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Abs t rac t .  Slope-parametric hybrid automata (SPHA) are hybrid auto- 
mata whose variables can have parametric slopes. SPHA are useful, in 
particular, for modeling task-control systems in which the task speeds 
can be adjusted for meeting some safety requirement. In this paper, we 
present an example of parametric analysis for a simple task system. We 
introduce a prototype verification tool that fully automates the analysis. 
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1 I n t r o d u c t i o n  

The verification of real-time properties is nowadays a well-known problem, and 
its most  successful resolution techniques [ACH+95] have been au tomated  and 
applied to real-size systems [DY95, ttH94, BGK+96]. It  consists, clasically, in 
verifying a given (timed) property on a given model of the system, and thus 
obtaining a binary answer: ' the system satisfies/does not satisfy the property ' .  
However, many  problems arising in the field of verification are parametric. In- 
deed, for a system designer it is often more impor tant  to obtain quanti tat ive 
information such as: (a') 'for protocol safety, the messages should arrive at des- 
t ination in no more than i second' or (fl) 'for the task system to operate correctly, 
task 1 should run at least 2 times faster than task 2'. 

Parametr ic  analysis is the subject of some study and application, although 
mainly dealing with (o~)-!ike analysis: finding the possible values of delays for 
some property to be satisfied. In a short paper  [BBRR97] we presented a first 
approach to (fl)-like analysis: the parameters  to be computed are speeds rather 
than delays. 
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Culture. This research was carried out in part while the author was visiting the 
IRCyN (formerly LAN). 
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In this paper, we present an application of this approach. The goal is to have 
a situation in which the correct parameter values are hard to find by classical, 
' t ry and fail until success' verification, since the correct values lie in a broad in- 
terval. We find these values automatically, using a prototype tool that  we have 
implemented using MAPLE V and Prolog IV. 

Related work .  Parametric analysis of hybrid and timed automata  has also 
been treated from other view points: [AHV93, HH94] focus on delays, that  is, 
parameters appear on guards; [CY91] follows a similar approach; [Wan96] defines 
Parametric TC TL and redefines the classical model checking algorithm; [KS97] 
and [HLM97] deal with the somehow similar problem of controller synthesis; 
finally, the only other work to our knowledge combining constraint solving and 
model checking is [CABN97]. 

2 S l o p e - P a r a m e t r i c  H y b r i d  A u t o m a t a  

Slope-Parametric Hybrid Automata  (SPHA) are a generalization of Multirate 
Automata  [ACH+95] in which the rates (slopes) of variables can be parameters. 
Let ~ be the set of real numbers. 

S y n t a x .  A SPHA is a tuple (/:, g, 17,/C, invar,  d i f f ,  guard,  reset)  where 

- £ is a finite set of vertices 
- E C L: x / :  is a finite set of edges 
- 12 = {Xl, .., xn}  is a finite set of variables 
- IC = {k l ,  ..,k,~} is a finite set of  parameters  
-. invar  is a function that  associates to each vertex an invariant i.e. a predicate 

of the form (h i  xi ~ ei), where "~E {<, 5 ,  >, _>} and ci C 
- d i f f  is a function that  associates to each vertex, a parametric differential 

law for each variable, i.e an expression of the form d x / d t  = ~ m  j=l  aj • kj + b, 
where a j ,  b C ~ and kj E K: are parameters 

- guard  is a function that  associates to each edge a guard i.e. a predicate of 
the form (Ai xi ~ ci), where HE {<, <, >, >} and ci E IR 

- reset  is a function that  associates to each edge a reset expression i.e. an 
expression of the form (Ai xi := 0). 

