
Towards Full P r o l o g o n a Distr ibuted Archi tecture 1
L o u r d e s A r a u j o

Fac. M a t e m ~ t i c a s (D p t o . S i s t e m a s In fo rmel t i cos y P r o g .)
U n i v e r s l d a d C o m p l u t e n s e de M a d r i d

M a d r i d 28040, Spa in
l u r d e s @ d i a . u c m . e s

Abs t rac t . This paper presents an implementation of some essential
side-effects of Prolog: cut and findall, on a distributed memory system.
Although the techniques proposed herein are valid for any distributed
memory implementation, they are advantageous in those based on re-
computation, such as PDP (Prolog Distributed Processor), a model for
Independent_AND/OR parallel execution of Prolog. The key idea to im-
plement the cut predicate is to exploit as much parallelism as possible,
but in such a way that the computation of a branch of the search tree
which cannot be pruned by a cut is never delayed to control computa-
tions depending on a cut, (i.e. to analyze the pruning of the branch of
these computations and to kill them). The model proposed for the findall
predicate reduces the communication as much as possible.

1 I n t r o d u c t i o n

PDP (Prolog Distributed Processor) [4, 5] is a recomputation-based model for
the exploitation of independent_AND/OR parallelism. The development of par-
allel systems to implement Prolog usually begins with the design of the part
corresponding to the pure language (horn clauses) and then it is extended with
side-effect predicates. PDP is not an exception. So, the purpose of this paper is to
introduce some essential side-effect predicates, namely cut and findall. Although
the techniques proposed herein are valid for any distributed memory implemen-
tation, they turn out to be advantageous in those based on recomputation, such
as PDP. Recomputation allows PDP to exploit combined parallelism as a set of
independent computations (see [4, 5] for details). Thanks to this, the problem of
gathering solutions inherent to AND_parallelism is overcome. Another advantage
of recomputation, already discussed in the literature [9], is that it allows to in-
troduce side-effect predicates without sacrificing parallelism exploitation. What
this paper will show is that side-effects can be incorporated to PDP without
introducing modifications to the model.

The cut predicate prunes all the branches on the right of the one corre-
sponding to the clause in which the cut occurs. If OR_parallelism is exploited,
branches of the same predicate containing a cut may be executed by different
processes. Accordingly, a process working on a branch which is not the leftmost
in the search tree can find its corresponding solution before the process working
on the leftmost branch reaches the cut. Therefore, maintaining the exploitation
of OR_parallelism in the presence of a cut requires the control of the processes

1 Supported by the projects TIC95-0433.

1174

which execute each non-leftmost branch in order to be able to stop them if
necessary. This mechanism may be too expensive on a distributed memory sys-
tem, for which stopping a process requires an exchange of messages. A number
of solutions have been proposed for parallel systems [7, 10, 9]. However, they
require a large amount of communication on a distributed memory system. An-
other model by Ali [2] consists in constraining the OR_parallelism exploitation
to the cases outside the scope of a cut. This "constrained" approach seems to
be suitable for PDP because it avoids communications overhead, but, at the
same time, many opportunities of parallelism may be lost. Accordingly, a more
ambitious approach has been devised. The key idea of this approach is to exploit
as much parallelism as possible, but in such a way that a safe computat ion (a
computation which can not be pruned by a cut) is never delayed.

This paper also presents an implementation of the findall predicate. As it is
well-known, findall(X, G, L) constructs a list L consisting of all of the bindings
of X for which the goal G holds. Some solutions have been proposed for this
predicate [6, 1]. These approaches assume multiple processes sharing access to
some special structure (a set [6] or a findall tree [1]). Hence, they are not appro-
priate for a distributed implementation. The model proposed herein reduces the
communication as much as possible by distributing the control of the execution
of the findall predicate.

The rest of the paper proceeds as follows: Section 2 presents an execution
model overview of PDP; section 3 describes the implementation of cut; section
4 discusses the implementation of the findall predicate; and section 5 draws the
main conclusions of this work.

