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Abs t rac t .  This paper presents an implementation of some essential 
side-effects of Prolog: cut and findall, on a distributed memory system. 
Although the techniques proposed herein are valid for any distributed 
memory implementation, they are advantageous in those based on re- 
computation, such as PDP (Prolog Distributed Processor), a model for 
Independent_AND/OR parallel execution of Prolog. The key idea to im- 
plement the cut predicate is to exploit as much parallelism as possible, 
but in such a way that the computation of a branch of the search tree 
which cannot be pruned by a cut is never delayed to control computa- 
tions depending on a cut, (i.e. to analyze the pruning of the branch of 
these computations and to kill them). The model proposed for the findall 
predicate reduces the communication as much as possible. 

1 I n t r o d u c t i o n  

PDP (Prolog Distributed Processor) [4, 5] is a recomputation-based model for 
the exploitation of independent_AND/OR parallelism. The development of par- 
allel systems to implement Prolog usually begins with the design of the part  
corresponding to the pure language (horn clauses) and then it is extended with 
side-effect predicates. PDP is not an exception. So, the purpose of this paper is to 
introduce some essential side-effect predicates, namely cut and findall. Although 
the techniques proposed herein are valid for any distributed memory implemen- 
tation, they turn out to be advantageous in those based on recomputation, such 
as PDP. Recomputation allows PDP to exploit combined parallelism as a set of 
independent computations (see [4, 5] for details). Thanks to this, the problem of 
gathering solutions inherent to AND_parallelism is overcome. Another advantage 
of recomputation,  already discussed in the literature [9], is that  it allows to in- 
troduce side-effect predicates without sacrificing parallelism exploitation. What  
this paper will show is that  side-effects can be incorporated to PDP without 
introducing modifications to the model. 

The cut predicate prunes all the branches on the right of the one corre- 
sponding to the clause in which the cut occurs. If OR_parallelism is exploited, 
branches of the same predicate containing a cut may be executed by different 
processes. Accordingly, a process working on a branch which is not the leftmost 
in the search tree can find its corresponding solution before the process working 
on the leftmost branch reaches the cut. Therefore, maintaining the exploitation 
of OR_parallelism in the presence of a cut requires the control of the processes 
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1174 

which execute each non-leftmost branch in order to be able to stop them if 
necessary. This mechanism may be too expensive on a distributed memory sys- 
tem, for which stopping a process requires an exchange of messages. A number 
of solutions have been proposed for parallel systems [7, 10, 9]. However, they 
require a large amount of communication on a distributed memory system. An- 
other model by Ali [2] consists in constraining the OR_parallelism exploitation 
to the cases outside the scope of a cut. This "constrained" approach seems to 
be suitable for PDP because it avoids communications overhead, but, at the 
same time, many opportunities of parallelism may be lost. Accordingly, a more 
ambitious approach has been devised. The key idea of this approach is to exploit 
as much parallelism as possible, but in such a way that  a safe computat ion (a 
computation which can not be pruned by a cut) is never delayed. 

This paper also presents an implementation of the findall predicate. As it is 
well-known, findall(X, G, L) constructs a list L consisting of all of the bindings 
of X for which the goal G holds. Some solutions have been proposed for this 
predicate [6, 1]. These approaches assume multiple processes sharing access to 
some special structure (a set [6] or a findall tree [1]). Hence, they are not appro- 
priate for a distributed implementation. The model proposed herein reduces the 
communication as much as possible by distributing the control of the execution 
of the findall predicate. 

The rest of the paper proceeds as follows: Section 2 presents an execution 
model overview of PDP; section 3 describes the implementation of cut; section 
4 discusses the implementation of the findall predicate; and section 5 draws the 
main conclusions of this work. 

2 E x e c u t i o n  M o d e l  O v e r v i e w  

The execution model --described in full detail in Ref. [5]-- has been implemented 
as an extension of the Warren Abstract Machine (WAM) [13]. P D P  has been 
devised to run on a pool of processors organized within a hierarchy of clusters, 
each consisting of a scheduler and a set of workers. Schedulers are responsible 
for the distribution of pending work among idle workers. 

