
Performance Analysis of a Parallel Program for
Wave Propagation Simulation

Michel Pahud, Fr@d~ric Guidec, Thierry Cornu

Swiss Federal Institute of Technology Lausanne
Parallel Computing Research Group

EPFL-DI-LITH
CH-1015 Lausanne

E-maih [pahud,guidec, cornu] @di. epfl. ch

1 Introd~uction

During the last decade, performance prediction has been repeatedly quoted as a
key factor to developing parallel systems [1, 2, 3]. Predicting the performance of
a parallel program as a function of the number of processors and of the problem
size is crucial for choosing the best hardware configuration and for tuning various
parameters.

This paper presents a method for achieving performance analysis for paral-
lel irregular applications. The model is closely related to the Bulk Synchronous
Programming (BSP) model [4]. It is based on the measurement of basic communi-
cation and computation routines. The computational workload of each processor
and the load imbalance are modeled analytically.

The method is used for predicting the performances of ParFlow++, an irre-
gular, parallel radio-wave propagation algorithm.

2 W a v e p r o p a g a t i o n w i t h P a r F l o w - t - - b

The ParFlow simulation method is based on the so-called Lattice Boltzman
Model. It describes a physical system in terms of motion of fictitious, microscopic
particles over a lattice. In the current ParFlow model, it is assumed that waves
do not penetrate buildings: wall points are perfectly reflecting points that return
any incident wave with opposite sign. Indoor points may therefore be ignored in
the computation.

ParFlow++ i is a data-parallel C++ implementation of the ParFlow method
that implements these optimizations. It maintains a list of references to active
points, that is, outdoor grid points that have already been reached by the wave.
At each step of the simulation, values need only be calculated for active points,
and the propagation of outgoing flows is only required from active points to their
neighbors.

i For a full description of ParFlowWq- see the paper 'Object-Oriented Parallel Software
for Radio Wave Propagation Simulation in Urban Environment; also published in
these proceedings.

1031

The simulation zone is split into horizontal strips called partitions, which
are then allocated to processors based on a round-robin policy. Communica-
tions take place at the borders between adjacent partitions, where wave flows
and activation status are propagated. Balancing of the workload is achieved by
increasing the number of partitions allocated per processor. Yet, increasing the
number of partitions increases the communication costs. Therefore, a trade-off
must be found in the number of partitions per processor. Predicting the optimal
number of partitions is one of the goals of the performance model developed in
the next section.

3 P e r f o r m a n c e m o d e l

Our performance model focuses on the behavior of the algorithm while per-
forming the actual wave propagation simulation. The computation time of one
iteration is assumed to be that needed by the most heavily loaded processor,
and the computation workload of a processor is assumed to be proportional to
the number of active points handled by this processor. This number is not ne-
cessarily identical for each processor and increases at each iteration step. The
cost of the communication itself is assumed to be proportional to the number
of partition borders handled by one processor. This cost is constant over the
iterations since the volume of data transferred only depends on the number of
points per partition border.

To model the behavior of ParFlow++ on a new parallel architecture, only
two measurements are required: the computation time for each active point,
and the communication time per partition border. The computation time per
active point is obtained by timing one iteration of a sequential ParFlow++
execution, when all grid-points are active. The communication time is obtained
by timing the point-to-point communication time of a message of the same size
as a partition border. Contention is neglected in a first approximation. The
measured communication time includes the cumulated time taken by the PVM
communication routine, by the procedures responsible for packing and unpacking
the data contained in a border, and finally by the call to the encapsulating C++
methods.

To model local computation, we evaluate the number of active points handled
by a processor at a given time as a function of the number of processors and
of the number of partitions per processor. The number of active points is first
predicted for a void area (i.e., without buildings). When buildings are present the
actual number of active points is obtained by subtracting all indoor points, since
they are not processed in the ParFlow++ implementation. To avoid considering
the actual location of buildings on the grid, we assume that they are uniformly
distributed.

