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1 I n t r o d u c t i o n  

Algebraic specifications, introduced in the mid 70's as a method of modeling and 
specifying abstract data types, has been widely attracting attention since they 
have exact semantics and the ability to verify and reason about specifications of 
software systems. In addition, since specifications written in algebraic specifica- 
tion languages can be executed on stock hardware, the specification languages 
can be used as tools for rapid prototyping. 

TRAM[7] is an abstract machine for order-sorted conditional terra rewrit- 
ing systems (OSCTI~Ss). The OSCTRSs[5] can serve as a general computa- 
tion model for advanced algebraic specification languages such as OBJ[6] and 
CafeOBJ[2]. TRAM adopts the E-strategy[6] as its reduction strategy. Parallel 
TRAM is a parallel variant of TRAM that is designed to be executed on shared- 
memory multiprocessors. In Parallel TI~AM, parallelism directives are specified 
by using the Parallel E-strategy that is an extension of the E-strategy. The Paral- 
lel E-strategy may control parallelism suitably by combining conditions. In this 
paper, we describe the design and implementation of Parallel TRAM and assess 
the current implementation on OMRON LUNA-88K 2. 

Up to the present, several researches on designing rewrite engines for alge- 
braic specification languages on parallel architectures have been done [4, 8]. Mas- 
sively parallel computers have been mainly focused as the target architectures so 
that much faster rewritings by far could be achieved. But, almost all the rewrite 
engines have been gone no further than having been designed. Shared-memory 
multiprocessors have been chosen as our target architecture since we think the 
multiprocessors will undoubtedly become standard for the future workstations. 

2 T R A M :  T e r m  R e w r i t i n g  A b s t r a c t  M a c h i n e  

T R A M  Programs .  TRAM programs are rewrite (equational) programs that 
are similar to OBJ's modules. For example, the program defining a function that 
returns the nth element of (infinite) natural numbers' lists is as follows: 

sorts: Zero NzNat  Nat  L i s t .  
order:  Zero < Nat  NzNat  < N a t .  
ops: 0: - •  Zero s :  Nat - >  NzNat  

cons: Nat  List - >  List { s t r a t :  (1 0) } 
in f  : Nat  - >  List nth : Nat  List - >  N a t .  

v a r s : X Y :  Nat L : L i s t .  
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rules: int{ X) - >  cons(X, inKs(X)) ) 
nth(O, cons(X, Z)) - >  x 
nth(s(X), cons(Y, n)) - >  nth(X, L) . 

TRAM adopts the E-strategy that lets each operation have its own local 
strategy. The local strategies indicate the order of rewritings of terms whose top 
operations have the strategies. The order is specified by using lists of numbers 
ranging from zero to the number of the arguments. Non-zero number n and zero 
in the lists are intended to reduce (evaluate) nth arguments of the terms and the 
terms themselves to a variant of normal forms respectively. We call the variant 
of normal forms E-normal forms (ENFs). Arguments whose numbers are not in 
the lists might or might not be evaluated lazily. The operation cons has the local 
strategy (1 0) that indicates a term whose top operation is cons is tried to be 
rewritten to another after evaluating the first argument to ENF when the term 
is evaluated. If the term is rewritten to another, the new one will be evaluated 
according to the local strategy of its top operation. The second argument might 
or might not be evaluated lazily. The eager local strategy (1 2... 0) is attached 
to each operation to which explicit local strategies are not specified. Figure 1 
shows the reduction sequence for nth(s(0), int~0)) using the above program. 

T R A M  Archi tec ture .  TRAM consists of six regions (DNET, CR, CODE, SL, 
STACK and VAR) and three processing units (the rule compiler, the term com- 
piler and the TRAM interpreter). DNET is the region for discrimination nets [3] 
encoded from the lefthand sides of rewrite rules. The righthand sides of rewrite 
rules (RHSs) are compiled and allocated on CR. Matching programs compiled 
from subject terms are allocated on CODE. SL contains strategy lists for sub- 
ject terms. STACK is the working place for pattern matching. VAR contains 
substitutions. 

In TRAM, subject terms are compiled into sequences of abstract instructions 
(matching programs) that are self modifying programs. 

Defini t ion 1. The matching program LT for a term T whose top operation is 
f of arity n is as follows: 

LT: match_sym idxf 
L1 

L~ 

/ / i d x f  is the index for f .  
//L~(i = 1,. . . ,n) is the label of 
/ / t h e  ith argument's matching program. 

