v (n). It 
holds that  v(n) < C at each cycle n, when b is finite. If b is infinite, it is always 
true that  v (n) = C. 
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D e f i n i t i o n 4 .  Let pj = P r ( q  = j ) ,  j > 0, be the dis t r ibut ion of  q at  the s teady 
state.  Also, p0,1 = p0 + pl 

L e m m a S .  For 0 < m <_ min(b ,  k):  

Xk,m i f q  ( '~-o -- A(q (n - l ) )  < b - m, 
P r ( v  (n) = m) = (xk,m + Xk,,n+l + ' ' "  + Xk,k) i f q  (n - l )  -- A(q  (n - l ) )  = b - m, 

0 o therwi se  
(2) 

where A(q  (n)) is the departure of  a packet f rom an arbitrary output queue at the 
end of  cycle n, i f  any. 

Also for  m = 0, P r ( v  (n) = 0) = xk,0 for  any q(n-1). 

T h e o r e m  6. The steady state f low balance equations are : (Po,1 = Po + Pl ) 

PO = PO,lXk,O 
Pl = po,lxk,1 + pxxk,o 
P2 = Po,lXk,2 + p2xk,1 + p3Xk,O (3) 

Pk = pO,lXk,k + p2xk,k-1 + • • • + pk+lxk,o 
while for  k << j < b, the general recurence holds : 

pjxk,o = p j - k+l (Xk , k )  + Pj-k+2(Xk,k-1  + Xk,k) + ' "  "+ 
+ + . . .  + / k , k ) +  (4) 

p j - l ( x k , 2 + x k , 3 + ' ' ' +  xk,k),  k _ < j < b  
The same equation (~) holds for  j = b, in the case of  f inite buffers, or un- 

buffered switches (b = 1). (Proof  in ful l  paper). 

4 Solution of the First Stage 

The  characterist ic equat ion for the above recurence relation (4) is, 
f o r b > j > k  ( b < o o o r b = o o )  : F ( y ) = 0 ,  where 

F ( y )  = xk,0y k-1 - (xk,2 + xk,3 + . . .  + xk ,k)y  k-2  -- . . .  -- (Xk,k-1 + Xk,k)y -- Xk,k 

CASE 1: F ( y )  has distinct roots  R 1 , . . . ,  R ~ - I .  Then  the s teady-s ta te  probabil-  
ities are 

pj = A1R{  -1 + A21~ j -1  + ' - ' +  Ak_lRJ-11 (5) 

where A 1 , A 2 , . . . , A k - 1  are constants  tha t  can be derived f rom the initial 
condit ions 

P0,1 = A1 + A~ + . - . +  A ~ - I  
P2 = AI/~I + A2R2 + "'" + A k - l R k - 1  
: (6) 

. . . .  ' A R k-2 pk-1 A I R ~  -2 + A2R~ -2  + - r  k-1 k-1  

together  with P o , I = P O + P l  , ~b,~=oP,, = 1, (b < oo or b = o~) and the 
equat ions (3) for p0, Pl, . . . ,  Pk-.~. 
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C A S E  2: F(y)  has at least one mult iple nonzero root.  Then  the sys tem is un- 
stable, tha t  is lim,~._.~ q(n) = c~ 

T h e o r e m  7 ( s t a b i l i t y  c r i t e r i o n ) .  A steady state queue size distribution exists 
if  and only if  F(y)  has distinct roots. 

The cases of  instabil i ty should occur only when b = ~ (infinite buffers) and 
p = 1. However, applying our me thod  for networks with switches 2 × 2, 3 × 3 
and 4 × 4, we never faced the above CASE 2. 

4 .1  S w i t c h e s  w i t h  f i n i t e  b u f f e r s  

By apply ing  (5) for k = 2, we get one root  R1, which is, given tha t  x2,0 = 
(1 p/2) ~ and x2,2 p2/4 : R1 ~:~'~ __e_ 2 - = = ~2,'---'~ = ( s - p )  The  constant  A1 is given by: 

1 - R  1 A1 -- 1-R~ The  s teady state probabili t ies are : 

j - - I  p o = A l x 2 , O , p l = A l ( l - x 2 , o ) , p j = A i R a  ,2<_j<_b ( f o r p < l )  (7) 

o r  
Po = 1/4b, pl = 3/4b, pj = 1/b, 2 <_ j <_ b (for p = 1) (8) 

By an easy calculation, the mean number of packets in an output queue of the 
first stage is 

b p2[1 -- pb(1 -- p + b)] for p < 1 and b > 1 (9) 
E(q) = Z JPJ = p + 4(1 - p) ' 

j=o 

b • b+l l f o r p =  1 and b >  1 and E(q) = ~j=o3PJ = 2 -- 4-'b' 
I t  is wor th  point ing out  tha t  for b ~ oc , we get Pb ~ 0 much faster, thus 

equat ion (9) agrees with the known formula  of  [6] for the infinite buffer case 
(equat ion [19]). 

