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1 Introduction 
A multithreaded Solaris program can be executed in parallel on a multiprocessor. 

Previous experience show that, using the default scheduling algorithm, threads are 
frequently relocated from one processor to another [5]. After each such relocation, 
the code and data associated with the relocated thread have to be moved to the cache 
of the new processor. In order to avoid this problem, one can map threads to proces- 
sors using the processor_bind directive [2]. The major problem with such static map- 
pings is that one can easily end up with an unbalanced load. The problem of finding a 
mapping of threads to processors which results in minimum completion time is NP- 
hard [ 1 ]. It is even difficult to determine if a certain mapping is close the optimal case 
or if it is worth-while to look for other mappings. 

Previous results [4] show that, based on certain information about the program, 
one can obtain a tight bound on the minimal completion time using static mappings, 
i.e. it is always possible to find a mapping with a completion time less than or equal 
to the bound. This makes it possible to determine if a certain mapping is close to the 
optimal case or if it is worth-while to look for other mappings. In this paper, we 
present a set of tools which make it possible to obtain such a bound, using an ordi- 
nary uni-processor workstation. 

2 Method Overview 
Figure 1 shows the steps used for bounding the minimum completion time of a 

static mapping of a multithreaded Solaris program P using a multiprocessor with k 
processors. Bold boxes indicate the parts developed by us. The routines in the Solaris 
thread library are overloaded with an instrumented thread library. For each call to a 
thread routine, a number of values are recorded, e.g. the identity of the thread making 
the call, the identity of the routine (e.g. thr_create, thr_exit and sema_wait) and the 
local process time when the call is made. 

In order to bound the minimum completion time for a multiprocessor with k 
processors, we use an ordinary uni-processor workstation. The uni-processor execu- 
tion of the multithreaded program, using the instrumented thread library, results in a 
list of recorded values. This list is then restructured into the dynamic program behav- 
iour format, which is the information needed in order to calculate the bound. The 
bound calculation tool takes the dynamic program behaviour of the monitored pro- 
gram and the number of processors (k) in the multiprocessor system for which we are 
going to calculate the performance bound. 
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Figure 1: The tools which enable us to calculate a bound on the minimal 
completion time of any static mapping of a multithreaded Solaris program. 

3 C a l c u l a t i n g  the  B o u n d  

The upper left part of figure 2 shows a multithreaded Solaris program, contain- 
ing three threads: main, Thrl and Thr2. The upper right part of the figure shows a 
graphical representation of the execution of this program using one processor for 
each thread. The lower part of figure 2 shows a textual representation corresponding 
to the graphical representation; work(t) denotes sequential processing for t time 
units. Each thread is represented as a list of synchronization events separated by peri- 
ods of sequential processing. These lists represent the dynamic program behaviour 
(see figure 1). The lists correspond to the sequence of events during the monitored 
execution. Therefore, the lists are completely deterministic. Indeterministic events, 
e.g. mutex_trylock are modelled by the corresponding deterministic events. If  a 
mutex_trylock succeeds in the monitored execution, this is modelled as a mutex_lock, 
otherwise the event is not modelled at all. 

The table below shows the recorded information generated during the monitored 
uni-processor execution of the multithreaded program in figure 2. 
Process local time Thread Id Thread routine Parameters 
T2 main thr create Thr 1 
T2+T3 main thr create Thr2 
T2+T3+T4 main t h r j  oin Thr 1 
T2+T3+T4+T1 Thrl thr_ exit -- 
T2+T3+T4+T 1 +T 1 Thr2 thr exit - - 
T2+T3+T4+TI+TI+T5 main thr_join Thr2 
T2+T3+T4+TI+TI+T5+T6 main thr exit -- 
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void thread_code(void *parameters) { 
.../I sequential processing for T1 time units 

}//end thread_code 

int main() { 
thread_t Thrl, Thr2; 
...//sequential processing for T2 time units 
thr_create(0, 0, thread_code, param, 0, &Thrl); 
...//sequential processing for T3 time units 
thr_create(0, 0, thread_code, param, 0, &Thr2); 
...//sequential processing for T4 time units 
thr_join(Thrl, NULL, NULL); 
...//sequential processing for T5 time units 
thr_join(Thr2, NULL, NULL); 
...//sequential processing for T6 time units 