Figure 1 shows some terms and the corresponding matching programs. All appli- 
cable rewrite rules for T are gained by executing the program. The program is 
called by jumping the label LT after pushing a continuation (a return address) 
onto STACK. raatch_sym tests whether f is in the root node of (a sub-tree of) 
DNET. If f is in the root, the continuations (the arguments) Ln , . . . ,  L2 are 
pushed onto STACK and the control is transferred to L1. Backtracking is used 
so as to find all applicable rewrite rules for the term. The method for backtrack- 
ing used in WAM [1] for Prolog is adopted. 
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2. n th (s (O)  . . . . .  (0, | n f ( s (O ) ) ) )  1. nthO,(o), i~i'(o)) 

match_sym idxs 
L5 

: m a t c h - s y m  idx  0 
ma tch_sym idx in  f 
L8 
m ~ t c h - s y m  idxf) 

s, ,(o) 
14: m a t c h - s y m  idxs] 4 (4) 

LO: 
LI :  
L2:  
L3:  
L4: 
L5: 

L9:  
LIO: 
L l1 :  
L12: 
L13: 
L14: 

3. nth(O, | n f ( s ( O ) ) )  
m a t c h . s y m  idXnt h , . ,  _ ~ 1 6 :  match_sym idxnt h 
L3 ~ 1 7 : L 5  
L9 - ~ 1 8 : L I 2  
r a a t c h . J y m  idxs ~ ( 3 )  
L5 
m a t c h - s y m  idx 0 4. nth(O,  c o n s ( s ( O ) ,  | n f ( s ( s ( O ) ) ) ) )  ~ 16:  ma tch_sym idXnt h 
m~tch_sym idxcons 1 7 : L 5  
L8 1 8 : L I 9  
LI2  19: ma tch_sym idxcons 
mmtch-sym idxin  f 2 0 : L I 4  
L14 2 1 : L 2 2  
m a t e h . s y m  idxs 22: m a t c h - s y m  idxln f 
T,R I 2 3 : L 2 4  

24: match . sym idx s 
~g~ T,14 

Fig. 1. Reduction sequence for nth(s(0), inf[O)) 

Matching program templates are compiled from RHSs and are instantiated 
when the corresponding rules are used. The matching program at L9 through 
L15 in Fig. 1 is the instantiated one of the matching program template of int(X) 
- >  cons(X, int[X)) that  is used in the rewriting (1) in Fig. 1. 

R e w r i t i n g  M a c h i n e r y .  The implementation of the E-strategy in TRAM is 
based on strategy lists. A strategy list for a term t is basically a sequence of all 
eager positions (reachable nodes) in t. The order of the strategy list corresponds 
to the order of the evaluation of t. Elements of strategy lists in TRAM are triples 
(label, pslot, skip) of matching programs' labels, parent slots holding the labels, 
and the number of elements to be skipped. The last element of the strategy lists 
is the BINGO triple (BINGO, subject, _). BINGO is the label of the instruction 
bingo that  is executed when an ENF is got. The second of the BINGO triple is 
the parent slot of subject terms. The TRAM interpreter executes the matching 
program to reduce a subject term according to the strategy list until the BINGO 
triple. The strategy list for nth(s(O), inf(0)) in Fig. 1 is [(LS, L4, 0), (L3, L1, 0), 
(L8, L7, 0), (L6, L2, 01, (LO, RESULT, 0), (BINGO, LO, _)]. 

When an applicable rule is got by executing the matching program for a 
subterm of a term, the strategy list template of the RHS is instantiated and 
the instantiated list is appended to the remaining strategy list of the term so 
that  the strategy list for the new term is gained after replacing the subterm 
(redex) with the corresponding contractum. [(L9, L2, 0)] is the instantiated one 
for the strategy list template of infiX) -> cons(X, int~s(X))) that  is used in 
the rewriting (1) in Fig. 1. The strategy list for nth(s(0), cons(O, laths(O)))) is 
[(Lg, L2, 0), (LO, RESULT, 01, (BINGO, LO, -/] after the rewriting (1) is done. 

The TRAM interpreter executes the following instruction sequence when it 
begins to interpret the matching programs to reduce terms: 

init 

LOOP: next  
julRp LDummy 
go_ahead 
select 

/ / ini t ia l izes  TI~AM's registers 
/ / p o p s  a label from SL and puts it at LDummy 

/ / se lec t s  one among the applicable rules 
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rewrite //replaces the redex with its contractum 
jump LOOP 

next  also pushes the go_ahead's label onto STACK. go_ahead is executed when 
an applicable rule is found. If there is no applicable rule, the control is trans- 
ferred to LOOP. go_ahead triggers off backtracking if there is a choice point 
frame [1]. Otherwise it transfers the control to s e l e c t ,  r e w r i t e  also appends 
the instantiated strategy list of the used rule to one for the subject term. 