The SPHA in figure 1 has five vertices (L1, L2, L3, L4, Lh), three variables 
(al, a2, t) and one parameter K. Some evolution laws are parametric and some 
are constant. For example, at vertex L2 the evolution laws of al and a2 are para- 
metric (dl = K, d2 = 1 - K) while the evolution law for t is constant (i = 1). 
The edges are labeled with guards (a2 = 40 for the edge from L2 to L4) and 
variable resets (a2 := 0 for the same edge). The invariant for each vertex is also 
shown (e.g. t _< 100 A al _< 30 A a2 _< 40 for vertex L2). 
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L3 

L1 

t:=0t  
al := 0, \  d ~ = O  / 
a2 : :  O ~  

t : 4 0  I 
a2 :=0 TM 

L2 
al 

al -< 30 
a2 < 40 
a'l - - K  
d2 : 1 -  

a2 ~_ 40 

di = 0  
d 2 : l -  

a2 : *iu~}/t < i00 
a s : : - - / /  al-_<30 

L4 ( a'l : K 
\ d 2 = O  

t : i00 

~ = 40 

0 

t :=0 ,  al :=0 ,  a2 := 0 

F i g u r e  1. Example of slope-parametric hybrid automaton 

S e m a n t i c s .  A state of a SPHA is defined, as in the case of Multirate Automata  
[ACH+95], by a couple (L, v) where L e £ is a vertex and v is a variable valu- 
ation, assigning a value v(x) to each variable x 6 IA But in SPHA, variables 
can have parametric values i.e. a variable's value can be not only a real number, 
but  also an expression on the parameters, as for example v(x) = K 2 - 3- K + 1. 

A run of a SPHA consists in a sequence of states, obtained by letting the 
variables continuously evolve by their differential taws in some vertex, such that  
the vertex invariant is continuously satisfied; in crossing some outgoing edge, 
when the edge's guard is satisfied; and finally resetting the corresponding vari- 
ables. The process is pursued in the newly reached vertex. For instance, in the 
SPHA represented in figure 1, consider a run starting at vertex L1 with vari- 
ables t, al ,  a2 = 0. Then, evolution at vertex L1 is given by (dl, d2,i) = (K, 0, 1), 
while the invariant t < 40 A a < 30 holds. Vertex L1 will be left, by crossing the 
edge from L1 to Lu, when t = 40. But al,  whose value is K • 40 at the crossing 
moment,  cannot exceed 30 (as stated by the vertex L1 invariant); thus we have 
a condition on the parameter,  in order to continue the run: K 5 3/4. 

The previous remark showed that  any run of a SPHA defines a sequence of 
conditions on the parameters. Indeed, any edge guard must be satisfied by the 
variable values when that edge is crossed; since these values are expressions o n  
the parameters, the guard satisfaction translates to a condition on the para- 
meters. Thus, the analysis of SPHA focuses not only on the existence of a run 
between states (like in the case of plain hybrid automata) ,  but also on computing 
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and solving the associated sequence of conditions on the parameters.  This is the 
goal of parametr ic  analysis. 

P a r a m e t r i c  A n a l y s i s .  The problem of parametr ic  analysis is formulated as 
follows: given a slope-parametric hybrid automaton, a temporal logic formula 
expressing a reachability property and a set of intervals in R (one for each pa- 
rameter) ,  find the relations among parameters  (in the corresponding intervals) 
such that  the formula is true. For instance, in the au tomaton  of figure 1, find 
values for parameter  K C]0, 1[, for the T C T L  formula ~ = {(L1 A al = 0 A a2 = 
0 At = O) =~ -,[(-~Ls)3U=~oo(-~L5)]} to be true. This formula means that ,  s tart-  
ing from the initial set of states defined by vertex L1 with al = 0, a2 = 0, t = 0, 
it is not possible to avoid vertex L5 for a period of 100 units of time. In other 
words, vertex L5 is inevitably reached within 100 t ime units. 

3 E x a m p l e  

Consider the problem of assigning CPU time to processes that  share a single 
processor. There are several ways to cope with this problem. One of them is to 
allocate resources statically, such that  every t ime a process must execute, it will 
have its time slice reserved to do it. This is an approach followed in reactive 
programming,  when processes must  be launched as a reaction to an observed 
event: if the process has to compete at run t ime for resources, it may fail to 
get them and, therefore, it may fail its goal; if, on the contrary, resources are 
reserved in advance, it will always be able to run. In our example, processes al 
and a2 will share a CPU in fixed proportions: a percentage of t ime of 100 • K 
for a~ and of 100 * (1 - K)  for a2. 

