
Exploring Load Balancing in Parallel
Processing of Recursive Queries *

S~rgio Lifschitz 1.*, Alexandre Plastino 2.** and Celso C. Ribeiro 17

1 Pontiffcia Universidade Cat6lica do Rio de Janeiro, Departamento de Inform£tica
Rua Marquis de S£o Vicente 225, Rio de Janeiro, RJ 22453-900, Brasil

2 Universidade Federal Fluminense, Departamento de CiSncia da Computaq~o
Pra~a do Valonguinho s/n, Niter6i RJ 24210-130, Brasil

Abst rac t . We study a dose-driven dynamic load balancing strategy to
evaluate database recursive queries. This proposal aims at obtaining a
good workload balance with full use of the available resources, with dif-
ferent kinds of skew considered. The strategy is intended for general
recursive queries and prefiminary computational results illustrate its ef-
ficiency when appfied to the particular case of linear transitive closure.

1 I n t r o d u c t i o n

Recent work on load balancing, mostly on join processing, has confirmed its
importance when one wants to achieve good performances during the evaluation
of parallel database queries. We are interested here in more complex queries, such
as the recursive ones. In this case, the work due to a task cannot be previously
determined and, consequently, no method can define at the outset the tasks to
be executed in parallel in order to balance the workload at each processor.

We claim that the set of tasks to be executed should be assigned to each site
dynamically during the query evaluation process, with any workload imbalance
controlled, avoided if possible. This way, we may take into account different
kinds of skew: intrinsic (related to the input data distribution), parti t ion (due
to the algorithm to be performed or to the parallel strategy considered) [WDJ91]
and also, what we call here a concurrency skew, due to either a multi-user (or
multi-transaction) or an heterogeneous processing environment.

The main contributions of these paper are: (1) the introduction of a dynamic
load balancing strategy for processing recursive queries, that deals well with
different skew reasons and keep all processing sites active most of the time and
(2) an initial implementation of the strategy in a parallel environment, here
applied to the simple, yet important , case of linear transitive closure queries.

The paper is organized as follows. In Section 2, the general strategy is ex-
plained and some related work is presented. Next, in Section 3, its specialization

* Work partially done in LNCC, LaboratSrio Nacional de Computa~£o Cientffica.
** E-maih fifschit@inf.puc-rio.br. Supported in part by CNPq under grant 300048/94-7.

*** E-mail: plastino@dcc.uff.br.
t E-mail: celso@inf.puc-rio.br. Supported in part by CNPq under grant 302281/85-1.

1126

when applied to the transitive closure query is discussed, with preliminary exper-
imental results also given. Conclusions and future work are found in Section 4.

2 Dose Driven Strategy

We present a dynamic task-oriented demand-driven parallel processing strategy
for dealing primarily with recursive queries. It is dynamic, in the sense that the
workload is assigned to each site during the evaluation process, and demand-
driven because new tasks are allocated to a site when it becomes idle and asks for
new tasks to process. Our focus is on determining and controlling the execution
when tasks are being distributed, in order to avoid load imbalance at most,
rather than correcting it later whenever it occurs. Tasks may have variable sizes
so to better tune which and how many tasks are to be run at each site. Thus, our
strategy is called dose-driven, which stands for a method that aims at obtaining
an even workload distribution with variable-sized tasks corresponding to doses
that are dinamically assigned to the parallel sites.

A task-oriented demand-driven strategy has been suggested previously in
[LT92] for balancing the load during the processing of join queries. These are
clearly less complex than recursive ones and the strategy proposed is guided by
a specific algorithm (hash join), which limits the way tasks are defined. Also, we
consider load balancing as part of the whole strategy and not only for redistri-
bution purposes when an uneven workload assigned to parallel sites is detected.

In the case of recursive queries, existing works appear in the context of (data-
log) rule programs, where the general framework for processing recursive queries
is known as data reduction (or rule instantiations paradigm [WO93]. The main
idea is to parallelize the query evaluation by assigning subsets of the rule in-
stantiations (which are obtained by appending arithmetic predicates like hash
functions to some of the rules) among the sites, such that each site evaluates the
same program but with less data.