3 Parallelization for T R A M  

T h e  Pa ra l l e l  E - s t r a t e g y .  Since rewrite programs have parallelism inherently, 
explicit parallelization directives are not necessary for executing them in paral- 
lel [8]. Generally speaking, however, we can gain better performance of a program 
when its restricted subtasks with sufficiently large amount of work are only as- 
signed to parallel processes than when its all subtasks are assigned to parallel 
processes. The ability to control parallelism is very desirable for this reason. 
Especially, it is indispensable to control parallelism of rewrite programs so that  
they are executed efficiently in parallel on a multiprocessor with a small number 
of processors. 

In Parallel TRAM, we adopt the Parallel E-strategy, that  is an extension of 
the E-strategy and is a subset of the Concurrent E-strategy [4], in order to control 
parallelism of rewrite programs. The Parallel E-strategy lets each operation have 
its own parallel local strategy. A parallel local strategy for an operation f of arity 
n is specified by using a list defined by the following extended BNF notation: 

Def in i t ion  2. 

(ParallelLocalStrategy) ::= ( )  [( (SerialElem)* 0 ) 
(SerialElem / ::= 0 [ (ArgNum/ [ (ParallelElem } 
(ArgNum): := l [ 2 [ . . . [ n  
(ParallelElem) ::= { (ArgNum) + } 

(ParallelElem) specifies some arguments of a term whose top operation is f that  
are reduced in parallel. Each element of (ParallelLocalStrategy) are evaluated 
in sequence from left. For example, a TRAM program computing Fibonacci 
numbers in parallel can be defined as follows: 

sor ts :  Nat .  
order :  . 
ops: 0 : - >  Nat s : Nat - >  Nat 

vadd: Nat Nat - >  Na$ { s t r a t :  ({1 2} 0) } 
pfib : Nat - >  Na$. 

vars:  X Y : N a t .  
rules:  vadd(X, O) - >  X padd(X, s(Y)) - >  s(padd(X, Y))  

v b(O) - >  0 V b(s(O)) - >  s(O) 
- >  Vada(p b(s( X) ), v b( X) ) . 
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1. pfib(s(s(O)))  V ............................. 
I i  . . . . .  h_sy . . . .  pfib ,]] 2.1. pflb(s(O)) 3.1. s(O) 

match_sym idx O I JL, IO: m~tch-sym idx ' ~16: m~tch_sym idx s 
Pf*b I (3.1) [ I 

L : L2 I 511:LI2 ~...l....A~L17:LI8 
: match_sym idx s I 512: match-sym idx s I ILl8: match.sym idxoI L4 I 

L~: match_sym idx s I 
6:: L6 ~ ~ ~1 2.2. pflb(O) 

" 3 .2 .  0 
~ [ T~I4: match_sym idXpfib [ (3.2) ~i~100: rnatch-sym idxo[ 

2, padd(pfib(s(O)),  pfib(O)) 

1 
.7: m~,tch-sym idXpadd 
L8: LIO 
L9:LI4 
10: m~tch-sym idxpflb 

LII: L12 
12: m~tch-~ym idx s 

LI3:L6 
14: match_syrn idxpflb 
15:T,6 

/ 
4. p a d d ( , ( o ) ,  O) S. s(O) 

L~L8:L7: Llot~L16m~tch-sym idXp~dd (5) ~ ~1T:16: L18match-sym tdxs] 

Fig. 2. Parallel reduction sequence for ptlb(s(s(O))) 

The operation padd has the parallel local s trategy ({1 2} 0) tha t  indicates a 
t e rm whose top operation is padd is tried to be rewritten to another  after eval- 
uating the first and second arguments to ENFs in parallel when the te rm is 
evaluated. Figure 2 shows the parallel reduction sequence for pfb(s(s(O))). The 
two rewritings enclosed with the dash frame in Fig. 2 are done in parallel. 

The Parailel E-strategy may control parallelism more suitably by combining 
conditions. Instead of ptib(s(s(X))) - >  padd(pfib(s(Z)), ptlb(X)), the following 
rules can be defined for gaining a more efficient program: 

ptlb(s(s(X) ) ) - >  padd(pfb(s(X) ), pfib(X) ) i f  threshold(X) = false 
pfb(s(s(X))) - >  add(fib(s(X)), fb (X))  i f  threshold(X) = true 

threshold returns (is reduced to) false if its argument  is larger than a num- 
ber. Otherwise it returns true. add is a sequentiai addition and fib computes 
Fibonacci numbers in sequence by using add. 