The goals and clauses to be executed in parallel (parallel goals and paral- 
lel clauses) are annotated in the program. Independent AND_parallelism is ex- 
ploited by following a fork-join approach, which is an extension for distributed 
memory systems of the one followed in the RAP model [11]. OR_parallelism is 
exploited by following a recomputation approach [3]; a processor environment 
is reconstructed by recomputing the query without backtracking, following the 
socalled success_path, i.e. the sequence of clauses which have succeeded until 
the last choicepoint with pending parallel alternatives, obtained from the par- 
ent processor (the one finding the parallel clause). Recomputat ion allows the 
exploitation of OR_under_AND parallelism in a very natural  way. The PDP 
approach to exploit OR_under_AND parallelism [4] is designed to create, in an 
automatic and decentralized way, an independent computation for each solution. 
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The computation of a goal in PDP is called a task. Two types of tasks are 
distinguished: OR_tasks and AND_tasks. AND_parallelism and OR_parallelism 
are exploited by AND_tasks and OR_tasks respectively. They are created by 
the task finding the annotation of parallelism, which is their parent task. An 
OR_task computes solutions to the query by exploring a portion of the search 
tree. An AND_task computes a solution to a goal which belongs to a parallel 
call and gives the result to its parent task. In this way, the parallel execution 
of a program defines a task tree. The model supports combined parallelism in a 
very natural  way. As a result, the execution of the search tree is automatically 
distributed among tasks, so that no specific task is in charge of the distribution. 
The model is outlined as follows: 

- The program execution begins as an OR_task (the root of the task tree), 
which performs a sequential computation until a parallel call or a parallel 
clause is reached. 

- The execution of a parallel callis carried out by the creation of an AND_task 
for each independent goal. These AND_tasks receive from its parent task 
a goal and the computed answer substitution restricted to the variables of 
the goal. Each AND_task computes its goal, returns the local solution to 
the parent task and finishes. The parent task waits for the answer to each 
independent goal and it is in charge of synchronizing the reception of those 
answers. 

- The execution of a parallelprocedure, i.e. a procedure with clauses annotated 
with OR_parallelism, is carried out by the creation of a new OR_task. This 
receives the success_path of the predecessor OR_task and recomputes the 
query following this path. After the recomputation, the execution continues 
as  Usual .  

- If OR_parallelism appears under AND_parallelism, the OR_tasks arising from 
an AND_task have to re-execute the parallel call in order to find new solu- 
tions to it. If this were done blindly, the result would be the simple repetition 
of solutions. To avoid this, it has been introduced a rule, called combination 
rule which decides which branch is explored to solve each independent goal. 
The ancestor goal of an OR_task arising from an AND_task is defined as 
the goat executed by this AND_task. The combination rule fixes the solution 
to the goals on the left of the ancestor goal and combines them with every 
solution of the remaining goals. 

The results of the implementation of this model [5] have proved that  OR_pa- 
rallelism exploitation provides a linear speedup for high granularity programs. 
For some programs presenting both kinds of parallelism PDP achieves a greater 
speedup than the product of the speedups achieved by exploiting each kind of 
parallelism separately. The reason is that the exchange of messages required in 
the exploitation of AND_parallelism is avoided in PDP when OR_under_AND 
parallelism is exploited. 
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3 C u t  I m p l e m e n t a t i o n  

The model relies upon the distinction between safe tasks, i.e. computations of 
branches which can not be pruned by cut, and speculative tasks, i.e. computations 
that  can be pruned by cuts. The principle under which this approach has been 
designed is never to delay a safe task because of controlling speculative tasks, 
i.e. because of analyzing if these tasks are computing a branch which has been 
pruned by a cut and killing them. The model can be outlined with the following 
points: 

- OR_parallelism is exploited and all the branches of a predicate are executed 
simultaneouslyb Branches in the scope of a cut, i.e. which can be pruned by 
a cut, are executed as speculative tasks. 

- If a safe task fails, the task corresponding to the execution of the next branch, 
in a depth-first, left-to-right order, becomes safe - by receiving a message 
from the previous safe task. 

- If a safe task succeeds, the speculative tasks executing branches arising from 
the same node are killed. 

- A solution reached by a speculative task is not given as an output  but  it is 
stored until the task becomes safe or it is killed. 

Figure 1 shows the scheme of a possible case in the execution of the goal p in 
the following program: 

I ~ :- S, t, !, 11. s : -  s l .  t : -  t l .  

s : -  s 2 .  t : -  t 2 .  

s : - s 3 .  u .  s l .  s 2 .  s 3 .  t l .  t 2 .  

Pa ra l l e l  
e x e c u t i o n s  

Time  
sl,tl,!,u F¢~I~ 
' ' ^~t'~T,, ~.  SAFETY 
I L ._'~='_":'_ ~ FAIL 
' t 7  SAFETY 
2 r-s,2-'t-1 ~ 'u'_ _ _ ~ SOLUTION 

, , ~3,t2_,!,_-: . . . . .  \ 
I i s3,tl,.,u. / KILL 
[- - - I  ......... -% ...... 

I s3,t2,I,u. ) 

Fig. 1. Parallel implementation of cut. 