2 E x e c u t i o n M o d e l O v e r v i e w

The execution model --described in full detail in Ref. [5]-- has been implemented
as an extension of the Warren Abstract Machine (WAM) [13]. P D P has been
devised to run on a pool of processors organized within a hierarchy of clusters,
each consisting of a scheduler and a set of workers. Schedulers are responsible
for the distribution of pending work among idle workers.

The goals and clauses to be executed in parallel (parallel goals and paral-
lel clauses) are annotated in the program. Independent AND_parallelism is ex-
ploited by following a fork-join approach, which is an extension for distributed
memory systems of the one followed in the RAP model [11]. OR_parallelism is
exploited by following a recomputation approach [3]; a processor environment
is reconstructed by recomputing the query without backtracking, following the
socalled success_path, i.e. the sequence of clauses which have succeeded until
the last choicepoint with pending parallel alternatives, obtained from the par-
ent processor (the one finding the parallel clause). Recomputat ion allows the
exploitation of OR_under_AND parallelism in a very natural way. The PDP
approach to exploit OR_under_AND parallelism [4] is designed to create, in an
automatic and decentralized way, an independent computation for each solution.

1175

The computation of a goal in PDP is called a task. Two types of tasks are
distinguished: OR_tasks and AND_tasks. AND_parallelism and OR_parallelism
are exploited by AND_tasks and OR_tasks respectively. They are created by
the task finding the annotation of parallelism, which is their parent task. An
OR_task computes solutions to the query by exploring a portion of the search
tree. An AND_task computes a solution to a goal which belongs to a parallel
call and gives the result to its parent task. In this way, the parallel execution
of a program defines a task tree. The model supports combined parallelism in a
very natural way. As a result, the execution of the search tree is automatically
distributed among tasks, so that no specific task is in charge of the distribution.
The model is outlined as follows:

- The program execution begins as an OR_task (the root of the task tree),
which performs a sequential computation until a parallel call or a parallel
clause is reached.

- The execution of a parallel callis carried out by the creation of an AND_task
for each independent goal. These AND_tasks receive from its parent task
a goal and the computed answer substitution restricted to the variables of
the goal. Each AND_task computes its goal, returns the local solution to
the parent task and finishes. The parent task waits for the answer to each
independent goal and it is in charge of synchronizing the reception of those
answers.

- The execution of a parallelprocedure, i.e. a procedure with clauses annotated
with OR_parallelism, is carried out by the creation of a new OR_task. This
receives the success_path of the predecessor OR_task and recomputes the
query following this path. After the recomputation, the execution continues
as Usual .

- If OR_parallelism appears under AND_parallelism, the OR_tasks arising from
an AND_task have to re-execute the parallel call in order to find new solu-
tions to it. If this were done blindly, the result would be the simple repetition
of solutions. To avoid this, it has been introduced a rule, called combination
rule which decides which branch is explored to solve each independent goal.
The ancestor goal of an OR_task arising from an AND_task is defined as
the goat executed by this AND_task. The combination rule fixes the solution
to the goals on the left of the ancestor goal and combines them with every
solution of the remaining goals.

The results of the implementation of this model [5] have proved that OR_pa-
rallelism exploitation provides a linear speedup for high granularity programs.
For some programs presenting both kinds of parallelism PDP achieves a greater
speedup than the product of the speedups achieved by exploiting each kind of
parallelism separately. The reason is that the exchange of messages required in
the exploitation of AND_parallelism is avoided in PDP when OR_under_AND
parallelism is exploited.

1176

3 C u t I m p l e m e n t a t i o n

The model relies upon the distinction between safe tasks, i.e. computations of
branches which can not be pruned by cut, and speculative tasks, i.e. computations
that can be pruned by cuts. The principle under which this approach has been
designed is never to delay a safe task because of controlling speculative tasks,
i.e. because of analyzing if these tasks are computing a branch which has been
pruned by a cut and killing them. The model can be outlined with the following
points:

- OR_parallelism is exploited and all the branches of a predicate are executed
simultaneouslyb Branches in the scope of a cut, i.e. which can be pruned by
a cut, are executed as speculative tasks.