1032

4 R e s u l t s

The ParFlow++ performance model was validated on the Cray T3D multi-
processor architecture. Figure l(a) compares the measured and the theoretical
computation times for a 16-processors system working on a 1000 x 1000 simu-
lation zone (namely, a district of the city of Geneva), with one parti t ion per
processor. Communication times are not considered here. Each curve shows the
computation time spent by one of the processors as a function of the iteration
step i.

Figure l(a) confirms that the model fits quite well to the actual results.
Discrepancies between them show the impact of the non uniform distribution of
buildings.

6 X 10 s - - measur=, - - fx=d ic~on

i i " l / [' t t ;"
f i , / , " - -

"/J " 4 " • r , / .

/ I , ~ / I / f f I i i

310

3OO

2 ~)

28O

~o
26o

25o

2,111

230

- - measure , - - w e d c t i o n

2 0 0 400 6~a .bon 800 1000 1200 2 3 4 5
#1 s # pa lSt lc~s / PE

(a) (b)

Fig. 1. Workload distribution (a) and execution times (b) of ParFlow++ running on 16
processors. Dashed curves show actual measurements and plain curves show predicted
values.

Although the load of individual processors is predicted only imperfectly, this
prediction can still be used very efficiently in the estimation of the total exe-
cution time. Figure l(b) shows the predicted and measured execution times for
the district of the Geneva city, as a function of the number of partitions per
processor. The communication t ime is taken into account. Both the predictions
and the measurements clearly show the trade-off between a good load-balancing
and reduced communication costs. The optimal partitioning for this problem
size is actually four partitions per processor, while the prediction indicates three
partitions. The performance difference between the predicted and measured op-
tion is quite small. The discrepancies between the two curves are probably due
to the irregularity of the distribution of buildings. Without a priori information
on building locations, three partitions per processors would actually be the best
bet.

1033

The evolution of the measured and predicted speedups for the same area was
also compared, as a function of the number of processors used. In this case, only
one partition per processor was used. The quality of the prediction was very
satisfactory: prediction error varied between 0 and 6%.

5 C o n c l u s i o n

The performance model for a parallel, irregular application presented is based
on the BSP model [4], known for its ability to represent regular algorithms. It
was tested on an irregular simulation problem and was able to provide a valid
prediction for executions on the Cray T3D. It can be used for scalability analyses,
such as speedup prediction, or to seek optimal trade-offs in issues such as data
partitioning. Prediction relies on only a few basic measurements: the timing of
point-to-point communications and of elementary sequential computations.

Future work will include the modeling of other parallel irregular al-
gorithm with a similar methodology. Parallel optimization algorithms like
branch & bound, tabou search and evolutionary algorithms are good candida-
tes for such investigations. On other multi-processor architectures (distributed
memory machines such as the Intel Paragon, shared memory architectures like
the SGI Origin 2000, and networks of workstations) performance prediction will
also be investigated to check the generality of the modeling method. In the long
term, our objective is the development of a generic prediction tool, that should
process annotated parallel irregular programs automatically and predict their
performances on any target parallel platform.

R e f e r e n c e s

1. T. Fahringer. Automatic Performance Prediction for Parallel Programs on Massi-
vely Parallel Computers. PhD thesis, Technical University Vienna, Austria, 1993.

2. A. Gupta and V. Kumar. Analyzing scalability of parallel algorithms and archite-
ctures. Journal of Parallel and Distributed Computing, 22(3):379-391, Sept. 1994.

3. W. Kuhn. Performance prediction and benchmarking results from the ALPSTONE
project. In Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking (HPCN Europe'96), number 1067 in Le-
cture Notes in Computer Science, pages 763-769, Brussels, Belgium, Apr. 1996.
Springer Verlag.

4. L. G. Valiant. Bulk-synchronous parallel computers. In M. Reeve and S. E. Zenith,
editors, Parallel Processing and Artificial Intelligence, Chichester, UK, 1989. Wiley.