P a r a l l e l  T R A M  A r c h i t e c t u r e .  In Parallel TRAM, each processor has its own 
T R A M  interpreter and four mutable  regions. Two stable regions are shared with 
all processors. One of the processors is also an interface processor tha t  also plays 
a role of the user interface by using the rule compiler and the te rm compiler. A 
s trategy list represents a process queue. A chunk of consecutive elements of the 
s t rategy list represents a process. Each process has two possible states: active 
and pending. Each process queue contains zero or more pending processes and 
zero or one active process. If there is an active process in a process queue, it 
is at the top of the queue. A processor whose process queue contains an active 
process is in busy. Otherwise it is in idle. 

P a r a l l e l  R e w r i t i n g s .  I t  is not necessary to change matching programs even 
though terms are reduced in parallel. Strategy lists control parallel rewritings 
by holding labels at which new parallel instructions are stored. The new parallel 
instructions are fo rk ,  j o i n ,  e x i t ,  s l e e p  and nop. f o r k  creates a new process 
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reducing a subterm in parallel and allocates the processor to it if there is an idle 
processor. Otherwise the caller processor reduces the new process, or the new 
process is in-lined, j o i n  delays its caller process until all of its child processes 
terminate and makes the caller processor idle. e x i t  terminates its caller process 
and reports the termination to its parent process. After executing e x i t ,  the caller 
processor resumes the pending process at the top of its process queue if there are 
pending ones in the queue. Otherwise the processor becomes idle by executing 
s l e ep ,  s l e e p  makes its caller processor idle. Lop does nothing, f o r k  creating 
an empty  process may appear  in a strategy list by instantiating a s trategy list 
template,  nop is replaced with such a wasteful fo rk .  

There are two kinds of triples that  are elements of s t rategy lists in TRAM. 
One is for matching programs, the other for bingo.  In addition to these ones, 
Parallel T R A M  has five kinds of triples as elements of s t rategy lists. These 
new ones correspond to the new five parallel instructions: (FORK, SIZE, Aj), 
(JOIN, PNUM, _), (EXIT, Apj, RID), (SLEEP, _, _) and (NOP, _, _). F O R K  is 
the label of fo rk .  SIZE is the size of the forked process. Aj points to the JOIN 
triple corresponding to the FORK triple. JOIN is the label of j OiL. PNUM is a 
number of the caller's child processes tha t  do not finish their work. EXIT  is the 
label of e x i t .  Apj points to the JOIN triple of the caller's parent process. PID is 
the processor ID of the caller's parent process. SLEEP is the label of s l e ep .  NOP 
is the label of Lop. For example, the strategy list for padd(pfib(s(O)), pfib(O)) 
after rewriting (1) in Fig. 2 is [(FORK, 2, Aj), (L12, Lll, 0), (LIO, L8, 0}, (L14, 
L9, 0), (JOIN, 1, _}, (LT, RESULT, 0}, (BINGO, LT, _}]. Suppose that  there 
are two processors P0 and P1 that  are in active and in idle respectively. After 
rewriting (1), P0 executes fo rk ,  and a new process is created and is allocated 
to P1. Then, P l ' s  s t rategy list is [(n12, Lll, 0), (LIO, L8, 0), (EXIT, Aj, PO}, 
(SLEEP, _, _)]. The two processors reduces terms in parallel soon after. 

4 I m p l e m e n t a t i o n  of Para l le l  T R A M  on Mul t ip rocessor  

Parallel T R A M  has been implemented on OMRON LUNA-88K 2 in C. LUNA- 
88K 2 carries four MC88100 processors and adopts Mach 2.5 as its OS. 

Processors are represented by using C structures in which four mutable  re- 
gions and the related registers such as the instruction pointer are packed. Each 
structure also contains states of processors: BUSY and IDLE. Parallel execution 
is realized by giving each processor a Mach thread. Pointers to the structures are 
passed to C functions in which four mutable regions or the related registers are 
accessed so that  processors (threads) can access them as quickly as possible. Idle 
processors are managed by using a processor idle queue IdleQueue. When f o z k  
is executed, its caller processor tries to get one of idle processors from IdleQueue 
and to allocate it to a newly created process. If IdleQueue is empty, the new 
process is in-lined. 

