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Abstract 
Speculative execution is a key concept to increase the performance of superscalar 
processors. Given accurate branch prediction mechanisms, the eJficiency of spec- 
ulative execution is mainly determined by the speculation depth. In this work, we 
evaluate the pressure of speculative execution on the resource requirements of a 
typical superscalar architecture. 

1 Introduction 

Speculative execution improves processor performance by anticipating the exe- 
cution of instructions beyond the boundaries of basic blocks. On the other hand, 
there is a cost imposed by the cancellation of instructions along mispredicted 
paths. Current dynamic branch prediction mechanisms [1] yield an average ac- 
curacy as high as 8570, and there are new predictors that  can achieve a near 
100% accuracy [2]. Given these accuracy ratios, the cost of mispredictions are 
significantly reduced, and the performance gain becomes mainly determined by 
the ability to anticipate the execution of instructions across unresolved branches. 
This ability is characterized by the speculation depth - -  the number of unresolved 
branches beyond which the instruction dispatch mechanism stalls. Current su= 
perscalar machines exhibit different values for the speculation depth: it is two 
branches in the PowerPC 604 [3], four branches in the PowerPC 620 [4] and in 
the R10000 [5] and 16 branches in the SPARC64 [6]. 

The speculation depth has implications on the architecture's configuration. 
The resources in the execution unit should be dimensioned to accommodate the 
flow of dispatched instructions resulting from a certain value of the speculation 
depth. This is an important  factor that  should be taken into account to obtain a 
well-balanced architecture. This work quantifies the demands on the machine's 
resources for different speculations depths. Section 2 of this paper describes the 
superscalar model considered in the study. Section 3 shows the experiments to 
assess the resource requirements. The paper concludes in Section 4 with some 
remarks. 

2 Superscalar Model and Experimental F r a m e w o r k  

The superscalar model here adopted is representative of existing superscalar mi- 
croarchitectures. The model is organized as a pipeline with seven stages: fetch, 
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predict, decode, dispatch, issue, execute and writeback. The fetch stage transfers 
instructions from the cache memory into a fetch buffer. The predict stage trans- 
fers instructions from this buffer into an instruction queue (i-queue), and predicts 
the result of conditional branches by using a branch target buffer [1]. The dis- 
patch stage sends decoded instructions, in order, from the i-queue to reservation 
stations. The maximum number of instructions that  can be dispatched on a cycle 
will be referred to as the dispatch width. The issue stage schedules instructions 
dynamically using a scheme based on the Tomasulo algorithm [7]. Finally, the 
writeback stage sends the results of completed instructions to the register file 
and to the reservation stations. A reorder buffer and a future register file [8] are 
employed to support speculative execution. Branch instructions are executed, 
in order, by a specific branch unit. In the case of a misprediction, the branch 
unit stalls the dispatch stage, recovers the correct architectural state and then 
resumes instruction dispatch. 

In this work we have used a trace-driven simulator to reproduce the oper- 
ation of our superscalar model. This simulator accepts programs compiled for 
the SPARC Version 7 architecture [9]. The traces were generated by a simula- 
tor of a four-stage pipelined scalar implementation of the SPARC architecture. 
The instruction latencies adopted are similar to those in the PowerPC 604. We 
have used eight integer and six floating-point applications from the SPEC92 and 
SPEC95 benchmarks as the test programs. The traces used in the experiments 
cover the execution of 20 million of each test program. 

3 E f f e c t  o n  t h e  R e s o u r c e  R e q u i r e m e n t s  

In architectures like the one considered here, the number of reservation stations 
and the size of the reorder buffer determine the maximum dynamic instruction 
window size. In order to avoid excessive dispatch stalls, these two architectural 
parameters should be properly adjusted to the flow of instructions resulting from 
a certain combination of the speculation depth and dispatch width. In another 
work [10], we present this balance for various machine configurations. Due to the 
lack of space, here we present only the results concerning the number of reser- 
vation stations, for a machine configuration which dispatches four instructions 
per cycle, with two integer units and one memory unit. 

Instruction dispatch can be stalled due to: 1) all reservation stations are 
occupied, 2) the reorder buffer is full, 3) the speculation depth is insufficient, 4) a 
mispredicted branch was found 5) the instruction queue is empty. Dispatch stalls 
due to an insufficient speculation depth occur whenever the number of pending 
branches is equal to the speculation depth and a new branch instruction arrives 
for dispatch. We have measured the individual contribution of each one of these 
stall components. 

