
Design and Implementation of Parallel TRAM

Kazuhiro Ogata, Masaru Kondo, Shigenori Ioroi and Kokichi Futatsugi

JAIST, JAPAN ({ogata, m-kondo, ioroi, kokichi}@jaist.ac.jp)

1 I n t r o d u c t i o n

Algebraic specifications, introduced in the mid 70's as a method of modeling and
specifying abstract data types, has been widely attracting attention since they
have exact semantics and the ability to verify and reason about specifications of
software systems. In addition, since specifications written in algebraic specifica-
tion languages can be executed on stock hardware, the specification languages
can be used as tools for rapid prototyping.

TRAM[7] is an abstract machine for order-sorted conditional terra rewrit-
ing systems (OSCTI~Ss). The OSCTRSs[5] can serve as a general computa-
tion model for advanced algebraic specification languages such as OBJ[6] and
CafeOBJ[2]. TRAM adopts the E-strategy[6] as its reduction strategy. Parallel
TRAM is a parallel variant of TRAM that is designed to be executed on shared-
memory multiprocessors. In Parallel TI~AM, parallelism directives are specified
by using the Parallel E-strategy that is an extension of the E-strategy. The Paral-
lel E-strategy may control parallelism suitably by combining conditions. In this
paper, we describe the design and implementation of Parallel TRAM and assess
the current implementation on OMRON LUNA-88K 2.

Up to the present, several researches on designing rewrite engines for alge-
braic specification languages on parallel architectures have been done [4, 8]. Mas-
sively parallel computers have been mainly focused as the target architectures so
that much faster rewritings by far could be achieved. But, almost all the rewrite
engines have been gone no further than having been designed. Shared-memory
multiprocessors have been chosen as our target architecture since we think the
multiprocessors will undoubtedly become standard for the future workstations.

2 T R A M : T e r m R e w r i t i n g A b s t r a c t M a c h i n e

T R A M Programs . TRAM programs are rewrite (equational) programs that
are similar to OBJ's modules. For example, the program defining a function that
returns the nth element of (infinite) natural numbers' lists is as follows:

sorts: Zero NzNat Nat L i s t .
order: Zero < Nat NzNat < N a t .
ops: 0: - • Zero s : Nat - > NzNat

cons: Nat List - > List { s t r a t : (1 0) }
in f : Nat - > List nth : Nat List - > N a t .

v a r s : X Y : Nat L : L i s t .

1210

rules: int{ X) - > cons(X, inKs(X)))
nth(O, cons(X, Z)) - > x
nth(s(X), cons(Y, n)) - > nth(X, L) .

TRAM adopts the E-strategy that lets each operation have its own local
strategy. The local strategies indicate the order of rewritings of terms whose top
operations have the strategies. The order is specified by using lists of numbers
ranging from zero to the number of the arguments. Non-zero number n and zero
in the lists are intended to reduce (evaluate) nth arguments of the terms and the
terms themselves to a variant of normal forms respectively. We call the variant
of normal forms E-normal forms (ENFs). Arguments whose numbers are not in
the lists might or might not be evaluated lazily. The operation cons has the local
strategy (1 0) that indicates a term whose top operation is cons is tried to be
rewritten to another after evaluating the first argument to ENF when the term
is evaluated. If the term is rewritten to another, the new one will be evaluated
according to the local strategy of its top operation. The second argument might
or might not be evaluated lazily. The eager local strategy (1 2... 0) is attached
to each operation to which explicit local strategies are not specified. Figure 1
shows the reduction sequence for nth(s(0), int~0)) using the above program.

T R A M Archi tec ture . TRAM consists of six regions (DNET, CR, CODE, SL,
STACK and VAR) and three processing units (the rule compiler, the term com-
piler and the TRAM interpreter). DNET is the region for discrimination nets [3]
encoded from the lefthand sides of rewrite rules. The righthand sides of rewrite
rules (RHSs) are compiled and allocated on CR. Matching programs compiled
from subject terms are allocated on CODE. SL contains strategy lists for sub-
ject terms. STACK is the working place for pattern matching. VAR contains
substitutions.

In TRAM, subject terms are compiled into sequences of abstract instructions
(matching programs) that are self modifying programs.

Defini t ion 1. The matching program LT for a term T whose top operation is
f of arity n is as follows:

LT: match_sym idxf
L1

L~

/ / i d x f is the index for f .
//L~(i = 1,. . . ,n) is the label of
/ / t h e ith argument's matching program.