- If a safe task fails, the task corresponding to the execution of the next branch,
in a depth-first, left-to-right order, becomes safe - by receiving a message
from the previous safe task.

- If a safe task succeeds, the speculative tasks executing branches arising from
the same node are killed.

- A solution reached by a speculative task is not given as an output but it is
stored until the task becomes safe or it is killed.

Figure 1 shows the scheme of a possible case in the execution of the goal p in
the following program:

I ~ :- S, t, !, 11. s : - s l . t : - t l .

s : - s 2 . t : - t 2 .

s : - s 3 . u . s l . s 2 . s 3 . t l . t 2 .

Pa ra l l e l
e x e c u t i o n s

Time
sl,tl,!,u F¢~I~
' ' ^~t'~T,, ~. SAFETY
I L ._'~='_":'_ ~ FAIL
' t 7 SAFETY
2 r-s,2-'t-1 ~ 'u'_ _ _ ~ SOLUTION

, , ~3,t2_,!,_-: \
I i s3,tl,.,u. / KILL
[- - - I -%

I s3,t2,I,u.)

Fig. 1. Parallel implementation of cut.

If the computation corresponding to s l and t l does not fail, the remaining
computations (speculative) would be useless because of the cut and they would
be killed. Figure 1 shows the case in which the first task fails when executing

1177

t l , and then informs the following speculative task (s l , t2 , !,u) about its new
safe status. This task also fails and transforms the next task (s2 , t l , ! ,u) into
safe. This task does not fail and when the solution is reached the remaining
speculative computation are killed.

The implementation of cut in PDP leads to distinguish between safe and
speculative tasks as follows:

- s p e c u l a t i v e A N D _ t a s k :
An AND_task is speculative in these two cases: (a) if the task executes a goal
on the left of a cut in a parallel call, for instance b in a, (b~!&c), or (b) if the
task arises from another speculative task. Since the solution to the goals on
the left of a cut in a parallel call are fixed to the first solution encountered,
in case (a), any the speculative OR_task that the AND_task might create is
killed as soon as the solution to the goal is reached, or it is made safe as
soon as the AND_task fails.
Notice that , in spite of being speculative, an AND_task always computes the
first solution to its goal and gives it to its parent task. What the speculative
character determines is that every task it creates is also speculative.

- s p e c u l a t i v e OR_task :
Any OR_task arising from a speculative AND_task or from another spec-
ulative OR_task is also speculative, and exploits parallelism by means of
speculative tasks. The solution obtained by a speculative OR_task is stored
until the task becomes safe or it is killed.

PDP, which was initially implemented on a transputer network, has now
been ported to a workstation network using PVM (Parallel Virtual Machine)
[8], a software package that allows a heterogeneous network of parallel and serial
computers to appear as a single concurrent computational resource. Nevertheless,
the execution times obtained are not optimal since the resources have been
shared with other processes. The current results have been obtained with 12
processes running on three SUN SPARC 1 workstations (20 MHz).

The above presented scheme has been compared with the other one in which
the exploitation of parallelism is constrained to the part of the program out-
side the scope of a cut (the method used in ref. [2]). The benchmarks are a
synthetic program, which presents coarse grain parallelism; the mastermind pro-
gram, with eight digits to choose and different secret codes - mm1([1,5,0,4,3]),
mm2([2,2,2,2,2]), mm3([3,3,4,5,1]), mm4([5,4,3,2,0])-; the number program, pre-
viously used by Hausman [10], with five digits to choose and different queries -
numberl(3,62), number2(3,65), number3(3,56), number4(3,88)- ; and the Chat-
80 natural language query system, with the query db5 used by Hausman (db5 *20
means that the query was run twenty times). Table 1 shows the results for these
programs. The speedup obtained for these programs with the unconstrained
approach is only slightly lower then the one obtained by I:Iausman [10] with 4
workers in the Aurora system, which presents some shared memory. According to
the results the unconstrained approach seems to be better. For some programs,
such as number, the constrained approach impedes the parallelism exploitation.