Parallel TRAM adopts a sequential stop-and-copy algorithm as the garbage 
collection (GC). A processor detecting a necessity of a GC performs the GC after 
all other processor pause. In Parallel TRAM, one global creation space (where 
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Table 1. Experimental results in computing the 24th Fibonacci number 

system time (s)rewritings r/s GCs crea ted  p r o c e s s e s  

tram 13.63 514105 37719 6 
ptraml 14.71 527377 35852 6 0 
ptram2 8.84 527377 59658 6 8 
ptram3 7.55 527377 69851 7 39 
ptram4 6.04 527377 87314 6 20 

in-lined processes s p e e d  

- b a s e  

376 0.93 
368 1.54 
337 1.81 
356 2.26 

ptrami means the Parallel TRAM system running on i processors. 
The threshold is 10 for parallel computations of Fibonacci numbers. 

new matching programs are allocated) is divided into multiple chunks for the 
purpose of efficient usage of storage and each processor gets one chunk from the 
global space when necessary. A GC is triggered when there is no space left in the 
global space. In addition to BUSY and IDLE, GC is used as a processor state 
for a GC. After a GC, the GC processor resumes the processors pausing for the 
GC. It is necessary to distinguish processors pausing for the GC from idle ones 
at the moment. The state GC is given to processors that  are the second or later 
to detect the necessity of the GC. 

5 Performance  of Parallel  T R A M  

Table i shows the experimental results in computing the 24th Fibonacci num- 
ber in parallel with the Parallel TRAM system on LUNA-88K 2. For comparison 
with TRAM, the results of the TRAM system are shown. Due to limitations of 
space, the overhead of the current implementation is only discussed here. 

We calculate an ideal improvement in speed when the 24th number is com- 
puted in parallel on four processors. When the 24th number is computed in 
parallel, two processors add the computations of the 22nd and 21st numbers, 
and of the 21st and 20th numbers in parallel after four processors compute the 
22nd, 21st, 21st and 20th numbers in parallel. Then, the two sums are added so 
as to get the 24th number. The computations of the 22nd, 21st, 21st and 20th 
numbers involve 186579, 112286, 112286 and 67596 rewritings, respectively. If 
these rewritings are fairly done in parallel with four processors, it takes a time 
in proportion to 119687 rewritings (the mean of the four rewritings) to com- 
pute the four numbers. The additions of the computations of the 22nd and 21st, 
and of the 21st and 20th numbers involve 10948 and 6697 rewritings, respec- 
tively. Since these two additions are done independently with two processors, it 
takes a time in proportion to 130635 rewritings (119687 + 10948) to compute 
the 23rd and 22nd numbers. It takes a time in proportion to 148348 rewritings 
(130635 + 17713) to compute the 24th number in parallel with four processors 
since the addition of the computations of the 23rd and 22nd numbers involve 
17713 rewritings. Hence, the ideal improvement in speed is 3.47 (514105/148348) 
when the 24th number is computed in parallel on four processors. 

Since the actual improvement in speed is 2.26, there are some considerable 
overheads in the current implementation. The overheads may depend on the 



1216 

sequential GC, the process creation, the parallelization of T R A M  and the archi- 
tectural  characteristic of LUNA-88K 2 such as shared bus. The process creation 
and the parallelization of TRAM may slightly contribute to the overhead judg- 
ing from the experimental result of p t r am l  in Table 1. It  is currently unclear 
tha t  how much the architectural characteristic of LUNA-88K 2 affects the over- 
head. We should implement Parallel TRAM on another  multiprocessor so as to 
assess tha t  thing. The computat ion of the 24th Fibonacci number was done in 
parallel with four processors on the Parallel TRAM system with enough size of 
the creation space to involve no GCs so that  the overhead of the sequential GC 
was confirmed. I t  took 4.90 seconds. The overhead caused by the sequential GC 
is about  19% in the Parallel TRAM system while it is about  9% in the T R A M  
system. One of the main source of the overhead in the current implementat ion 
of the Parallel TRAM system is the sequential GC. 

6 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have described the design and implementation of Parallel T R A M  where 
parallelism directives are specified by using the Parallel E-strategy. The Par- 
allel TRAM system on LUNA-88K 2 was found to be about  twice times faster 
than the TRAM system on the same workstation. Parallel TRAM will be imple- 
mented on other multiprocessors so that  Parallel T R A M  and its implementat ion 
technique will be improved and be made secure. One of the points tha t  should 
be improved in the current implementat ion is to adopt  a parallel or on-the-fly 
garbage collection. 
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