Figure 1 shows some terms and the corresponding matching programs. All appli-
cable rewrite rules for T are gained by executing the program. The program is
called by jumping the label LT after pushing a continuation (a return address)
onto STACK. raatch_sym tests whether f is in the root node of (a sub-tree of)
DNET. If f is in the root, the continuations (the arguments) Ln , . . . , L2 are
pushed onto STACK and the control is transferred to L1. Backtracking is used
so as to find all applicable rewrite rules for the term. The method for backtrack-
ing used in WAM [1] for Prolog is adopted.

1211

2. n th (s (O) (0, | n f (s (O)))) 1. nthO,(o), i~i'(o))

match_sym idxs
L5

: m a t c h - s y m idx 0
ma tch_sym idx in f
L8
m ~ t c h - s y m idxf)

s, ,(o)
14: m a t c h - s y m idxs] 4 (4)

LO:
LI :
L2:
L3:
L4:
L5:

L9:
LIO:
L l1 :
L12:
L13:
L14:

3. nth(O, | n f (s (O)))
m a t c h . s y m idXnt h , . , _ ~ 1 6 : match_sym idxnt h
L3 ~ 1 7 : L 5
L9 - ~ 1 8 : L I 2
r a a t c h . J y m idxs ~ (3)
L5
m a t c h - s y m idx 0 4. nth(O, c o n s (s (O) , | n f (s (s (O))))) ~ 16: ma tch_sym idXnt h
m~tch_sym idxcons 1 7 : L 5
L8 1 8 : L I 9
LI2 19: ma tch_sym idxcons
mmtch-sym idxin f 2 0 : L I 4
L14 2 1 : L 2 2
m a t e h . s y m idxs 22: m a t c h - s y m idxln f
T,R I 2 3 : L 2 4

24: match . sym idx s
~g~ T,14

Fig. 1. Reduction sequence for nth(s(0), inf[O))

Matching program templates are compiled from RHSs and are instantiated
when the corresponding rules are used. The matching program at L9 through
L15 in Fig. 1 is the instantiated one of the matching program template of int(X)
- > cons(X, int[X)) that is used in the rewriting (1) in Fig. 1.

R e w r i t i n g M a c h i n e r y . The implementation of the E-strategy in TRAM is
based on strategy lists. A strategy list for a term t is basically a sequence of all
eager positions (reachable nodes) in t. The order of the strategy list corresponds
to the order of the evaluation of t. Elements of strategy lists in TRAM are triples
(label, pslot, skip) of matching programs' labels, parent slots holding the labels,
and the number of elements to be skipped. The last element of the strategy lists
is the BINGO triple (BINGO, subject, _). BINGO is the label of the instruction
bingo that is executed when an ENF is got. The second of the BINGO triple is
the parent slot of subject terms. The TRAM interpreter executes the matching
program to reduce a subject term according to the strategy list until the BINGO
triple. The strategy list for nth(s(O), inf(0)) in Fig. 1 is [(LS, L4, 0), (L3, L1, 0),
(L8, L7, 0), (L6, L2, 01, (LO, RESULT, 0), (BINGO, LO, _)].

When an applicable rule is got by executing the matching program for a
subterm of a term, the strategy list template of the RHS is instantiated and
the instantiated list is appended to the remaining strategy list of the term so
that the strategy list for the new term is gained after replacing the subterm
(redex) with the corresponding contractum. [(L9, L2, 0)] is the instantiated one
for the strategy list template of infiX) -> cons(X, int~s(X))) that is used in
the rewriting (1) in Fig. 1. The strategy list for nth(s(0), cons(O, laths(O)))) is
[(Lg, L2, 0), (LO, RESULT, 01, (BINGO, LO, -/] after the rewriting (1) is done.

The TRAM interpreter executes the following instruction sequence when it
begins to interpret the matching programs to reduce terms:

init

LOOP: next
julRp LDummy
go_ahead
select

/ / ini t ia l izes TI~AM's registers
/ / p o p s a label from SL and puts it at LDummy

/ / se lec t s one among the applicable rules

1212

rewrite //replaces the redex with its contractum
jump LOOP

next also pushes the go_ahead's label onto STACK. go_ahead is executed when
an applicable rule is found. If there is no applicable rule, the control is trans-
ferred to LOOP. go_ahead triggers off backtracking if there is a choice point
frame [1]. Otherwise it transfers the control to s e l e c t , r e w r i t e also appends
the instantiated strategy list of the used rule to one for the subject term.