1178

program
synthetic
ram1
mm2
ram3
ram4
number1
number2
number3
number4
db5*20

Sequential Constrained PDP
7.10

63.80
25.16

151.45
165 .94

24.07
49.32
38.11
21.54

3.7

7.1o(1)
48.72(1.31)
21.50(1.17)

101.64(1.49)
109.89(1.51)
24.05(1)
49.41(1)
37.72(1.01)
21.60(1)

3.7(1)

2.81(2.53)
35.64(1.79)
16.55(1.52)
55.68(2.72)
57.79(2.87)
2o.23(1.19)
28.51(1.73)
34.50(1.10)
16.20(1.33)
2.74(1.35)

Table 1. Comparison of approaches for implementing cut (time in seconds and
speedups in brackets.)

4 F i n d a l l I m p l e m e n t a t i o n

The PDP implementat ion of findall introduces some differences in the exploita-
tion of OR_parallelism. One of them is the fact that a solution corresponding to
a findall predicate does not have to be sent to the output process, but to the
one executing the flndall. A second key point is to detect when all solutions to
the findall predicate have been collected.

Let us call F_task the task executing the findall predicate. This task may
be either an OR_task or an AND_task. Thus, the extension of the model to
implement findall introduces two new types of tasks: findalLOR_tasks and find-
all_AND_tasks. A findall_OR_task computes a solution to the goal of the findall
predicate (findall goal) instead to the query. It receives a success pa th which
starts at the findall goal and leads to a new solution to it. The obtained solution
is sent to the F_task instead of the input_output process, as it would be the case
of a normal OR_task. If this task finds parallelism it exploits it by further find-
all_tasks. A findall__AND_task is similar to an AND_task, except for the fact tha t
it exploits parallelism by further findall_tasks. As in the case of the implemen-
tat ion of cul, AND_tasks are merely transmitters of the character (speculative
or findall) they have. It is in the OR_tasks that this character is t ranslated into
an actually different behavior.

The findall execution approach is outlined in the following points:

- A task executing a findall predicate enters a new execution mode, find-
alLmode, in which its behavior is adapted to the execution of findall.

- The OR_parallelism and the AND_parallelism of the findall goal is exploited
by means of findall_OR_tasks and findall_AND_tasks respectively.

- In findall_mode a task receives solutions until the completion of the flndall
predicate. Two strategies have been investigated for this detection, which
will be discussed later.

1179

- Each solution is received along with its computed success path, which allows
sorting the solutions. Finally the computation mode is changed to normal
mode.

The parent task needs to know when all the solutions to findall have been
found. This happens when every task taking part in the computation has failed.
Two strategies have been checked to detect this event. In Strategy 1 each task
taking part in the execution of flndall collects the failures of its offspring tasks. If
the task fails before all its offspring tasks, it informs the remaining of them that
their new parent task is its own parent task. In Strategy 2 failure is directly re-
ported to the F_task. In this strategy the F_task needs to knows how many tasks
participate in the execution of flndall. Therefore, each task reporting a solution
or a failure must also inform about how many tasks it created. The implemen-
tation of the first strategy has the advantage of decentralizing the process, but
the disadvantage of introducing more exchange of messages whenever a task fails
before all its offspring tasks. For the second strategy it is the other way around.
Table 2 shows the results of implementing each of these strategies, as well as

program sequential
(prog, fail)

queen(6)] 1.7
queen(8) 39.0
ram5 379.89
mm6 356.99
ram7 388.31
number5 58.97
number6 82.17
number7 138.60

parallel findall findall
(prog, fail) strategy a strategy b

1.37(1.24)
14.68(2.65)

102.90(3.69)
99.65(3.58)

112.78(3.44)
17.33(3.40)
25.97(3.16)
43.60(3.18)

1.5(1.13)
17.0(2.29)

118.13(3.21)
110.14(3.24)
121.10(3.20)
23.57(2.50)
32.28(2.54)
54.84(2.53)

1.5(1.13)
15.40(2.53)

116.92(3.25)
109.85(3.25)
119.48(3.25)
23.02(2.56)
31.90(2.57)
54.09 2.56)