If the computation corresponding to s l  and t l  does not fail, the remaining 
computations (speculative) would be useless because of the cut and they would 
be killed. Figure 1 shows the case in which the first task fails when executing 
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t l ,  and then informs the following speculative task (s l , t2 ,  !,u) about  its new 
safe status. This task also fails and transforms the next task ( s2 , t l ,  ! ,u) into 
safe. This task does not fail and when the solution is reached the remaining 
speculative computation are killed. 

The implementation of cut in PDP leads to distinguish between safe and 
speculative tasks as follows: 

- s p e c u l a t i v e  A N D _ t a s k :  
An AND_task is speculative in these two cases: (a) if the task executes a goal 
on the left of a cut in a parallel call, for instance b in a, (b~!&c), or (b) if the 
task arises from another speculative task. Since the solution to the goals on 
the left of a cut in a parallel call are fixed to the first solution encountered, 
in case (a), any the speculative OR_task that the AND_task might create is 
killed as soon as the solution to the goal is reached, or it is made safe as 
soon as the AND_task fails. 
Notice that ,  in spite of being speculative, an AND_task always computes the 
first solution to its goal and gives it to its parent task. What  the speculative 
character determines is that  every task it creates is also speculative. 

- s p e c u l a t i v e  OR_task :  
Any OR_task arising from a speculative AND_task or from another spec- 
ulative OR_task is also speculative, and exploits parallelism by means of 
speculative tasks. The solution obtained by a speculative OR_task is stored 
until the task becomes safe or it is killed. 

PDP, which was initially implemented on a transputer network, has now 
been ported to a workstation network using PVM (Parallel Virtual Machine) 
[8], a software package that allows a heterogeneous network of parallel and serial 
computers to appear as a single concurrent computational resource. Nevertheless, 
the execution times obtained are not optimal since the resources have been 
shared with other processes. The current results have been obtained with 12 
processes running on three SUN SPARC 1 workstations (20 MHz). 

The above presented scheme has been compared with the other one in which 
the exploitation of parallelism is constrained to the part of the program out- 
side the scope of a cut (the method used in ref. [2]). The benchmarks are a 
synthetic program, which presents coarse grain parallelism; the mastermind pro- 
gram, with eight digits to choose and different secret codes - mm1([1,5,0,4,3]), 
mm2([2,2,2,2,2]), mm3([3,3,4,5,1]), mm4([5,4,3,2,0])-; the number program, pre- 
viously used by Hausman [10], with five digits to choose and different queries - 
numberl(3,62),  number2(3,65), number3(3,56), number4(3,88)- ;  and the Chat- 
80 natural  language query system, with the query db5 used by Hausman (db5 *20 
means that  the query was run twenty times). Table 1 shows the results for these 
programs. The speedup obtained for these programs with the unconstrained 
approach is only slightly lower then the one obtained by I:Iausman [10] with 4 
workers in the Aurora system, which presents some shared memory. According to 
the results the unconstrained approach seems to be better. For some programs, 
such as number, the constrained approach impedes the parallelism exploitation. 
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program 
synthetic 
ram1 
mm2 
ram3 
ram4 
number1 
number2 
number3 
number4 
db5*20 

Sequential Constrained PDP 
7.10 

63.80 
25.16 

151.45 
165 .94  

24.07 
49.32 
38.11 
21.54 

3.7 

7.1o(1) 
48.72(1.31) 
21.50(1.17) 

101.64(1.49) 
109.89(1.51) 
24.05(1) 
49.41(1) 
37.72(1.01) 
21.60(1) 

3.7(1) 

2.81(2.53) 
35.64(1.79) 
16.55(1.52) 
55.68(2.72) 
57.79(2.87) 
2o.23(1.19) 
28.51(1.73) 
34.50(1.10) 
16.20(1.33) 
2.74(1.35) 

Table  1. Comparison of approaches for implementing cut (time in seconds and 
speedups in brackets.) 

4 F i n d a l l  I m p l e m e n t a t i o n  

The PDP implementat ion of findall introduces some differences in the exploita- 
tion of OR_parallelism. One of them is the fact that  a solution corresponding to 
a findall predicate does not have to be sent to the output  process, but  to the 
one executing the flndall. A second key point is to detect when all solutions to 
the findall predicate have been collected. 