3 Parallelization for T R A M

T h e Pa ra l l e l E - s t r a t e g y . Since rewrite programs have parallelism inherently,
explicit parallelization directives are not necessary for executing them in paral-
lel [8]. Generally speaking, however, we can gain better performance of a program
when its restricted subtasks with sufficiently large amount of work are only as-
signed to parallel processes than when its all subtasks are assigned to parallel
processes. The ability to control parallelism is very desirable for this reason.
Especially, it is indispensable to control parallelism of rewrite programs so that
they are executed efficiently in parallel on a multiprocessor with a small number
of processors.

In Parallel TRAM, we adopt the Parallel E-strategy, that is an extension of
the E-strategy and is a subset of the Concurrent E-strategy [4], in order to control
parallelism of rewrite programs. The Parallel E-strategy lets each operation have
its own parallel local strategy. A parallel local strategy for an operation f of arity
n is specified by using a list defined by the following extended BNF notation:

Def in i t ion 2.

(ParallelLocalStrategy) ::= () [((SerialElem)* 0)
(SerialElem / ::= 0 [(ArgNum/ [(ParallelElem }
(ArgNum): := l [2 [. . . [n
(ParallelElem) ::= { (ArgNum) + }

(ParallelElem) specifies some arguments of a term whose top operation is f that
are reduced in parallel. Each element of (ParallelLocalStrategy) are evaluated
in sequence from left. For example, a TRAM program computing Fibonacci
numbers in parallel can be defined as follows:

sor ts : Nat .
order : .
ops: 0 : - > Nat s : Nat - > Nat

vadd: Nat Nat - > Na$ { s t r a t : ({1 2} 0) }
pfib : Nat - > Na$.

vars: X Y : N a t .
rules: vadd(X, O) - > X padd(X, s(Y)) - > s(padd(X, Y))

v b(O) - > 0 V b(s(O)) - > s(O)
- > Vada(p b(s(X)), v b(X)) .

1213

1. pfib(s(s(O))) V
I i h_sy pfib ,]] 2.1. pflb(s(O)) 3.1. s(O)

match_sym idx O I JL, IO: m~tch-sym idx ' ~16: m~tch_sym idx s
Pf*b I (3.1) [I

L : L2 I 511:LI2 ~...l....A~L17:LI8
: match_sym idx s I 512: match-sym idx s I ILl8: match.sym idxoI L4 I

L~: match_sym idx s I
6:: L6 ~ ~ ~1 2.2. pflb(O)

" 3 .2 . 0
~ [T~I4: match_sym idXpfib [(3.2) ~i~100: rnatch-sym idxo[

2, padd(pfib(s(O)), pfib(O))

1
.7: m~,tch-sym idXpadd
L8: LIO
L9:LI4
10: m~tch-sym idxpflb

LII: L12
12: m~tch-~ym idx s

LI3:L6
14: match_syrn idxpflb
15:T,6

/
4. p a d d (, (o) , O) S. s(O)

L~L8:L7: Llot~L16m~tch-sym idXp~dd (5) ~ ~1T:16: L18match-sym tdxs]

Fig. 2. Parallel reduction sequence for ptlb(s(s(O)))

The operation padd has the parallel local s trategy ({1 2} 0) tha t indicates a
t e rm whose top operation is padd is tried to be rewritten to another after eval-
uating the first and second arguments to ENFs in parallel when the te rm is
evaluated. Figure 2 shows the parallel reduction sequence for pfb(s(s(O))). The
two rewritings enclosed with the dash frame in Fig. 2 are done in parallel.

The Parailel E-strategy may control parallelism more suitably by combining
conditions. Instead of ptib(s(s(X))) - > padd(pfib(s(Z)), ptlb(X)), the following
rules can be defined for gaining a more efficient program:

ptlb(s(s(X))) - > padd(pfb(s(X)), pfib(X)) i f threshold(X) = false
pfb(s(s(X))) - > add(fib(s(X)), fb (X)) i f threshold(X) = true

threshold returns (is reduced to) false if its argument is larger than a num-
ber. Otherwise it returns true. add is a sequentiai addition and fib computes
Fibonacci numbers in sequence by using add.

P a r a l l e l T R A M A r c h i t e c t u r e . In Parallel TRAM, each processor has its own
T R A M interpreter and four mutable regions. Two stable regions are shared with
all processors. One of the processors is also an interface processor tha t also plays
a role of the user interface by using the rule compiler and the te rm compiler. A
s trategy list represents a process queue. A chunk of consecutive elements of the
s t rategy list represents a process. Each process has two possible states: active
and pending. Each process queue contains zero or more pending processes and
zero or one active process. If there is an active process in a process queue, it
is at the top of the queue. A processor whose process queue contains an active
process is in busy. Otherwise it is in idle.