Apar t  f rom these allocation considerations, there are other facts in the ex- 
ample that  interest us. In particular, processes al and a2 must  both be executed 
within a period of 100 t ime units. Total execution times are 30 t ime units for 
al and 40 t ime units for a2 (measured on the processor when each process takes 
all resources). Process a~ must  wait 40 t ime units from the begining of the 
period (t = 0) to be ready to execute, therefore, during the first 40 t ime units 
(t E [0,40]) only al runs. From that  instant on (t C]40,100]) al and a2 run 
concurrently (once one of them has finished, the other will continue alone until 
completion). As we said before, the processor allocation is fixed for each process 
disregarding whether they run alone or concurrently. We assume that  these pro- 
cesses don ' t  have any interaction and the waiting times (for I /O,  for example) 
are null. 

The slope-parametric hybrid au tomaton  of figure 1 represents this schema. 
The expression dt = K indicates that  process al executes using 1 0 0 ,  K per 
cent of CPU time. Similarly, the expression d2 = 1 - K indicates tha t  process 
a2 executes using 100 * (1 - K)  per cent of CPU time. The expression dl = 0 
says that  the process al does not execute at all. The fact of having a parameter  
(K)  in our au tomaton  allows us to define parametr ic  analysis problems. One 
could be: determine the possible values of K C]0, 1[ such that  processes al and 
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a2 are both executed, once every 100 seconds. On the SPHA of figure 1, this 
translates to the property (already stated in section 2) that ,  start ing from the 
initial situation, vertex L5 is inevitably reached within 100 t ime units. A non 
trivial hand calculation shows that,  for the above property to hold, K must  
lie in a broad interval: K E]0.3, ½[. We recall how to au tomate  this calculus 
[BBRR97]. 

4 C o m p u t i n g  p a r a m e t e r  v a l u e s  

Parametr ic  analysis comes to operating with parametr ic  polyhedra. The lat- 
ter are described by sets of linear equations and inequations whose coefficients 
can be either constants  or symbolic  express ions  on the parameters;  for instance, 
0 _ < a l _ < 3 0  A 0 _ < a 2 _ < 4 0 A 4 0 _ < t A a l - - K . t = 0 ,  where K is a parameter .  
The operations involved in parametr ic  analysis are extension,  res tr ic t ion and 
project ion,  that  incrementally generate conditions on the parameters,  at each 
passage from a vertex to the next one. 

E x a m p l e .  Consider the vertex L2 of the au tomaton  in figure 1 and an initial 
parametr ic  polyhedron 0 _< al _< 30 A 0 _< a2 _< 40 A 40 _< t A al - K . t -- 0. 
We want to find the conditions on the parameter  K,  for the control to go from 
L2 to L4. For this we ex tend  the initial polyhedron in the parametr ic  direction 
given by dl -- K, d2 = 1 - K and i = 1; as we shall see, this extension has 
a finite number  of different forms, under different conditions on K.  Then, we 
restr ict  the values of parameter  K such that  the previous extension intersects the 
guard a2 = 40 and the invariant t _< 100 Aal _< 30 A a2 < 40: the intersection 
polyhedron is non-empty iff parameter  K satisfies some further conditions. Once 
we have obtained these conditions, we continue at vertex L4 by projec t ing  the 
intersection polyhedron on plane a2 = 0 (this corresponds to reinitializing a2 on 
the transition). We should of course, apply the same sequence of operations in 
L4 to find the conditions on K to cross the edge from L4 to L5. 

