
Bounding the Minimal Completion Time of Static Mappings of
Multithreaded Solaris Programs

Lars Lundberg
Department of Computer Science, University of Karlskrona/Ronneby,

Soft Center, S-372 25 Ronneby, Sweden, email: Lars.Lundberg@ide.hk-r.se

1 Introduction
A multithreaded Solaris program can be executed in parallel on a multiprocessor.

Previous experience show that, using the default scheduling algorithm, threads are
frequently relocated from one processor to another [5]. After each such relocation,
the code and data associated with the relocated thread have to be moved to the cache
of the new processor. In order to avoid this problem, one can map threads to proces-
sors using the processor_bind directive [2]. The major problem with such static map-
pings is that one can easily end up with an unbalanced load. The problem of finding a
mapping of threads to processors which results in minimum completion time is NP-
hard [1]. It is even difficult to determine if a certain mapping is close the optimal case
or if it is worth-while to look for other mappings.

Previous results [4] show that, based on certain information about the program,
one can obtain a tight bound on the minimal completion time using static mappings,
i.e. it is always possible to find a mapping with a completion time less than or equal
to the bound. This makes it possible to determine if a certain mapping is close to the
optimal case or if it is worth-while to look for other mappings. In this paper, we
present a set of tools which make it possible to obtain such a bound, using an ordi-
nary uni-processor workstation.

2 Method Overview
Figure 1 shows the steps used for bounding the minimum completion time of a

static mapping of a multithreaded Solaris program P using a multiprocessor with k
processors. Bold boxes indicate the parts developed by us. The routines in the Solaris
thread library are overloaded with an instrumented thread library. For each call to a
thread routine, a number of values are recorded, e.g. the identity of the thread making
the call, the identity of the routine (e.g. thr_create, thr_exit and sema_wait) and the
local process time when the call is made.

In order to bound the minimum completion time for a multiprocessor with k
processors, we use an ordinary uni-processor workstation. The uni-processor execu-
tion of the multithreaded program, using the instrumented thread library, results in a
list of recorded values. This list is then restructured into the dynamic program behav-
iour format, which is the information needed in order to calculate the bound. The
bound calculation tool takes the dynamic program behaviour of the monitored pro-
gram and the number of processors (k) in the multiprocessor system for which we are
going to calculate the performance bound.

1035

Multithreaded Uni-Processor Recorded
S, olaris Program _ Program Execution Information

Instrumented Thread ~ r ~ J
Library J "

I I J f Restructuring Dynamic Program
| | Tool Behaviour CO- b

Bound Calculation
~ Tool

Number of processors (k) ~ ~ Bound on the minimal
in the system for which - - - t1~ |] ~ completion time
we want to calculate the bound

Figure 1: The tools which enable us to calculate a bound on the minimal
completion time of any static mapping of a multithreaded Solaris program.

3 C a l c u l a t i n g the B o u n d

The upper left part of figure 2 shows a multithreaded Solaris program, contain-
ing three threads: main, Thrl and Thr2. The upper right part of the figure shows a
graphical representation of the execution of this program using one processor for
each thread. The lower part of figure 2 shows a textual representation corresponding
to the graphical representation; work(t) denotes sequential processing for t time
units. Each thread is represented as a list of synchronization events separated by peri-
ods of sequential processing. These lists represent the dynamic program behaviour
(see figure 1). The lists correspond to the sequence of events during the monitored
execution. Therefore, the lists are completely deterministic. Indeterministic events,
e.g. mutex_trylock are modelled by the corresponding deterministic events. If a
mutex_trylock succeeds in the monitored execution, this is modelled as a mutex_lock,
otherwise the event is not modelled at all.

The table below shows the recorded information generated during the monitored
uni-processor execution of the multithreaded program in figure 2.
Process local time Thread Id Thread routine Parameters
T2 main thr create Thr 1
T2+T3 main thr create Thr2
T2+T3+T4 main t h r j oin Thr 1
T2+T3+T4+T1 Thrl thr_ exit --
T2+T3+T4+T 1 +T 1 Thr2 thr exit - -
T2+T3+T4+TI+TI+T5 main thr_join Thr2
T2+T3+T4+TI+TI+T5+T6 main thr exit --

1036

void thread_code(void *parameters) {
.../I sequential processing for T1 time units

}//end thread_code

int main() {
thread_t Thrl, Thr2;
...//sequential processing for T2 time units
thr_create(0, 0, thread_code, param, 0, &Thrl);
...//sequential processing for T3 time units
thr_create(0, 0, thread_code, param, 0, &Thr2);
...//sequential processing for T4 time units
thr_join(Thrl, NULL, NULL);
...//sequential processing for T5 time units
thr_join(Thr2, NULL, NULL);
...//sequential processing for T6 time units

}//end main

main
begin
work(T2)
thr_create(Thr 1)
work(T3)
thr_create(Thr2)
work(T4)
thr join(Thrl)
work(T5)
thr_join(Thr2)
work(T6)

end

Thrl
begin

work(T1)
end

main

T21-- r' I
r2 I

T61 - " Time l

Thr2
begin

work(T1)
end

Dynamic Program Behaviour

Figure 2: Three representations of a multithreaded Solaris program. Upper part: the
source code and a graphical representation of the execution using one processor for

each thread. Lower part: a set of lists corresponding to the behaviour of the program.