P a r a l l e l R e w r i t i n g s . I t is not necessary to change matching programs even
though terms are reduced in parallel. Strategy lists control parallel rewritings
by holding labels at which new parallel instructions are stored. The new parallel
instructions are fo rk , j o i n , e x i t , s l e e p and nop. f o r k creates a new process

1214

reducing a subterm in parallel and allocates the processor to it if there is an idle
processor. Otherwise the caller processor reduces the new process, or the new
process is in-lined, j o i n delays its caller process until all of its child processes
terminate and makes the caller processor idle. e x i t terminates its caller process
and reports the termination to its parent process. After executing e x i t , the caller
processor resumes the pending process at the top of its process queue if there are
pending ones in the queue. Otherwise the processor becomes idle by executing
s l e ep , s l e e p makes its caller processor idle. Lop does nothing, f o r k creating
an empty process may appear in a strategy list by instantiating a s trategy list
template, nop is replaced with such a wasteful fo rk .

There are two kinds of triples that are elements of s t rategy lists in TRAM.
One is for matching programs, the other for bingo. In addition to these ones,
Parallel T R A M has five kinds of triples as elements of s t rategy lists. These
new ones correspond to the new five parallel instructions: (FORK, SIZE, Aj),
(JOIN, PNUM, _), (EXIT, Apj, RID), (SLEEP, _, _) and (NOP, _, _). F O R K is
the label of fo rk . SIZE is the size of the forked process. Aj points to the JOIN
triple corresponding to the FORK triple. JOIN is the label of j OiL. PNUM is a
number of the caller's child processes tha t do not finish their work. EXIT is the
label of e x i t . Apj points to the JOIN triple of the caller's parent process. PID is
the processor ID of the caller's parent process. SLEEP is the label of s l e ep . NOP
is the label of Lop. For example, the strategy list for padd(pfib(s(O)), pfib(O))
after rewriting (1) in Fig. 2 is [(FORK, 2, Aj), (L12, Lll, 0), (LIO, L8, 0}, (L14,
L9, 0), (JOIN, 1, _}, (LT, RESULT, 0}, (BINGO, LT, _}]. Suppose that there
are two processors P0 and P1 that are in active and in idle respectively. After
rewriting (1), P0 executes fo rk , and a new process is created and is allocated
to P1. Then, P l ' s s t rategy list is [(n12, Lll, 0), (LIO, L8, 0), (EXIT, Aj, PO},
(SLEEP, _, _)]. The two processors reduces terms in parallel soon after.

4 I m p l e m e n t a t i o n of Para l le l T R A M on Mul t ip rocessor

Parallel T R A M has been implemented on OMRON LUNA-88K 2 in C. LUNA-
88K 2 carries four MC88100 processors and adopts Mach 2.5 as its OS.

Processors are represented by using C structures in which four mutable re-
gions and the related registers such as the instruction pointer are packed. Each
structure also contains states of processors: BUSY and IDLE. Parallel execution
is realized by giving each processor a Mach thread. Pointers to the structures are
passed to C functions in which four mutable regions or the related registers are
accessed so that processors (threads) can access them as quickly as possible. Idle
processors are managed by using a processor idle queue IdleQueue. When f o z k
is executed, its caller processor tries to get one of idle processors from IdleQueue
and to allocate it to a newly created process. If IdleQueue is empty, the new
process is in-lined.

Parallel TRAM adopts a sequential stop-and-copy algorithm as the garbage
collection (GC). A processor detecting a necessity of a GC performs the GC after
all other processor pause. In Parallel TRAM, one global creation space (where

1215

Table 1. Experimental results in computing the 24th Fibonacci number

system time (s)rewritings r/s GCs crea ted p r o c e s s e s

tram 13.63 514105 37719 6
ptraml 14.71 527377 35852 6 0
ptram2 8.84 527377 59658 6 8
ptram3 7.55 527377 69851 7 39
ptram4 6.04 527377 87314 6 20

in-lined processes s p e e d

- b a s e

376 0.93
368 1.54
337 1.81
356 2.26

ptrami means the Parallel TRAM system running on i processors.
The threshold is 10 for parallel computations of Fibonacci numbers.

new matching programs are allocated) is divided into multiple chunks for the
purpose of efficient usage of storage and each processor gets one chunk from the
global space when necessary. A GC is triggered when there is no space left in the
global space. In addition to BUSY and IDLE, GC is used as a processor state
for a GC. After a GC, the GC processor resumes the processors pausing for the
GC. It is necessary to distinguish processors pausing for the GC from idle ones
at the moment. The state GC is given to processors that are the second or later
to detect the necessity of the GC.