4.1 Extens ion  

m Extension means: given a parametr ic  polyhedron P = n j = l  (Zr~=lal,j  "x i  ~ bj)  
where ai,j, bj can be constants or symbolic expressions and ~-E {>, >}, find 
the polyhedron: p =  3r  > 0. Aj=I  ( ~ = l a i , j  " (x i  -- ki • r)  ~ bj)  where each 
ki is the slope for variable xi (constant or symbolic expressions on parame-  
ters). This is f o rward  cont inuous  s imula t ion  [ACH+95] except that  we con- 
sider parametr ic  polyhedra and directions. This imposes to consider several 

--+ 

cases for eliminating the 9 quantifier in the equivalent expression p =  3 r  _ 

[A )1 O. j=l  (Z'~=la<J . x~ - r . (Z~_la~,j  • k~) > bj . 
The eases to consider are, for each sum-of-products ~ = l a i , j .  ki, the possibil- 

ity that  it is negative, positive or 0. As in [AHH93] we eliminate the existential 
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quantifier by dropping the inequations that  correspond to negative sums-of- 
products ( ~ l a i , j  • ki < 0), keeping the inequations that  correspond to positive 
or zero sums-of-products (Z'~=lai,j • ki >_ 0), and linearly combining pairs of 
inequations that  correspond to one negative and one positive sum-of-products.  
The point here is that  the sums-of-products are symbolic, so in general we will 
not be able to tell at sight the sign of the expressions Zn=lai,j . ki. We must  

--+ 

then consider all the possible cases for these signs, so the extended polyhedron p 
has at most 3 m different forms, following the possible signs of the m expressions 
Zin=l ai,j • ki. 

For the example of figure 1, vertex L2, the extension of the polyhedron 
P = 0 < a l _ < 3 0 A 0 _ < a 2 _ < 4 0 A 4 0 _ < t A a l - K . t = 0 b y a ' l  = K ,  d 2 = l - K , i =  1 
would give three cases, depending on the sign of expression 1 - K.  For instance, 
when 1 - K > 0, the extended polyhedron (as automatical ly generated by our 
verification tool described in section 5) is: 

P1 = [0 _< al A0 _< a2 A40 _< t A 0  = al - - K  . t  A 3 0 - K -  30 _< 
(K - 1) • al + K - a2 A - 3 0  _ K - t - al A 40. K - 40 = a2 + (K - 1) • t A 0 _< 

(1 - K ) . a l - K . a 2 A - 4 0 . K  < a l - K . t A 4 0 . K - 3 0  < K . t - a l A O  < (1 - K). t -a2].  

The extended polyhedra have different forms when 1 - K = 0 and 1 - K < 0. 
In practice, we do not have to generate all 3 "~ cases, since most of them lead to 
unsatisfiable conditions on the parameters  (for instance, in the above example, 
the cases 1 - K = 0 and 1 - K < 0 are eliminated from start  since we are looking 
for parameters  in the interval ]0, 1[ cf. section 3). We will come back to this 
point in section 5. 

Note also that  the parametr ic  slopes have become coefficients in the inequa- 
tions of the extended polyhedron e.g. 40 - K - 30 _< K • t - al .  

4 . 2  R e s t r i c t i o n  

Restriction is: given a parametr ic  polyhedron P = Aj=I  (~n=lai,j "xi }- bj) 
(remember that  ai,j, bj are constants or symbolic expressions on the parameters)  
find the possible values of parameters  such that  P is non-empty. 

--+ 

For the parametr ic  polyhedron P1 obtained in the previous step, we compute  
its intersection with the guard a2 = 40 and the invariant t < 100Aal < 30Aa2 < 
40, and find the conditions on K such that  this intersection is not empty. We 
obtain several cases from which only one is satisfiable (with respect to the values 
of K):  

- Condition: 0 < K A K <  1 A ( K - 1 ) . K < 0 A K  2 - ( K - 1 )  < 0  
- Intersection: the same as for extension plus three additional inequations 

- +  

(P1 A t <  1 0 0 a a x  < 3 0 A a 2 = 4 0 ) .  

The general case can be treated as follows: the polyhedron P is non-empty iff 
the expression 3xl .3x2 . . .  3xn .P  is ' t rue' .  The formal elimination of all variables 
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in the previous expression generates a symbolic condition on the parameters, that 
precisely constitutes the condition for P to be non-empty. Variables xl, .., xn can 
be eliminated one by one by successively applying the Fourier-Motzkin elimina- 
tion algorithm (see for instance chapter 1 of [Zie95]) that we now describe. 