In Figure 1 we show the occurrence of dispatch stalls when the number of 
reservation stations per integer unit (integer reservation stations) is changed 
and the number of reservation stations attached to the memory unit (memory 
reservation stations) is fixed at a large value. Dispatch stalls are expressed as 
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the percentage of zero-dispatch cycles within the total cycle count. Each stacked 
bar gives the percentage of zero-dispatch cycles for a certain number of inte- 
ger reservation stations. Each group of stacked bars corresponds to a different 
value of the speculation depth. The percentages are the geometric mean of the 
individual values presented by the integer test programs. 
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Fig. 1. Varying the number of integer reservation stations 

For speculation depths less than or equal to four branches, we observe a high 
number of dispatch stalls, ranging from 40% to 70% of the total cycle count. The 
contribution from branch mispredictions does not exceed 4% of the total cycle 
count, while dispatch stalls caused by an empty i-queue accounts for at most 
4~0, even for deep speculations. 

There is an inverse relationship between the stall components related to the 
speculation depth and to the number of integer reservation stations. For exam- 
ple, with a four-branch speculation depth, dispatch stalls caused by the lack of 
integer reservation stations drops from 54% to only 6% when the number of 
reservation stations is increased. On the other hand, stalls due to an insufficient 
speculation depth increases from 0.1% to 30%, keeping the total number of stalls 
still high. This happens because the inclusion of more integer reservation sta- 
tions increases the number of instructions being dispatched per cycle, including 
branch instructions. As more branches are dispatched within a time interval, the 
speculation depth is more frequently reached. 

To compensate this effect, one would simply increase the speculation depth. 
However, with a deeper speculation, more instructions would be dispatched 
within the same time interval, and the number of dispatch stalls caused by 
the lack of integer stations would increase again. The balance between the spec- 
ulation depth and the number of integer stations can not be obtained by simply 
fixing a value for one of these parameters and then choosing the appropriate 
value for the other one. Both parameters should be dimensioned together, until 
the number of dispatch stalls is minimized. Figure 1 indicates that the number 
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of stalls is minimized for a speculation depth of 8 branches and 6 integer reser- 
vation stations. Another minimum was obtained with a speculation depth of 10 
branches, but  in this case 12 integer reservation stations were required. 

Observe tha t  a deep speculation does not always contribute to the reduction 
of stalls. This comes from the fact that  the average dynamic instruction window 
size increases with the speculation depth, allowing more instructions to be ahead 
of the mispredicted branch within the window. This increases the number of 
cycles during which dispatch remains blocked, waiting until the branch reaches 
the head of the reorder buffer. From a certain value of the speculation depth, 
this effect starts  dominating, avoiding any significant reduction in the number 
of zero-dispatch cycles. For all the configurations examined, this happens with 
speculation depths equal or greater than 10 branches. 

In order to evaluate the demand of memory reservation stations, we have 
at t r ibuted values for the speculation depth and the number of integer reservation 
stations that  minimize the zero-dispatch cycles. These values were taken from 
the previous experiments. Memory reservation stations were then added until the 
corresponding stall component  becomes comparable to the components related 
to the speculation depth and to the number of integer reservation stations. The 
results are shown in Figure 2. Stalls caused by an insufficient number of memory  
reservation stations are above 10% of the total  cycles when there are less than 14 
of these stations. In [10] we have also evaluated machines that  can perform two 
memory accesses simultaneously. In this case, six memory reservation stations 
are sufficient to keep dispatch stalls to a ratio below 10%. 
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Fig. 2. Varying the number of memory reservation stations. 

4 C o n c l u s i o n s  

The cost of speculating across a limited number of branches can be much higher 
than the cost related to speculations along wrong paths. Dispatch stalls involved 
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with state recovery does not exceed 12% of the total cycles, while in a configura- 
tion with a two-branch depth (like the PowerPC 604), the percentage of dispatch 
stalls caused by an insufficient speculation depth is as high as 30%. Neverthe- 
less, there is a specific value of the speculation depth from which the number 
of stalls related to state recovery starts dominating, limiting the performance. 
In the majority of the configurations investigated, this threshold occurred for a 
10-branch speculation depth. 

The results presented here demonstrate that the potential benefit of increas- 
ing the speculation depth can be lost if the resources are not properly balanced. 
In [10], we have also assessed the role of the speculation depth on the cycle 
count of the speculative model, relative to a similar but non-speculative model. 
For integer programs, we have observed an average reduction of 18% in the cycle 
count for a two-branch speculation depth (as in the PowerPC 604), and of 40% 
for a speculation depth of four branches (as in the PowerPC 620 and R10000). 
An average reduction of 48% (and of almost 60% for some integer benchmarks) 
was obtained with a speculation depth of eight branches. 
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