Table 2. Comparison of the strategies for the detection of the findall completion (time
in seconds and speedups in brackets.)

the time to collect all solutions in a 'program, fail' manner. The latter allows
to estimate the overhead introduced by the findall mechanism (around 15% in
both approaches). The programs used as benchmarks are the queen program;
the mastermind program, with four digits to choose and different secret codes
- mmh([1,1,2]), mm6([0,3,1]), mm7([3,3,2]) -; and the number program, with
five digits to choose and different queries - numberh(3,15), number6(3,5), hum-
berT(3,3). Results show slightly shorter execution times for strategy b. They
seem to indicate that the difference increases with the program size and the
number of solutions to collect. The reason is the smaller number of messages ex-
changed with strategy b. The number of messages exchanged by both strategies
is the same unless a parent task fails before their offspring tasks.

1180

5 C o n c l u s i o n s

This paper has presented an implementation of some important side-effects in
PDP. The implementation reveals that the parallelism exploitation model of
PDP turns out to be advantageous to include the side-effects to the extent that
the model need not be altered in any way.

An "unconstrained" cut implementation model, which exploits all parallelism
appearing in the program, has been compared with an approach, already pro-
posed in the literature, which constrains OR_parallelism exploitation to those
parts of the program outside the scope of any cut. The model is based upon
the principle of never to delay safe computations because of controlling spec-
ulative ones. The results obtained implementing both models on a network of
workstations reveal that the unconstrained approach is clearly advantageous.

The findall predicate has also been implemented in such a way that the
control of the execution is decentralized. Two strategies have been tried for
detecting when all solutions have been collected. It turned out that the best
strategy is that in which failures are reported directly to the task executing the
findall predicate instead of the parent tasks.

R e f e r e n c e s

1. All, K. A. M., Karlsson, R. A Novel Method for Parallel Implementation of findall.
Proc. Int. Conf. on Logic Programming (1989), pp. 235-245.

2. All, K.A.M. A Method for Implementing Cut in Parallel Execution of Prolog. Re-
search Report SICS R87001 (1987).

3. Araujo, L., Ruz, J.J. OR-Parallel Execution of Prolog on a Transputer-based Sys-
tem. Transputers and Occam Research: New Directions. IOS Press (1993), pp.
167-181.

4. Araujo, L., Ruz, J.J. PDP: Prolog Distributed Proeessor for Independent_AND\ OR
Parallel Execution of Prolog. Proc. Int. Conf. on Logic Programming (1994), pp.
142-156.

5. Araujo, L., Ruz, J.J. A Parallel Prolog System for Distributed memory. The Journal
of Logic Programming, 33(1), (1997), pp. 49-79.

6. Carlsson, M., Danhof, K., Overbeek~ R. A Simplified Approach to the Implementa-
tion of AND-parallelism in an OR-parallel Environment. Proc. Int. Conf. on Logic
Programming (1988), pp. 1565-1577.

7. Calderwood A., Szeredi, P. Scheduling Or-parallelism in Aurora - the Manchester
scheduler Proc. Int. Conf. on Logic Programming (1989), pp. 419-435.

8. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. PVM:
Parallel Virtual Machine MIT Press (1994).

9. Gupta, G., Santos Costa, V., Cuts and Side-effects in AND-OR Parallel Prolog.
The Journal of Logic Programming 27(1), (1996), pp. 45-71.

10. Hausman, B. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis,
SICS (1990).

11. Hermenegildo, M., An abstract Machine Based Execution Model for Computer Ar-
chitecture Design and Efficient Implementation o] Logic Program in Parallel. PhD
thesis~ U. of Texas at Austin (1986).

12. Muthukumar, K., Hermenegildo, M., Complete and Efficient Methods for Support-
ing Side-effects in Independentbackslash Restricted And-parallelism Proc. Int. Conf.
on Logic Programming (1989), pp. 80-97.

13. Warren, D.tI.D., An Abstract Prolog Instruction Set. Tech. Note 309, SRI Interna-
tional, (1983).