A load balancing method is proposed in [WO93] where a list of alternative
parallelization strategies (a set of different restricting predicates) could be used
to change the strategy dinamieally whenever a workload imbalance is detected.
However, a better performance cannot be guaranteed with the new strategy
chosen and there is no simple way to implement this mechanism. In [DSH+94],
a more sophisticated parallel strategy is proposed, which includes a predictive
protocol for detecting potential uneven processing at each site and a correction
algorithm that balances the load. The problem here is that some considerations
about load imbalaneing that may not be true in practice are made. Indeed, it is
considered that a larger local database in a given site implies more work in the
future and this is not always the case, as for the join product skew. Moreover,
the concurrency skew is not considered.

In our dose driven strategy, we keep the rule instantiations partitioning
method but each site is able to evaluate any of the restricted versions and not
only those assigned initially. In our ease, each subset of instantiations is con-
sidered a task. There are many ways to determine these tasks and the strategy

1127

will define which site will execute a given task. Basically, these could be subsets
of constants in the active domain of the database, or generated by horizontal
and/or vertical parti t ioning of database relations. As so, we have all the flexi-
bility needed to guide the evaluation strategy and control uneven workload in
different skew conditions.

In order to illustrate the applicability of our proposed strategy and its tasks
generation method, we have adapted it to the case of the transitive closure query.
We compare the behavior of our approach to that proposed in [AJ88] - called here
A J- which is a static distribution strategy that does not include load balancing
techniques and corresponds to the data reduction paradigm applied to the linear
transitive closure query. Further details can be found in the full paper [LPR96].

3 Experimental Results

In this section, we give the specialization of our strategy for the evaluation of
the transitive closure of a binary relation, say R, usually defined as follows:

r l : To(x, y): - R(x , z), Tc(z , y).
V): - y)

The evaluation of the Tc relation may be understood as the computation of all
successors of all nodes in the relation's corresponding direct graph. Thus, we may
define the tasks to be executed as the computation of all successors of a subset of
constants in R. In its linear definition, as above, the transitive closure evaluation
can be executed in parallel with no communication during the evaluation process
(known as pure parallelization), as long as R is replicated through all sites. This
property of recursive programs is called decomposability [WO93].

The number of tasks t that will be generated must be bigger than p, the
number of processing sites available. We could determine each of the tasks as
follows: considering an order in the constants set taken into account by the query,
a task will be the pair (i , j) , where i is the i-th constant in the domain and j
represents the number of constants belonging to the task itself.

One of the sites, the coordinator, controls the distribution of tasks to all p
sites. There are two phases: in the first one, the coordinator distributes p tasks,
exactly one allocated to each site. In the second and last phase, it is t ime for
the dynamic and adaptive distribution of the remaining t - p tasks. As long as
there are still tasks to be distributed, the coordinator site sends a new task to a
site upon request as soon as it becomes idle. When all tasks have been assigned
to the processing sites, the evaluation has reached its end.

We have made preliminary implementations for both methods DD and A J,
so to investigate their behavior in different skew situations. We have done all
implementations on the IBM 9076 SP/2 machine. All programs were coded in
C/SQL (with a complete Open Ingres DBMS available at each node). To make
full use of the parMlel environment, MPI (Message Passing Interface) was chosen.

In order to better illustrate our experiments, we have chosen two input binary
relations among all those randomly generated. Relation R1 has 5,000 tuples

1128

(150,000 in the closure) and R2 10,000 tuples (1,000,000 in the closure). Both
R1 and R2 correspond to 1,000 nodes graphs, R1 being acyclic, R2 cyclic. In
particular, we see that the closure of R2 is the 1,000 nodes complete graph.

(A) Relation R1

~0 ' !! • '

Z Z Z Z Z Z Z Z Z Z

Sit~

(B) Relation R2

2500 ~ : 7 . ~ ~ ? ~ ~F:!.~:! 7
2t'g~

~ z ; - ; , z z ~- z ~ ~
Sites

(C) Relation R2

~J Do Do oD DO DO OO OO
~0 ,~0 so 100 2O0 SO0 1000

(D) Relation R2

2mo

o

Sites [# tasks]

Fig. 1. (A) AYfor RI: exclusive environment (B) AJfor R2: exclusive and non-exclusive
environments (C) DD parallel time for R2 and (D) DD distribution of 40 tasks

To illustrate the effects of parti t ion skew, here related to the unknown work-
load associated to each task assigned to a processing node, we show in Figure l(a)
bar coded graphics representing the evaluation of the transitive closure query by
the A J strategy in a single-user (exclusive) parallel environment. Times are given
in seconds and N01, N02, ... N10 are the 10 sites used. As we can see, there is a
strong workload imbalance. For example, site N01 has taken twice as much the
t ime N04 has processed its job.