T h e  F o u r i e r - M o t z k i n  e l i m i n a t i o n  a l g o r i t h m .  This algorithm computes, 
given a system of linear inequations P = Aj~=l ( ~ = 1  ai,jxi ~- bj), the system ob- 
tained by eliminating a variable say xk : P Sk= 3xk. Aj=t (~i=1 aid " xi ~ bj). 
The idea is to consider the possible signs of the coefficients ak,j: as in the 
case of extension, eliminating variable Xk leads to at most 3 m possible forms 
of the result, depending on the signs of the m coefficients ak, j. For a given 
combination of signs, denote J> (respectively, J=, J<) the subsets of indices 
of { 1 , . . . , m }  such that ak, j > 0 (respectively = 0, < 0). Then, P Sk is ob- 
tained by keeping the inequations indexed by or=, by eliminating the inequa- 
tions indexed by J< and J> (i.e. keep only the inequations where xk does 
not occur), and by linearly combining pairs of inequations (one indexed by 
some j> E J>, the other indexed by some j< E J<) to eliminate variable 
xk. For all j> C J> and j< E J<, generate the following linear combina- 
tion: ak,j> [~=1  ai,j<xi ~- bj<] - ak,j< [~=1 ai,j> xi >- bj>] which is equivalent 
to ~i'=t [ak,j> ai,j< -ak,j<ai,j>] xi ~ [ak,j> bj< -ak,j<bj>]. In this last inequa- 
tion the coefficient of xk is 0 so variable xk has been eliminated. 

4.3 P r o j e c t i o n  

Projection on the xk = 0 plane means: given a parametric polyhedron P = 
Ajm__l (~n=lai , j .xi  ~-bj), find the parametric polyhedron Pl~=o obtained by 

-4- 

projecting P on the plane xk = 0. Consider the polyhedron P =P1 A{t _< 
100Aal < 30Aa2 = 40} of the previous example. The projection of P on a2 = 0 
for c o n d i t i o n s 0 < K A K <  1 A ( K - 1 ) . K  < 0 A K  2 . ( K - 1 ) < O i s  

P{a~=0 =0  _< at A0  = as Act  < 30A40 _< t Aal  - K . t  = 0A 
t <  1 0 0 A - 4 0 . K < a ~ - K . t A  
- 3 0  _< K .t  - a~ A40.  K - 3 0  <_ K . t - a 1 A  

3 0 - K - 3 0 _ < ( I f - 1 ) . a l - ( K - 1 ) - K . t A  
- 10- K -  30 < ( K -  1) .aa A 

40- (If - 1 ) - K  _< (I - K) -ai -+- (K - t ) - K .  t A 
3 0 . K - - 3 0  < ( K -  1 ) . a l  A 
70- K - 40. K 2 - 30 ___ (K - 1). al - -  (K - 1)- K .  t A 
0 <  ( 1 - K ) . t A 4 0 - 4 0 . K <  ( 1 - K ) . t A  
0 ~  ( 1 - K ) . a l A 4 0 _ <  ( 1 - K ) . t A  
4 0 . K - 4 0 < _  ( K - 1 ) - t A 4 0 . K _ <  ( 1 - K ) . a t A  
S 0 - 4 0 - K <  ( 1 - K ) - t A 4 0 . K - 8 0 _ < ( K - 1 ) . t  

In general, to obtain the projected parametric polyhedron we use the Fourier- 
Motzkin elimination algorithm and the identity Plxk=0 = 3xk.P A (xk = 0). 
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4.4 T h e  o p e r a t i o n s  a t  w o r k  

To obtain the conditions on the parameters  for a reachability formula to be true, 
combine the three operations as follows. First, choose a vertex path  that  links a 
vertex from the initial region to a vertex from the final region (as defined by the 
teachability formula). Then, iterate the three operations on that  vertex path,  
to generate a tree whose nodes are pairs (vertex, parametr ic  polyhedron), and 
whose edges are labeled by symbolic conditions on the parameters.  

