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Abst rac t .  We study a dose-driven dynamic load balancing strategy to 
evaluate database recursive queries. This proposal aims at obtaining a 
good workload balance with full use of the available resources, with dif- 
ferent kinds of skew considered. The strategy is intended for general 
recursive queries and prefiminary computational results illustrate its ef- 
ficiency when appfied to the particular case of linear transitive closure. 

1 I n t r o d u c t i o n  

Recent work on load balancing, mostly on join processing, has confirmed its 
importance when one wants to achieve good performances during the evaluation 
of parallel database queries. We are interested here in more complex queries, such 
as the recursive ones. In this case, the work due to a task cannot be previously 
determined and, consequently, no method can define at the outset the tasks to 
be executed in parallel in order to balance the workload at each processor. 

We claim that  the set of tasks to be executed should be assigned to each site 
dynamically during the query evaluation process, with any workload imbalance 
controlled, avoided if possible. This way, we may take into account different 
kinds of skew: intrinsic (related to the input data distribution), parti t ion (due 
to the algorithm to be performed or to the parallel strategy considered) [WDJ91] 
and also, what we call here a concurrency skew, due to either a multi-user (or 
multi-transaction) or an heterogeneous processing environment. 

The main contributions of these paper are: (1) the introduction of a dynamic 
load balancing strategy for processing recursive queries, that  deals well with 
different skew reasons and keep all processing sites active most of the time and 
(2) an initial implementation of the strategy in a parallel environment, here 
applied to the simple, yet important ,  case of linear transitive closure queries. 

The paper is organized as follows. In Section 2, the general strategy is ex- 
plained and some related work is presented. Next, in Section 3, its specialization 
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when applied to the transitive closure query is discussed, with preliminary exper- 
imental results also given. Conclusions and future work are found in Section 4. 

2 Dose Driven Strategy 

We present a dynamic task-oriented demand-driven parallel processing strategy 
for dealing primarily with recursive queries. It is dynamic, in the sense that the 
workload is assigned to each site during the evaluation process, and demand- 
driven because new tasks are allocated to a site when it becomes idle and asks for 
new tasks to process. Our focus is on determining and controlling the execution 
when tasks are being distributed, in order to avoid load imbalance at most, 
rather than correcting it later whenever it occurs. Tasks may have variable sizes 
so to better tune which and how many tasks are to be run at each site. Thus, our 
strategy is called dose-driven, which stands for a method that aims at obtaining 
an even workload distribution with variable-sized tasks corresponding to doses 
that  are dinamically assigned to the parallel sites. 

A task-oriented demand-driven strategy has been suggested previously in 
[LT92] for balancing the load during the processing of join queries. These are 
clearly less complex than recursive ones and the strategy proposed is guided by 
a specific algorithm (hash join), which limits the way tasks are defined. Also, we 
consider load balancing as part of the whole strategy and not only for redistri- 
bution purposes when an uneven workload assigned to parallel sites is detected. 

In the case of recursive queries, existing works appear in the context of (data- 
log) rule programs, where the general framework for processing recursive queries 
is known as data reduction (or rule instantiations paradigm [WO93]. The main 
idea is to parallelize the query evaluation by assigning subsets of the rule in- 
stantiations (which are obtained by appending arithmetic predicates like hash 
functions to some of the rules) among the sites, such that  each site evaluates the 
same program but with less data. 

A load balancing method is proposed in [WO93] where a list of alternative 
parallelization strategies (a set of different restricting predicates) could be used 
to change the strategy dinamieally whenever a workload imbalance is detected. 
However, a better performance cannot be guaranteed with the new strategy 
chosen and there is no simple way to implement this mechanism. In [DSH+94], 
a more sophisticated parallel strategy is proposed, which includes a predictive 
protocol for detecting potential uneven processing at each site and a correction 
algorithm that  balances the load. The problem here is that  some considerations 
about load imbalaneing that  may not be true in practice are made. Indeed, it is 
considered that  a larger local database in a given site implies more work in the 
future and this is not always the case, as for the join product skew. Moreover, 
the concurrency skew is not considered. 

In our dose driven strategy, we keep the rule instantiations partitioning 
method but  each site is able to evaluate any of the restricted versions and not 
only those assigned initially. In our ease, each subset of instantiations is con- 
sidered a task. There are many ways to determine these tasks and the strategy 
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will define which site will execute a given task. Basically, these could be subsets 
of constants in the active domain of the database, or generated by horizontal 
and/or  vertical parti t ioning of database relations. As so, we have all the flexi- 
bility needed to guide the evaluation strategy and control uneven workload in 
different skew conditions. 

In order to illustrate the applicability of our proposed strategy and its tasks 
generation method, we have adapted it to the case of the transitive closure query. 
We compare the behavior of our approach to that  proposed in [AJ88] - called here 
A J-  which is a static distribution strategy that  does not include load balancing 
techniques and corresponds to the data reduction paradigm applied to the linear 
transitive closure query. Further details can be found in the full paper [LPR96]. 

