
Treegion Scheduling for Highly Parallel
Processors

Sanjeev Banerjia and William A. Havanki and Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, North Carolina 27695-7911
(919)-515-7983

{sbanerj, wahavank, conte}@eos, ncsu. edu

Abstract . Instruction scheduling is a compile-time technique for ex-
tracting parallelism from programs for statically scheduled instruction-
level parallel processors. Typically, an instruction scheduler partitions a
program into regions and then schedules each region. One style of region
represents a program as a set of decision trees or treegions. The non-linear
nature of the treegion allows scheduling across multiple paths. This pa-
per presents such a technique, termed treegion scheduling. The results
of experiments comparing treegion scheduling to scheduling for basic
blocks and across "simple linear regions" show that treegion scheduling
outperforms the other techniques.

1 Introduction

The performance of statically-scheduled, instruction-level parallel (ILP) proces-
sors depends on compiler techniques that extract parallelism from programs.
In order to extract large amounts of ILP from non-scientific, integer programs,
instruction scheduling must be performed across basic blocks [1], [2]. Schedulers
typically group together basic blocks which may execute together into regions
and then schedule each region. Regions are either linear (containing a single path
of control) or non-linear (containing multiple paths of control).

The grouping process (region]ormation) is often done using profile informa-
tion [2], [3]; if program behavior differs from this information, performance can
suffer [4]. Other problems may arise due to merge points, instructions to which
control can flow from multiple instructions. If an instruction is speculated above
a merge point, it must be duplicated along all paths that join at the merge point.
Merge points also add complexity to dynamic recompilation techniques [5].

One region that is resistant to unpredictable execution and that does not in-
clude merge points is a treegion, a tree-shaped subgraph of a program's control
flow graph (CFG). This paper describes treegions and how they can be scheduled
and is organized as follows. Section 2 defines treegions and introduces treegion
scheduling via an example. Section 3 presents experimental results for treegion
scheduling and compares the results with scheduling for basic blocks and "sim-
ple linear regions". Section 4 describes related work in non-linear regions, and
Section 5 concludes with comments on future work and a summary.

1075

2 T r e e g i o n s

(a) Treegions in a CFG (b) After tail duplication

Fig. 1. Figure (a) shows the CFG broken into two treegions A and B. Figure (b) shows
how the two treegions can be combined into one treegion A' with tail duplication.

A treegion is a rooted tree subgraph of a CFG. An example of a CFG partitioned
into treegions is shown in Figure l(a). The size and number of treegions in a
CFG are determined by the CFG topology, not profile information. However,
heuristics using profile information can guide methods to expand treegions; tail
duplication on basic blocks 7 and 8 results in the CFG shown in Figure l(b).
Many of the procedures used with superblocks [3] may be applied to treegions.

Treegion formation begins at each entry node of a CFG. Nodes encountered
while traversing from each entry node are absorbed into a treegion until merge
points are encountered, each of which becomes the root of a new treegion. This
process continues until every node is in some treegion.

bb2 b Tbl ~' bb3

Fig. 2. A sample CFG. The emphasized basic blocks are a possible preferred path.

Figure 2 shows a sample CFG. Figure 3(a) shows a schedule formed from the
CFG using the successive retirement scheduling algorithm [6] (the example ma-
chine is a two-issue processor with universal functional units and unit latency).
This schedule retires the exits from the preferred path 1 in sequential order and
performs speculation only along that path. Program execution along the pre-
ferred path { bbl, bb3, bb4 } takes seven cycles (cycles 0-6), assuming there

1 The preferred path is the most frequently executed path within a region as indicated
by profile information or static heuristics.