Starting from the pair (initial vertex, polyhedron defined by the initial values 
of variables) as the root, apply the extension procedure to the initial polyhedron 
to generate all the possible extended polyhedra, and associate a node (successor 
of the root) to each one. The branch leading to a node is labeled with the 
condition under which the node's extended polyhedron was obtained. Likewise, 
for each new node, generate its successors by applying the restriction procedure, 
and label the new branches correspondingly. For the lastly obtained successors, 
continue with the projection procedure. I terate the sequence of procedures in 
this order until the final vertex is reached, and terminate by a restriction to 
intersect the final region. 

At this point, any sequence of branches of the constructed tree, from the root 
to a leaf, defines a sufficient condition on the parameters,  for the final region to 
be reachable from the initial one (it is the conjunction of the conditions on all 
branches). The disjunction of these sufficient conditions, for all the sequences 
of branches in the tree (from the root to a leaf), constitute the necessary and 
sufficient condition for the final region to be reachable from the initial one, just  
by the particular vertex path  in the automaton that  was initially chosen. 

But, in general, there are an infinity of vertex paths in the automaton,  from 
a formula 's  initial vertex to a final one; this means that  in order to generate the 
necessary and suffÉcient conditions on the parameters  for the reachability to hold, 
we might need to iterate the above operations on an infinite number of vertex 
paths, making our problem undecidable. However, we have noted in [BBRR97] 
that,  for a restricted class of SPHA and formulas, the problem remains decidable: 
these are uniformly low-bounded SPHA and time-bounded teachability formulas. 

Uniformly low-bounded SPHA are characterized by the fact that  any cyclic 
run has a duration at least equal to some strictly positive e, which does not 
depend on the run or the parameter  values. For instance, the 2 cycles of the 
au tomaton  in figure 1 : L 1  - L2 - L3 - L5 - L1 and L1 - L~ - L4 - L~ - L1, 
always have a duration 100 whatever the parameters,  so this SPHA falls into 
the uniformly low-bounded case. Now for such SPHA and for t ime-bounded 
reachability formulas, it is necessary to propagate  extension, restriction, and 
projection, only on a finite number of vertex paths [BBRR97]. 

Furthermore, some conditions on the parameters  might be unsatisfiable. 
Therefore, every t ime a condition is generated it is important  to test if it is satis- 
fiable; this will prevent us from analyzing branches that  would lead us nowhere. 
As it will be described in section 5, there exist automat ic  means to do it. 
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4.5 S o l v i n g  o u r  e x a m p l e  p r o b l e m  

Consider the above au tomaton  and the t ime-bounded reachability formula ~ = 
{(L1 A al = 0 A a2 = 0 A t = 0) ~ -,[(-~Lh)3U=loo(~Lh)]}. This means that,  
start ing from the initial state, vertex L5 is inevitably reached within 100 t ime 
units. Alternatively, this can be written as: -,{(L1 A al = 0 A as = 0 A t = 
0) A [(L1 V L2 V L3 V L4)3U=100 (L1 V Ls V La V L4)]} meaning that ,  start ing from 
the initial region (L1 A al = 0 A as = 0 A t = 0), it is not possible to stay within 
vertices L1, L2, L3 and L4 for 100 t ime units. 

In order to solve our initial parametr ic  problem, we shall find values for K 
such that  (a): it is possible to stay vertices L1, Ls, L3 and L4 for I00 time 
units, and then take the complement for K (in ]0,1D . 

To solve (a) we have to iterate the extension, restriction and projection 
operations on two vertex paths (L1 - L2 - L3 and L1 - Ls - L4). At each vertex 
L~ (i E {1, 2, 3, 4}), we find a set Pi of parametr ic  polyhedra with their associated 
conditions on K; they constitute the result of propagating the initial region up 
to that  vertex. In order to see if it is possible to be at vertex Li at t ime = 100, 
we restrict each polyhedron in ;oi with t = 100, that  is, we find the conditions 
on parameter  K such that  their intersection with t = 100 is non-empty. 