We consider now a non-exclusive environment where there are other pro-
cesses - accessing the database or not - running concurrently on the same sites.
Figure l(b) shows A J algorithm on relation R2 in this situation. An uneven
processing time has occurred, although the work at each site was equivalent.

We have also tried o u t the DD strategy with distinct total number of tasks,
ranging from 20 up to 1000 (one task corresponding to exactly one attribute
constant) tasks. In Figure l(b), it can be seen that the parallel t ime of the AJ
strategy for relation R2 is 2240 seconds and in Figure l(c), with 20 and 40 tasks
to be dynamically allocated to the sites, DD has obtained parallel processing
times of 1676 and 1263 seconds respectively. One could think that a continuous

1129

increase on the number of tasks would imply even better results. However, as
shown in Figure l(c), as the number of tasks increase, the parallel time keep its
ascending curve, where it gets even worse than the A J algorithm. The problem
is that the query processing work, when partitioned in a set of tasks, has a fixed
cost per task that is intrinsically sequential.

In Figure l(d), we observe the actual distribution of tasks that occurred for
algorithm DD with 40 tasks, which has obtained the best parallel time before.
In the horizontal axis, I[J] indicates that site NI has performed J tasks. So, we
see that N04 has executed only 2 tasks, as its external load was high, while site
N09 was responsible for 7 tasks, almost 20% of the total number of tasks. There
is not only a gain in the efficiency of the parallel query processing but also it is
shown that a good workload bMancing was obtained.

4 F i n a l C o m m e n t s a n d F u t u r e W o r k

There are many interesting points to discuss and further explore. First, we believe
that an increasing number of tasks is valid while the sum of fixed costs related to
every task does not offset the gain in performance obtained by the DD strategy.
It is still an open question if there is any fixed cost variation with respect to the
size of the tasks and this must be better investigated.

Some other results that we have obtained [LPR96] point out that, if the
minimization of the total parallel time is the goal to be achieved, not always
the best workload balance corresponds to the best parallel strategy. It deserves
further investigation but so far we believe that these results are due to the fixed
cost mentioned above. We will also implement variable-sized tasks during the
evaluation process, probably with a non-blind strategy in mind, that enable a
fine tuning of tasks sizes.

R e f e r e n c e s

[AJ88] R. Agrawal and H.V. Jagadish "Multiprocessor Transitive Closure Algorithms"
Procs. Intl. Syrup. Database in Parallel and Distributed Systems, 1988, pp 56-66.

[~VDJ91] C.B. Walton, A.G. Dale and R.M. Jenevein "A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins", Procs VLDB, 1991, pp 537-548.

[DSH+94] H.M. Dewan, S.J. Stolfo, M.A. tternandez and J-J. Hwang, "Predictive
Dynamic Load Balancing of Parallel and Distributed Rule and Query Processing",
Procs. ACM-SIGMOD Intl. Conf. on Management of Data, 1994, pp 277-288.

[LT92] H. Lu and K-L. Tan, "Dynamic and Load-Balanced Task-Oriented Database
Query Processing in Parallel Systems", Procs. Intl. Conf. on Extending Data Base
Technology, 1992, pp 357-372.

[LPR96] S. Lifschitz, A. Plastino and C.C. Ribeiro, "Exploring Load Balancing in Par-
allel Processing of Recursive Queries" Technical Report MCC37, PUC-Rio, Depar-
tamento de Informdtica, November 1996.

[WO93] O. Wolfson and A. Ozeri, "Parallel and Distributed Processing of Rules by
Data-reduction", IEEE Trans. Knowledge and Data Eng. 5(3), 1993, pp 523-530.