1076

ALU-I ALU-2 ~ ALU-I

o i I o l

I r5 id(rl } rl = st{ r4 I 1 r5 id(rl)
2 r6 = r5 - r2 blt bb2,rS,r2 2 r6 = r5 - r2
3 r8 = id(r6 } 3 blt ~2,rS,r2
4 r13 = r8 * r9 4 r13 = r8 * r9
5 bne ~5,r13,0 r7 = id(r13) 5 bne bbS,rl3,0
6 goto b b 2 3 2 6 goto b b 2 3 2
7 bb2, rl = r8 / r19 7 bb2, goto ~b112

8 goto b~I12 r2 r5 • rl 8 b b S I goto b b 2 3 9
9 bbS* r13 = r8 / r9 r2 r8 - r5
I0 goto b b 2 3 9

ALU-2

r l a = r 8 / r 1 9
rl = st{ r4)
r2 = r~ + rla
r8 = id(r6)

r13 = r8 / r9
r7 = id(r13)

rl = rla
1:2 = r 8 - r 5

(a) Successive retirement (b) Treegion scheduling

Fig. 3. Sample CFG schedules. Underlined instructions are speculated above their con-
trol-dependent branches. Italicized instructions have had register renaming performed.

are no cache misses and perfect branch prediction. Program execution along the
path { bbl, bb3, bb5 } takes eight cycles (cycles 0-5,9,10).

Figure 3(b) is a schedule formed from the CFG using treegion scheduling.
The priority function used is the number of treegion execution paths through
the operation [4]. Unlike successive retirement, operations from other paths ("off-
paths") become intermingled into the schedule, so that operations from multiple
paths are scheduled to execute together. Compile-time register renaming is used
to allow speculation of operations above their control-dependent branches, pre-
serving live-out register values. If the preferred path is executed at run-time,
this schedule again takes seven cycles to execute. However, the execution time
of the path { bbl, bb3, bb5 } has been reduced from eight to seven cycles.

One strength of treegion scheduling is that by scheduling multiple paths
in parallel, a high-performance schedule for a preferred path can be generated
without unduly penalizing off-paths. This characteristic hedges against poor per-
formance when the executed path differs from the compile-time preferred path.
In this respect, treegion scheduling is similar in spirit to the speculative hedge
heuristic [4] of superblock scheduling.

3 E x p e r i m e n t a l r e s u l t s

Experiments were conducted to gauge the effectiveness of treegion scheduling
using the SPECint95 benchmark suite. Classic optimizations and a profiling
run using training inputs were applied to the benchmarks before scheduling for
treegions, "simple linear regions "2 (SLRs), and basic blocks using the LEGO
compiler, a research ILP compiler developed at N.C. State University. Scheduling
was performed for two statically-scheduled machine models: an eight-issue pro-
cessor with universal functional units, EIGHT-AGGR, and one with a mix of
four integer/branch, two memory, and two floating-point units, EIGHT-CONS.
Instructions are unit latency except loads (2 cycles), floating-point multiply (3
cycles), and floating-point divide (9 cycles). Program performance was mea-
sured by using the profile count and schedule height of each region to estimate
2 Simple linear regions are built like superblocks, but without tail duplication.

1077

o .

(a) EIGHT-CONS model

1

o , s

o

(b) EIGHT-AGGR model

Fig. 4. Performance of basic block scheduling, SLR scheduling and treegion scheduling
for the two machine models, h.mean denotes harmonic mean.

execution time. The effects of instruction and data caches were ignored. Use-
ful instructions completed per cycle (IPC) was the performance metric used.
Instructions added due to renaming were not used in computing IPC.

Figure 4 presents the results. In every case, treegion scheduling yielded higher
performance than basic block scheduling, and about the same as or better than
SLR scheduling. The treegion schedule performed worse than the SLR schedule
for per l under EIGHT-CONS because of aggressive speculation, which ex-
tends the preferred path schedule by speculating more off-path operations. The
IPC improvements are larger with EIGHT-AGGR because the flexibility of the
model permitted the treegion scheduler to fill more empty slots in the sched-
ule with off-path operations. This illustrates that treegion scheduling yields the
most benefit on highly parallel processors.