For vertices L1 and L2, these final conditions are unsatisfiable. For vertex L4, 
the condition is h r < 0.3. For vertex L3, it is K E [1/3, 3/4]. The complement  
of these conditions in interval ]0, 1[is: K e]0.3, 1/3[m ]3/4, 1[. But for K > 3/4, 
the system is so-called Zeno (cf. section 4.6). Thus, the answer to our parametr ic  
problem is: K E]0.3, 1/3[. 

4.6 N o n - Z e n o n e s s  a n d  b a c k w a r d s  r e a c h a b i l i t y  

Consider again the SPHA of figure 1. For some values of the parameter  K E]0, 1[, 
the au tomaton  is affected by so-called Zeno behaviours [HNSY94]. We have seen 
an example of such behaviour in section 2: if K > 3/4, the run start ing from 
initial state L1Aal  = 0Aas  = OAt = 0 is unable to leave vertex L1 but it is also 
unable to stay in L1 forever, since Ll'S invariant eventually becomes false (after 
at most  40 t ime units). The system is so-called Zeno [HNSY94], meaning that  
values K > 3/4 are intrinsically bad for the system, whatever further properties 
we might want it to satisfy (e.g. tasks terminating within 100 t ime units). So a 
new problem of parametr ic  analysis is to find the possible values of parameters  
of a SPHA, for the SPHA to be non-Zeno. To solve this problem, we use an ex- 
isting technique [HNSY94]: a hybrid au tomaton  is non-Zeno iff from any state of 
the automaton,  it is possible to have a run of duration 1. In our parametr ic  con- 
text, checking non-Zenoness means finding the possible values of the parameters, 
such that from any state of the automaton, it is possible have a run of duration 1. 

P a r a m e t r i c  b a c k w a r d  a n a l y s i s .  The existence of a run of duration 1 from 
each state cannot be checked directly by the forward parametr ic  analysis as pre- 
sented in section 4, because one would have to perform the analysis starting 
from all the (continuously infinite number) states of the SPHA. Instead, the 
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analysis should proceed backwards. For example, consider the SPHA in figure 
1; to measure the global time, we enrich the SPHA with a new variable z be- 
having like a clock (constant slope 1 at all vertices), which is never reset 1. Let 
us start  indicating how to compute,  for instance, the states from which it is 
possible to reach vertex L2 in 1 t ime unit. For this, we first consider all the 
states of the au tomaton  at vertex L2 and at instant 1, given by L2's invariant: 
P0 = t _< 100 A al < 30 A a2 < 40 A z = 1. Then, we compute the set of states 
P1 from which it is possible to reach some state in P0 by continuously remaining 
in vertex L2: this can be done by the backwards extension of P0. Next, we com- 
pute the states P2 from which it is possible to reach some state in P1 by some 
discrete edge crossing i.e. by crossing the edge from L1 to L2: this is done by 
backwards projection on the edges's reset (a2 := 0) followed by restriction to the 
edges's guard (a2 = 40). 

Restriction has been defined in section 4.2, and backwards extension/pro- 
jection are similar to the restrict ion/projection described in sections 4.1 and 
4.3. For instance, backwards extension of polyhedron P0 = t _< 100 A a, _< 30 
Aau _< 40 A z = 1 in direction (dl, d=, ~, }) = (K, 1 - K, 1, 1) coincides with the 
forward extension of the polyhedron in the opposite direction ( -  K, K -  1, - 1, - 1); 
and backwards projection of polyhedron P1 following the reset (a~ := 0) is just  
3a~.P1 i.e. the Fourier-Motzkin elimination defined in section 4.2. 

These operations should be iterated backwards on all the vertex paths of 
the SPHA, and at each step i, by restricting the obtained set of parametr ic  
polyhedra 7)i with condition z = 0, we obtain states from which it is possible 
to have a run of duration 1. The iteration should continue until for the lastly 
obtained set of states, the restriction to z = 0 is empty. This last condition 
becomes true after a finite number  of iterations, if SPHA has uniformly low- 
bounded cycles [BBRR97]. For example, in the hybrid au tomaton  of figure 1, 
the above operations should be iterated only once on each cycle, because each 
cycle is guaranteed to last more than 1 t ime unit. 