5 Performance of Parallel T R A M

Table i shows the experimental results in computing the 24th Fibonacci num-
ber in parallel with the Parallel TRAM system on LUNA-88K 2. For comparison
with TRAM, the results of the TRAM system are shown. Due to limitations of
space, the overhead of the current implementation is only discussed here.

We calculate an ideal improvement in speed when the 24th number is com-
puted in parallel on four processors. When the 24th number is computed in
parallel, two processors add the computations of the 22nd and 21st numbers,
and of the 21st and 20th numbers in parallel after four processors compute the
22nd, 21st, 21st and 20th numbers in parallel. Then, the two sums are added so
as to get the 24th number. The computations of the 22nd, 21st, 21st and 20th
numbers involve 186579, 112286, 112286 and 67596 rewritings, respectively. If
these rewritings are fairly done in parallel with four processors, it takes a time
in proportion to 119687 rewritings (the mean of the four rewritings) to com-
pute the four numbers. The additions of the computations of the 22nd and 21st,
and of the 21st and 20th numbers involve 10948 and 6697 rewritings, respec-
tively. Since these two additions are done independently with two processors, it
takes a time in proportion to 130635 rewritings (119687 + 10948) to compute
the 23rd and 22nd numbers. It takes a time in proportion to 148348 rewritings
(130635 + 17713) to compute the 24th number in parallel with four processors
since the addition of the computations of the 23rd and 22nd numbers involve
17713 rewritings. Hence, the ideal improvement in speed is 3.47 (514105/148348)
when the 24th number is computed in parallel on four processors.

Since the actual improvement in speed is 2.26, there are some considerable
overheads in the current implementation. The overheads may depend on the

1216

sequential GC, the process creation, the parallelization of T R A M and the archi-
tectural characteristic of LUNA-88K 2 such as shared bus. The process creation
and the parallelization of TRAM may slightly contribute to the overhead judg-
ing from the experimental result of p t r am l in Table 1. It is currently unclear
tha t how much the architectural characteristic of LUNA-88K 2 affects the over-
head. We should implement Parallel TRAM on another multiprocessor so as to
assess tha t thing. The computat ion of the 24th Fibonacci number was done in
parallel with four processors on the Parallel TRAM system with enough size of
the creation space to involve no GCs so that the overhead of the sequential GC
was confirmed. I t took 4.90 seconds. The overhead caused by the sequential GC
is about 19% in the Parallel TRAM system while it is about 9% in the T R A M
system. One of the main source of the overhead in the current implementat ion
of the Parallel TRAM system is the sequential GC.

6 C o n c l u s i o n a n d F u t u r e W o r k

We have described the design and implementation of Parallel T R A M where
parallelism directives are specified by using the Parallel E-strategy. The Par-
allel TRAM system on LUNA-88K 2 was found to be about twice times faster
than the TRAM system on the same workstation. Parallel TRAM will be imple-
mented on other multiprocessors so that Parallel T R A M and its implementat ion
technique will be improved and be made secure. One of the points tha t should
be improved in the current implementat ion is to adopt a parallel or on-the-fly
garbage collection.

R e f e r e n c e s

1. Ait-Kaci, H.: Warren's Abstract Machine. A Tutorial Reconstruction. The MIT
Press. 1991

2. CafeOBJ home page: http://Idl-www.jalst.ac.jp:8080/cafeobj
3. Christian, J.: Flatterms, Discrimination Nets, and Fast Term Rewriting. Journal of

Automated Reasoning. 10 (1993) 95-113
4. Goguen, 3., Kirchller, C. and Meseguer, J.: Concurrent Term Rewriting as a Model

of Computation. Proc. of the Workshop on Graph Reduction. LNCS 279 Springer-
Verlag. (1986) 53-93

5. Kirchner, C., Kirchner, H. and Meseguer, ft.: Operational Semantics of OBJ-3. Proc.
of the 15th International Colloquium on Automata, Languages and Programming.
LNCS 317 Springer-Verlag. (1988) 287-301

6. Futatsugi, K., Goguen, J. A., $ouannaud, ft. P. and Meseguer, J.: Principles of
OBJ2. Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages. (1984) 52-66

7. Ogata, K., Ohhara, K. and Futatsugi, K.: TRAM: An Abstract Machine for Order-
Sorted Conditional Term Rewriting Systems. Proc. of the 8th International Confer-
ence on Rewriting Techniques and Applications. (1997) (to appear)

8. Viry, P. and Kirchner, C.: Implementing Parallel Rewriting. Proc. of the Interna-
tional Workshop on Programming Language Implementation and Logic Program-
ming. LNCS 456 Springer-Verlag. (1990) 1-15