3 Experimental  Results 

In this section, we give the specialization of our strategy for the evaluation of 
the transitive closure of a binary relation, say R, usually defined as follows: 

r l :  To(x, y):  - R(x ,  z), Tc(z ,  y). 
V): - y )  

The evaluation of the Tc relation may be understood as the computation of all 
successors of all nodes in the relation's corresponding direct graph. Thus, we may 
define the tasks to be executed as the computation of all successors of a subset of 
constants in R. In its linear definition, as above, the transitive closure evaluation 
can be executed in parallel with no communication during the evaluation process 
(known as pure parallelization), as long as R is replicated through all sites. This 
property of recursive programs is called decomposability [WO93]. 

The number of tasks t that  will be generated must be bigger than p, the 
number of processing sites available. We could determine each of the tasks as 
follows: considering an order in the constants set taken into account by the query, 
a task will be the pair ( i , j ) ,  where i is the i-th constant in the domain and j 
represents the number of constants belonging to the task itself. 

One of the sites, the coordinator, controls the distribution of tasks to all p 
sites. There are two phases: in the first one, the coordinator distributes p tasks, 
exactly one allocated to each site. In the second and last phase, it is t ime for 
the dynamic and adaptive distribution of the remaining t - p tasks. As long as 
there are still tasks to be distributed, the coordinator site sends a new task to a 
site upon request as soon as it becomes idle. When all tasks have been assigned 
to the processing sites, the evaluation has reached its end. 

We have made preliminary implementations for both methods DD and A J, 
so to investigate their behavior in different skew situations. We have done all 
implementations on the IBM 9076 SP/2  machine. All programs were coded in 
C/SQL (with a complete Open Ingres DBMS available at each node). To make 
full use of the parMlel environment, MPI (Message Passing Interface) was chosen. 

In order to better  illustrate our experiments, we have chosen two input binary 
relations among all those randomly generated. Relation R1 has 5,000 tuples 
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(150,000 in the closure) and R2 10,000 tuples (1,000,000 in the closure). Both 
R1 and R2 correspond to 1,000 nodes graphs, R1 being acyclic, R2 cyclic. In 
particular, we see that  the closure of R2 is the 1,000 nodes complete graph. 
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Fig. 1. (A) AYfor RI: exclusive environment (B) AJfor R2: exclusive and non-exclusive 
environments (C) DD parallel time for R2 and (D) DD distribution of 40 tasks 

To illustrate the effects of parti t ion skew, here related to the unknown work- 
load associated to each task assigned to a processing node, we show in Figure l(a) 
bar coded graphics representing the evaluation of the transitive closure query by 
the A J strategy in a single-user (exclusive) parallel environment. Times are given 
in seconds and N01, N02, ... N10 are the 10 sites used. As we can see, there is a 
strong workload imbalance. For example, site N01 has taken twice as much the 
t ime N04 has processed its job. 

We consider now a non-exclusive environment where there are other pro- 
cesses - accessing the database or not - running concurrently on the same sites. 
Figure l(b) shows A J  algorithm on relation R2 in this situation. An uneven 
processing time has occurred, although the work at each site was equivalent. 

We have also tried o u t  the DD strategy with distinct total  number of tasks, 
ranging from 20 up to 1000 (one task corresponding to exactly one attribute 
constant) tasks. In Figure l(b),  it can be seen that  the parallel t ime of the AJ  
strategy for relation R2 is 2240 seconds and in Figure l(c), with 20 and 40 tasks 
to be dynamically allocated to the sites, DD has obtained parallel processing 
times of 1676 and 1263 seconds respectively. One could think that  a continuous 
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increase on the number of tasks would imply even better results. However, as 
shown in Figure l(c), as the number of tasks increase, the parallel time keep its 
ascending curve, where it gets even worse than the A J  algorithm. The problem 
is that the query processing work, when partitioned in a set of tasks, has a fixed 
cost per task that is intrinsically sequential. 

In Figure l(d), we observe the actual distribution of tasks that occurred for 
algorithm DD with 40 tasks, which has obtained the best parallel time before. 
In the horizontal axis, I[J] indicates that site NI has performed J tasks. So, we 
see that N04 has executed only 2 tasks, as its external load was high, while site 
N09 was responsible for 7 tasks, almost 20% of the total number of tasks. There 
is not only a gain in the efficiency of the parallel query processing but also it is 
shown that a good workload bMancing was obtained. 

4 F i n a l  C o m m e n t s  a n d  F u t u r e  W o r k  

There are many interesting points to discuss and further explore. First, we believe 
that an increasing number of tasks is valid while the sum of fixed costs related to 
every task does not offset the gain in performance obtained by the DD strategy. 
It is still an open question if there is any fixed cost variation with respect to the 
size of the tasks and this must be better investigated. 

Some other results that we have obtained [LPR96] point out that, if the 
minimization of the total parallel time is the goal to be achieved, not always 
the best workload balance corresponds to the best parallel strategy. It deserves 
further investigation but so far we believe that these results are due to the fixed 
cost mentioned above. We will also implement variable-sized tasks during the 
evaluation process, probably with a non-blind strategy in mind, that enable a 
fine tuning of tasks sizes. 
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