Thus, after a finite number  of steps, the algorithm terminates,  and one ob- 
tains the whole set of states :P from which it is possible to have a run of duration 
1, under the form of a set of parametr ic  polyhedra. By imposing the condition 
that  7 ) contains all the states of the automaton,  on obtains the necessary and 
sufficient condition on the parameters,  for the SPHA to be non-Zeno. 

5 T h e  t o o l  

We have implemented the extension, restriction and projection procedures in 
MAPLE V, a tool for symbolic computat ion.  As we have seen, these operations 
generate conditions on the parameters  that,  in general, take the form of systems 
of non-linear inequalities whose unkowns are the variables of the hybrid automa-  
ton and the parameters.  Such systems of inequalities are not solvable by the 
classical numerical methods but, instead, propagation methods [Sac87, Bro81] 

1 in section 4.5, we used directly t as a clock to measure global time, since it was never 
reset on the paths that interested us. 
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must be used to calculate a "rectangular envelope" of the solution. This en- 
velope defines upper and lower bounds on the unknowns and its meaning is as 
follows: (a) if the envelope is empty then the system of inequalities has no solu- 
tion, and (/3) if the envelope is non-empty and if the system of inequalities has a 
solution, then the envelope covers the solution. Note that,  as we are interested 
in those values of parameters that make an unsafe state reachable, in order to 
discard them, an over approximation is always valid (as long as its complement 
is not empty).  We use in our prototype the propagation features of Prolog IV. 

Furthermore, we have implemented the following optimizations: 

C o n s i s t e n t  ease  g e n e r a t i o n .  Considering all possible combinations of 
signs of sum-of-products, in the extension procedure, and of coefieients, in 
Fourier-Motzkin, may lead to generation of unsatisfiable cases as K A - K  A 
K ¢ 0. The prototype is aware of this, and does not generate unsatisfiable 
c a s e s .  

- On t h e  fly b r a n e h  p r u n i n g .  The conditions associated with a case may be 
unsatisfiable in conjunction with the corresponding parametric polyhedron, 
leading to a useless branch in the tree. The tool prunes all such branches. 

- A l t e r n a t i v e  r e s t r i e t i o n  p r o e e d u r e .  The aim of the restriction procedure 
is to generate conditions on the parameters for a given parametric polyhedron 
to be non-empty. This is a very expensive procedure whose result can be 
approximated as follows: approximate the conditions on the parameters by 
the envelope obtained by propagating the system of inequalities defined by 
the parametric polyhedron. 

Table 1 shows the execution times for the example of section 4.5 measured 
on a Sun SPARCclassic. Times are in seconds. 

Path Tree generation 
(Maple) 

L1 - L2 - L3 3.750 
L1 - L2 - L4 3.333 

Branch pruning 
(Prolog) 

0.350 

Envelope calculation Total 
(Prolog) 

0.060 4.16 
0.380 

Tab l e  1. Execution times 

0.060 3.773 

The maximum number of cases generated is 9. This extremely low number 
of cases and the low executuion times are due to the application of the three 
optimizations described above. 

6 C o n c l u s i o n  

In this paper we have presented an example of system analysis using the slope- 
parametric hybrid automata  presented in [BBRR97]. The method focuses on 
computing slopes of variables (rather than delays) for some safety requirement 
to be respected, and it may be seen as an extension of the polyhedra-based 
symbolic analysis [ACH+95] of hybrid automata.  The main operation is the 
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Fourier-Motzkin's algorithm to deal with parametric polyhedra, which imposes, 
in theory, to consider a large number of cases. In practice, however, many of these 
cases are either redundant or unsatisfiable and can be discarded, making the 
problem computationMly tractable. We have presented a prototype verification 
tool which fully automates the anMysis, and shown its applicability to a simple 
example. 
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