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1 Introd~uction 

During the last decade, performance prediction has been repeatedly quoted as a 
key factor to developing parallel systems [1, 2, 3]. Predicting the performance of 
a parallel program as a function of the number of processors and of the problem 
size is crucial for choosing the best hardware configuration and for tuning various 
parameters. 

This paper presents a method for achieving performance analysis for paral- 
lel irregular applications. The model is closely related to the Bulk Synchronous 
Programming (BSP) model [4]. It is based on the measurement of basic communi- 
cation and computation routines. The computational workload of each processor 
and the load imbalance are modeled analytically. 

The method is used for predicting the performances of ParFlow++, an irre- 
gular, parallel radio-wave propagation algorithm. 

2 W a v e  p r o p a g a t i o n  w i t h  P a r F l o w - t - - b  

The ParFlow simulation method is based on the so-called Lattice Boltzman 
Model. It describes a physical system in terms of motion of fictitious, microscopic 
particles over a lattice. In the current ParFlow model, it is assumed that waves 
do not penetrate buildings: wall points are perfectly reflecting points that return 
any incident wave with opposite sign. Indoor points may therefore be ignored in 
the computation. 

ParFlow++ i is a data-parallel C++ implementation of the ParFlow method 
that implements these optimizations. It maintains a list of references to active 
points, that is, outdoor grid points that have already been reached by the wave. 
At each step of the simulation, values need only be calculated for active points, 
and the propagation of outgoing flows is only required from active points to their 
neighbors. 

i For a full description of ParFlowWq- see the paper 'Object-Oriented Parallel Software 
for Radio Wave Propagation Simulation in Urban Environment; also published in 
these proceedings. 
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The simulation zone is split into horizontal strips called partitions, which 
are then allocated to processors based on a round-robin policy. Communica- 
tions take place at the borders between adjacent partitions, where wave flows 
and activation status are propagated. Balancing of the workload is achieved by 
increasing the number of partitions allocated per processor. Yet, increasing the 
number of partitions increases the communication costs. Therefore, a trade-off 
must be found in the number of partitions per processor. Predicting the optimal 
number of partitions is one of the goals of the performance model developed in 
the next section. 

3 P e r f o r m a n c e  m o d e l  

Our performance model focuses on the behavior of the algorithm while per- 
forming the actual wave propagation simulation. The computation time of one 
iteration is assumed to be that needed by the most heavily loaded processor, 
and the computation workload of a processor is assumed to be proportional to 
the number of active points handled by this processor. This number is not ne- 
cessarily identical for each processor and increases at each iteration step. The 
cost of the communication itself is assumed to be proportional to the number 
of partition borders handled by one processor. This cost is constant over the 
iterations since the volume of data transferred only depends on the number of 
points per partition border. 

To model the behavior of ParFlow++ on a new parallel architecture, only 
two measurements are required: the computation time for each active point, 
and the communication time per partition border. The computation time per 
active point is obtained by timing one iteration of a sequential ParFlow++ 
execution, when all grid-points are active. The communication time is obtained 
by timing the point-to-point communication time of a message of the same size 
as a partition border. Contention is neglected in a first approximation. The 
measured communication time includes the cumulated time taken by the PVM 
communication routine, by the procedures responsible for packing and unpacking 
the data contained in a border, and finally by the call to the encapsulating C++ 
methods. 

To model local computation, we evaluate the number of active points handled 
by a processor at a given time as a function of the number of processors and 
of the number of partitions per processor. The number of active points is first 
predicted for a void area (i.e., without buildings). When buildings are present the 
actual number of active points is obtained by subtracting all indoor points, since 
they are not processed in the ParFlow++ implementation. To avoid considering 
the actual location of buildings on the grid, we assume that they are uniformly 
distributed. 
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4 R e s u l t s  

The ParFlow++ performance model was validated on the Cray T3D multi- 
processor architecture. Figure l(a) compares the measured and the theoretical 
computation times for a 16-processors system working on a 1000 x 1000 simu- 
lation zone (namely, a district of the city of Geneva), with one parti t ion per 
processor. Communication times are not considered here. Each curve shows the 
computation time spent by one of the processors as a function of the iteration 
step i. 

Figure l(a)  confirms that the model fits quite well to the actual results. 
Discrepancies between them show the impact of the non uniform distribution of 
buildings. 
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Fig. 1. Workload distribution (a) and execution times (b) of ParFlow++ running on 16 
processors. Dashed curves show actual measurements and plain curves show predicted 
values. 

Although the load of individual processors is predicted only imperfectly, this 
prediction can still be used very efficiently in the estimation of the total  exe- 
cution time. Figure l(b) shows the predicted and measured execution times for 
the district of the Geneva city, as a function of the number of partitions per 
processor. The communication t ime is taken into account. Both the predictions 
and the measurements clearly show the trade-off between a good load-balancing 
and reduced communication costs. The optimal partitioning for this problem 
size is actually four partitions per processor, while the prediction indicates three 
partitions. The performance difference between the predicted and measured op- 
tion is quite small. The discrepancies between the two curves are probably due 
to the irregularity of the distribution of buildings. Without  a priori information 
on building locations, three partitions per processors would actually be the best 
bet. 
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The evolution of the measured and predicted speedups for the same area was 
also compared, as a function of the number of processors used. In this case, only 
one partition per processor was used. The quality of the prediction was very 
satisfactory: prediction error varied between 0 and 6%. 

5 C o n c l u s i o n  

The performance model for a parallel, irregular application presented is based 
on the BSP model [4], known for its ability to represent regular algorithms. It 
was tested on an irregular simulation problem and was able to provide a valid 
prediction for executions on the Cray T3D. It can be used for scalability analyses, 
such as speedup prediction, or to seek optimal trade-offs in issues such as data 
partitioning. Prediction relies on only a few basic measurements: the timing of 
point-to-point communications and of elementary sequential computations. 

Future work will include the modeling of other parallel irregular al- 
gorithm with a similar methodology. Parallel optimization algorithms like 
branch & bound, tabou search and evolutionary algorithms are good candida- 
tes for such investigations. On other multi-processor architectures (distributed 
memory machines such as the Intel Paragon, shared memory architectures like 
the SGI Origin 2000, and networks of workstations) performance prediction will 
also be investigated to check the generality of the modeling method. In the long 
term, our objective is the development of a generic prediction tool, that  should 
process annotated parallel irregular programs automatically and predict their 
performances on any target parallel platform. 
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