For the mean number of packets lost in a cycle at an output queue of the first 
stage we have: 

for p < 1 :  E(packets  lost in one cycle) = f (p~'/4)pb, b > 1 (10) 
p /4, = 1 

1/4b, b > 1 
f o r p = l  : E(packets  lost in one cycle) = 1/4, b = l  (11) 

4 .2  S w i t c h e s  w i t h  i n f i n i t e  b u f f e r s  

In this case we have b = c¢, thus for k = 2, we get x2,0 = (1 - p / 2 ) 2 ,  x2,2 = p~/4 
and the root  R1 = (2_-~p) 2. The  difference is in the constant  A1 which is now : 
A1 = 1 - R a  

The  s teady-s ta te  probabili t ies are : 

p o = l - p ,  p l = A l ( 1 - x ~ , o ) , p j = A , R ~ - x , j > 2  f o r p <  1 (12) 

For p = 1 we don ' t  have s teady-s ta te  probabilit ies,  since this is an instabil i ty 
case. Equat ions  (12) are in agreement  with [6], since they provide the known 
result: E(q) = p + p2/4(1 - p) 
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4.3  U n b u f f e r e d  s w i t c h e s  

For the general case (k x k switches), we have two balance equat ions : 

Po = pOXk,o + plXk,o = xk,o 
Pl = p o ( X k , l + X k , 2 + ' ' ' X k , k ) + p l ( X k , l + X k , 2 + ' ' ' X k , k )  (13) 
= 1 - x k , o  

Since xk,0 = (1 - p/k)  l:, we have 

Pl = 1 - (1 - p / k )  k (14) 

Equat ion  (14) is exactly the equat ion Pm+l = l - (1 - Pro~k) k of [8] and [6], 
when m = 0. We m a y  remark here, tha t  the above authors,  derive this equat ion  
for all the stages of  the network. This is an evidence tha t  our approx imat ion  
for the stages beyond the first stage (section 5) is valid even for the cases when 
b > 1. Easily, we get 

E(q) = 1 - xk,0 = 1 - (1 - p/k)  k (15) 
E(lost) = p -  1 + Xk,o = p -  1 +  (1 - p / k )  k 

The  last equat ion is the same with (10) for b = 1, when k = 2. 

5 S u b s e q u e n t  S t a g e s  a n d  N e t w o r k  P e r f o r m a n c e  

In accordance to the relnarks s ta ted in Section 2.2, we assume now the following 
approx imat ion  hypothesis  : 

Hypothesis : T h e  ou tpu t  queues of stage m tha t  feed stage m + 1, are assumed 
to operate  like processors with a packet generat ion probabi l i ty  P(m) such tha t  

P(m) = uti l ization of all ou tpu t  queue of  stage m (and P(0) = P) 

This hyl)othesis equates the dynamics  of the ou tpu t  process of  a stage with 
its "macroscopic" averages. 

D e f i n i t i o n S .  Let Pj,i = the s teady state  probahil i ty of finding j packets in an 
ou tpu t  queue of  stage i of  the network. 

Suppose tha t  we have a network with L stages. Our  approx imat ion  scheme 
is i terative and is described ill following Algor i thm I. 

P(0) :=  P 
FOP, i =  1 T O  L DO 
BEGIN 

Set p :=  p(i-1) 
Calculate  xk,0, xk,1, • • . ,  xk,k, 
Evaluate  Po,i, P l , i , . . . ,  Pb,i, f rom equat ions (5),(6) 
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Evaluate E(q), E(lost) for stage i 
P(i) := 1 -Po , i  

END 
CALCULATE N E T W O R K  P E R F O R M A N C E  MEASURES 
(BANDWIDTH,  AVERAGE T R A N S I T  T I M E  etc.) 

This  approximat ion scheme has the following nice properties : 

- I t  provides an exact solution for all stages for unbuffered networks as we com- 
mented in Section 4.3 

- I t  approximates  not only the average measures such as E(q)and E(lost), but  
also the distribution itself of the queue sizes, with a m a x i m u m  relative error 
in all cases, less than 5%. Higher errors are observed only in cases where the 
absolute values are very small and the simulation experiments count only a 
few respective events (e.g. lost packets when p is small). 

6 Comparison wi th  Simulat ion Resul ts  and Discuss ion 

We performed extensive simulations to validate our results. The simulations 
verify our analysis for the first stage and the subsequent ones for all different 
cases (unbuffered, infinite and finite buffers). Moreover, they prove tha t  the 
hypothesis introduced has a strong physical sence. 

The comparison of the analytic results with the simulation experiments,  con- 
firms the exact solution of the first stage for all classes of MINs studied and 
the fact that  the algorithm for the next stages presents an exact solution for all 
stages in the case of unbuffered network (b = 1). Our approximation predicts 
cumulative performance measures (such as mean queue length) with very small 
relative error. As far as the steady state distribution of queue sizes is concerned, 
we approximate  the largest steady state probabilities with a very good accu- 
racy, in all stages. For the low-valued probabilities (pb, pb-1) we odserve a small 
absolute error and a greater relative one. This error is caused probably due to 
the fact that  the blocking phenomena that  relate to these probabilities happen 
rarely, thus they are encountered a few times by the simulation of the network. 
The relative max imum  relative error of 5% observed for the above probabilities, 
could cause a relative error of about  10% for the mean number  of lost packets 
per queue, for the stages beyond the first since it depends mainly on those small 
probabilities. It  is interesting to note that  under our analysis networks with 2 × 2 
switches seem to perform better  than the 3 × 3 switches, with respect to the mean 
number  of packets lost per queue. 

- For networks with 2 × 2 switches : 
For low traffic (p < 0.4) buffers of size 3 are snfficient to allow only a small 
fraction (of about  0.0001) of the packets to be lost per queue. The buffer size 
becomes b = 8 for moderate  to heave traffic (0.4 < p < 0.8) and b = 15 for 
very heavy traffic (0.8 < p < 0.9), respectively in order to keep the losses at 
the same low level. 
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- For networks with 3 x 3 switches : 
The buffers should be respectively of length b = 4, b = 10, b = 18 in order to 
get the same proportion of lost packets per cycle. 

We expect that  this tendancy - as k increases the mean number  of packets 
lost increases - also holds for networks with greater k. The small fraction of lost 
packets implies tha t  resubmission of those packets from the processors will not 
increase the input traffic noticaably. Thus, one can use our analysis to predict 
the performance of actual networks where lost packets are resubmit ted later. 
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