Let us call F_task the task executing the findall predicate. This task may  
be either an OR_task or an AND_task. Thus, the extension of the model to 
implement  findall introduces two new types of tasks: findalLOR_tasks and find- 
all_AND_tasks. A findall_OR_task computes a solution to the goal of the findall 
predicate (findall goal) instead to the query. It receives a success pa th  which 
starts  at the findall goal and leads to a new solution to it. The obtained solution 
is sent to the F_task instead of the input_output process, as it would be the case 
of a normal  OR_task. If this task finds parallelism it exploits it by further find- 
all_tasks. A findall__AND_task is similar to an AND_task, except for the fact tha t  
it exploits parallelism by further findall_tasks. As in the case of the implemen- 
tat ion of cul, AND_tasks are merely transmitters  of the character (speculative 
or findall) they have. It  is in the OR_tasks that  this character is t ranslated into 
an actually different behavior. 

The findall execution approach is outlined in the following points: 

- A task executing a findall predicate enters a new execution mode, find- 
alLmode, in which its behavior is adapted to the execution of findall. 

- The OR_parallelism and the AND_parallelism of the findall goal is exploited 
by means of findall_OR_tasks and findall_AND_tasks respectively. 

- In findall_mode a task receives solutions until the completion of the flndall 
predicate. Two strategies have been investigated for this detection, which 
will be discussed later. 
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- Each solution is received along with its computed success path, which allows 
sorting the solutions. Finally the computation mode is changed to normal 
mode. 

The parent task needs to know when all the solutions to findall have been 
found. This happens when every task taking part in the computation has failed. 
Two strategies have been checked to detect this event. In Strategy 1 each task 
taking part in the execution of flndall collects the failures of its offspring tasks. If 
the task fails before all its offspring tasks, it informs the remaining of them that  
their new parent task is its own parent task. In Strategy 2 failure is directly re- 
ported to the F_task. In this strategy the F_task needs to knows how many tasks 
participate in the execution of flndall. Therefore, each task reporting a solution 
or a failure must also inform about how many tasks it created. The implemen- 
tation of the first strategy has the advantage of decentralizing the process, but 
the disadvantage of introducing more exchange of messages whenever a task fails 
before all its offspring tasks. For the second strategy it is the other way around. 
Table 2 shows the results of implementing each of these strategies, as well as 

program sequential 
(prog, fail) 

queen(6)] 1.7 
queen(8) 39.0 
ram5 379.89 
mm6 356.99 
ram7 388.31 
number5 58.97 
number6 82.17 
number7 138.60 

parallel findall findall 
(prog, fail) strategy a strategy b 

1.37(1.24) 
14.68(2.65) 

102.90(3.69) 
99.65(3.58) 

112.78(3.44) 
17.33(3.40) 
25.97(3.16) 
43.60(3.18) 

1.5(1.13) 
17.0(2.29) 

118.13(3.21) 
110.14(3.24) 
121.10(3.20) 
23.57(2.50) 
32.28(2.54) 
54.84(2.53) 

1.5(1.13) 
15.40(2.53) 

116.92(3.25) 
109.85(3.25) 
119.48(3.25) 
23.02(2.56) 
31.90(2.57) 
54.09 2.56) 

Table 2. Comparison of the strategies for the detection of the findall completion (time 
in seconds and speedups in brackets.) 

the time to collect all solutions in a 'program, fail' manner. The latter allows 
to estimate the overhead introduced by the findall mechanism (around 15% in 
both approaches). The programs used as benchmarks are the queen program; 
the mastermind program, with four digits to choose and different secret codes 
- mmh([1,1,2]), mm6([0,3,1]), mm7([3,3,2]) -; and the number program, with 
five digits to choose and different queries - numberh(3,15), number6(3,5), hum- 
berT(3,3). Results show slightly shorter execution times for strategy b. They 
seem to indicate that  the difference increases with the program size and the 
number of solutions to collect. The reason is the smaller number of messages ex- 
changed with strategy b. The number of messages exchanged by both strategies 
is the same unless a parent task fails before their offspring tasks. 
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5 C o n c l u s i o n s  

This paper has presented an implementation of some important  side-effects in 
PDP. The implementation reveals that the parallelism exploitation model of 
PDP turns out to be advantageous to include the side-effects to the extent that  
the model need not be altered in any way. 

An "unconstrained" cut implementation model, which exploits all parallelism 
appearing in the program, has been compared with an approach, already pro- 
posed in the literature, which constrains OR_parallelism exploitation to those 
parts of the program outside the scope of any cut. The model is based upon 
the principle of never to delay safe computations because of controlling spec- 
ulative ones. The results obtained implementing both models on a network of 
workstations reveal that the unconstrained approach is clearly advantageous. 

The findall predicate has also been implemented in such a way that  the 
control of the execution is decentralized. Two strategies have been tried for 
detecting when all solutions have been collected. It turned out that  the best 
strategy is that in which failures are reported directly to the task executing the 
findall predicate instead of the parent tasks. 
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