}//end main 

main 
begin 
work(T2) 
thr_create(Thr 1) 
work(T3) 
thr_create(Thr2) 
work(T4) 
thr join(Thrl) 
work(T5) 
thr_join(Thr2) 
work(T6) 

end 

Thrl 
begin 

work(T1) 
end 

main 

T21-- r' I 
r2 I 

T61 - "  Time l 

Thr2 
begin 

work(T1) 
end 

Dynamic Program Behaviour 

Figure 2: Three representations of a multithreaded Solaris program. Upper part: the 
source code and a graphical representation of the execution using one processor for 

each thread. Lower part: a set of lists corresponding to the behaviour of the program. 

The monitored execution of the multithreaded program is done on a uni-proces- 
sor system using one LWP (Light Weight Process) for the entire program. The sched- 
uling of threads to LWPs is non-preemptive, i.e. if there is only one LWP, a running 
thread cannot be preempted by another thread in the same program. This means that 
thread switching only occurs at a call to a routine in the thread library, e.g. thr_exit, 
sema_wait and mutex_lock. We monitor all these calls and record the time when they 
occur. Therefore, it is possible to restructure the recorded information into the lists 
(one list for each thread) representing the dynamic program behaviour. 

4 Method Example 

We are going to bound the completion time of a parallel implementation of an 
algorithm for generating prime numbers. A number of filters form a line with a 
number generator feeding numbers into the line. There is a prime number associated 
with each filter. Each filter filters out numbers which are divisible by its prime 
number, e.g. the first one filters out all even numbers. If a filter cannot divide a 
number, that number is forwarded to the next filter. Therefore, prime numbers reach 
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the end of the line. When a prime number reaches the end of the line a new filter is 
created. The number generator stops by generating the number 3,000,000. The filter 
chain is cut up into contiguous subchains containing 500 filters each. Each subchain 
is executed by a Solaris thread. The maximum number of such subchains, which is 
reached at the end of the execution, is 44, i.e. n = 44. 

The program was executed on a uni-processor version of a Sun Sparc Center 
1000, using the instrumented thread library. Based on recorded values we calculate 
the bound. Figure 3a shows the bound in the interval (1 < k < 8). 

Using the processor_bind routine, a simple mapping was implemented. The first 
In~k] threads are executed by processor zero (thread zero is the first subchain, 
thread one is the second, and so on). Similarly the next In~k[ threads are executed 
by processor one. The last n - (k - 1) × [n/kA threads are executed by processor k- 
1. We refer to this as contiguous mapping, since the chain of threads is cut up into k 
contiguous subchains, and each subchain is mapped to a processor. 

Figure 3b shows the completion time using contiguous mapping and the upper 
bound. The figure shows that the completion time using contiguous mapping is 
above the upper bound when the number of processors (k) is less than 6. Conse- 
quently, in this interval we know that contiguous mapping is not optimal, and it is 
thus worth-while to look for other mappings. 
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Figure 3: Comparing the completion using contiguous and round-robin mapping 
with the upper bound. 
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5 Conclusions 

The technique is based on the assumption that the behaviour of the multi- 
threaded program is (almost) deterministic. There are programs for which this 
assumption is reasonable, e.g. programs which multiply matrices of a certain size 
and programs which perform parallel image processing by splitting the image into 
fixed sized pieces. 

The idea of using information from monitored uni-processor executions in order 
to estimate the multiprocessor performance of a parallel program is not new. The 
same idea has been used for parallel Ada and Fortran programs [3][6]. However, in 
these cases the goal was to predict the speedup of a the parallel program, i.e. no per- 
formance bounds were calculated in these projects. 

The technique and tools described in this paper show that it is possible to inte- 
grate a theoretical performance bound in a real parallel programming environment, 
making the bound accessible to practitioners. The applicability of the result has been 
demonstrated by comparing the completion time of a real multithreaded Solaris pro- 
gram with the completion time bound. The bound itself, which was obtained in a 
previous study [4], is optimal in the sense that it cannot be improved within the defi- 
nition of the problem. The tool used for obtaining the necessary information require 
no modification of the source code. Except for a minimal recording overhead, the 
behaviour of the multithreaded program is not affected by the recordings. 
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