The monitored execution of the multithreaded program is done on a uni-proces-
sor system using one LWP (Light Weight Process) for the entire program. The sched-
uling of threads to LWPs is non-preemptive, i.e. if there is only one LWP, a running
thread cannot be preempted by another thread in the same program. This means that
thread switching only occurs at a call to a routine in the thread library, e.g. thr_exit,
sema_wait and mutex_lock. We monitor all these calls and record the time when they
occur. Therefore, it is possible to restructure the recorded information into the lists
(one list for each thread) representing the dynamic program behaviour.

4 Method Example

We are going to bound the completion time of a parallel implementation of an
algorithm for generating prime numbers. A number of filters form a line with a
number generator feeding numbers into the line. There is a prime number associated
with each filter. Each filter filters out numbers which are divisible by its prime
number, e.g. the first one filters out all even numbers. If a filter cannot divide a
number, that number is forwarded to the next filter. Therefore, prime numbers reach

1037

the end of the line. When a prime number reaches the end of the line a new filter is
created. The number generator stops by generating the number 3,000,000. The filter
chain is cut up into contiguous subchains containing 500 filters each. Each subchain
is executed by a Solaris thread. The maximum number of such subchains, which is
reached at the end of the execution, is 44, i.e. n = 44.

The program was executed on a uni-processor version of a Sun Sparc Center
1000, using the instrumented thread library. Based on recorded values we calculate
the bound. Figure 3a shows the bound in the interval (1 < k < 8).

Using the processor_bind routine, a simple mapping was implemented. The first
In~k] threads are executed by processor zero (thread zero is the first subchain,
thread one is the second, and so on). Similarly the next In~k[threads are executed
by processor one. The last n - (k - 1) × [n/kA threads are executed by processor k-
1. We refer to this as contiguous mapping, since the chain of threads is cut up into k
contiguous subchains, and each subchain is mapped to a processor.

Figure 3b shows the completion time using contiguous mapping and the upper
bound. The figure shows that the completion time using contiguous mapping is
above the upper bound when the number of processors (k) is less than 6. Conse-
quently, in this interval we know that contiguous mapping is not optimal, and it is
thus worth-while to look for other mappings.

5000

4000

3000

2000

1000

Completion time (in seconds)
\

\
~x, Upper bound

(a)

5000

4000

3000

2000

1000

Completion time (in seconds)
~ , (b)

~,,.~Contiguous mapping

Number of processors (k)
'2 '4 '6 '8 I~

Figure 3: Comparing the completion using contiguous and round-robin mapping
with the upper bound.

Number ofprocessor
'2 4 6 S

1038

5 Conclusions

The technique is based on the assumption that the behaviour of the multi-
threaded program is (almost) deterministic. There are programs for which this
assumption is reasonable, e.g. programs which multiply matrices of a certain size
and programs which perform parallel image processing by splitting the image into
fixed sized pieces.

The idea of using information from monitored uni-processor executions in order
to estimate the multiprocessor performance of a parallel program is not new. The
same idea has been used for parallel Ada and Fortran programs [3][6]. However, in
these cases the goal was to predict the speedup of a the parallel program, i.e. no per-
formance bounds were calculated in these projects.

The technique and tools described in this paper show that it is possible to inte-
grate a theoretical performance bound in a real parallel programming environment,
making the bound accessible to practitioners. The applicability of the result has been
demonstrated by comparing the completion time of a real multithreaded Solaris pro-
gram with the completion time bound. The bound itself, which was obtained in a
previous study [4], is optimal in the sense that it cannot be improved within the defi-
nition of the problem. The tool used for obtaining the necessary information require
no modification of the source code. Except for a minimal recording overhead, the
behaviour of the multithreaded program is not affected by the recordings.

References
[1] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman and

Company, 1979.

[2] B. Lewis and D. J. Berg, Threads Primer, Prentice Hall, 1996.

[3] L. Lundberg, Predicting the Speedup of Parallel Ada Programs, in Proceed-
ings of!the ~da-Europe 1992 Conference, Amsterdam, June 1992, Springer-
Verlag, pp. 257-274.

[4] L. Lundberg and H. Lennerstad, An Optimal Upper Bound on the Minimal
Completion Time in Distributed Supercomputing, in Proceedings of the 1994
ACM International Conference on Supercomputing, July, 1994, Manchester,
England, pp. 196-203.

[5] L. Lundberg, Multiprocessor Performance Evaluation of Billing Gateway
Systems for Telecommunication Applications, in Proceedings of the ISCA In-
ternational Conference on Parallel and Distributed Computing Systems, Di-
jon, France, September, 1996, pp. 225-231.

[6] K. So, A. S. Bolmarcich, F. Darema and V. A. Norton, A Speedup Analyserfor
Parallel Programs, in Proceedings of the 1988 International Conference on
Parallel Processing, August 1988, pp. 126-129.