4 R e l a t e d w o r k

Hsu and Davidson's decision tree scheduling (DTS) [7] is the predecessor of the
work presented here. DTS schedules along multiple paths within a decision tree,
inserting instructions into branch delay slots and using guards to control write-
back of speculated instructions. The VLIW project at IBM Research embel-
lished Nicolau's percolation scheduling [8], using them to implement a VLIW
compiler [9]. The heart of the IBM VLIW machine is a tree instruction, which
has the ability to evaluate multiple branches in one clock cycle. The initial work
in VLIW architectures was based on a single-path scheduling algorithm called
trace scheduling [2]. The Trace Scheduling-2 algorithm is an extension of the
original trace scheduling algorithm that schedules along multiple paths simulta-
neously [10]. Hyperblock scheduling also schedules multiple paths in parallel [3]
by removing branches from the instruction stream entirely through if-conversion.

5 C o n c l u d i n g r e m a r k s a n d a c k n o w l e d g e m e n t s

There are issues related to treegions that merit further research. The use of if-
conversion and tail duplication could eliminate merge points and allow for the

1078

formation of larger treegions. Also, different heuristics for treegion scheduling
need to be identified and analyzed.

This paper introduced treegion scheduling, which performs scheduling across
the tree subgraphs that compose a CFG. The technique extracts high amounts
of ILP by scheduling and speculating operations along multiple paths. The ad-
vantages of treegion scheduling were illustrated by comparing treegions to other
regions. The latter technique is especially effective for highly parallel processors.

The authors would like to thank Scott Mahlke of the CAR Group at Hewlett-
Packard Labs for providing the optimized SPECint95 benchmarks used in this
paper, and Kishore Menezes and Sumedh Sathaye for discussions that greatly
improved the quality of this paper. The comments from the anonymous referees
are also appreciated. This work was supported by IBM, Hewlett-Packard, and
the National Science Foundation under grants MIP-9696010, MIP-9625007, and
GER-9454175.

References

1. G. S. Tjaden and M. J. Flynn, "Detection and parallel execution of independent
instructions," IEEE Trans. Comput., vol. C-19, pp. 889-895, Oct. 1970.

2. J. A. Fisher, "Trace scheduling: A technique for global microcode compaction,"
IEEE Trans. Comput., vol. C-30, no. 7, pp. 478-490, July 1981.

3. S. A. Mahlke, Exploiting instruction level parallelism in the presence of branches.
PhD thesis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, IL, 1996.

4. B. L. Deitrich and W. W. Hwu, "Speculative hedge: regulating compile-time spec-
ulation against profile variations," in Proc. 29th Ann. Int'l Syrup. on Microarchi-
tecture [11].

5. T. M. Conte and S. W. Sathaye, "Dynamic rescheduling: A technique for object
code compatibility in VLIW architectures," in Proc. 28th Ann. Int'l Symp. on
Microarchitecture, (Ann Arbor, MI), Nov. 1995.

6. C. Chekuri, R. Johnson, P~. Motwani, B. Natarajan, B. Rau, and M. Schlansker,
"Profile-driven instruction level parallel scheduling with application to su-
perblocks," in Proc. 29th Ann. Int'l Syrup. on Microarchitecture [11], pp. 58--67.

7. P. Y. T. Hsu and E. S. Davidson, "Highly concurrent scalar processing," in Proc.
13th Ann. Int'l Symp. Computer Architecture, (Tokyo, Japan), June 1986.

8. A. Nicolau, "Percolation scheduling: a parallel compilation technique," Technical
report TR-678, Department of Computer Science, Cornell University, Ithaca, NY,
May 1985.

9. K. Ebcio~lu, "Some design ideas for a VLIW architecture for sequential-natured
software," in Proceedings of the IFIP Working Group 10.3 Working Conference
on Parallel Processing, (Pisa, Italy), pp. 3-21, North Holland, 1988. (published as
Parallel Processing, M. Cosnard, et al., (eds).).
J.A. Fisher, "Global code generation for instruction-level parallelism: Trace
Scheduling-2," Tech. Rep. HPL-93-43, Hewlett-Packard Laboratories, June 1993.
Proc. 29th Ann. Int'l Syrup. on Microarchitccture, (Paris, France), Dec. 1996.

10.

11.

