
Task-System Analysis Using Slope-Parametric
Hybrid Automata

Augusto Burguefio 1 * and Vlad Rusu 2

i ONERA-CERT, D4partement d'Informatique,
2 av. E. Belin, BP4025, 31055 Toulouse Cedex 4, France.

a. burgueno~acm, org
2 IRCyN (UMR CNRS N. 6597, Ecole Centrale de Nantes, Universit4 de Nantes),

1 rue de la No~, BP92101, 44321 Nantes Cedex 3, France.
glad. Rusu@ lanI O. ec-nantes, fr

Abs t rac t . Slope-parametric hybrid automata (SPHA) are hybrid auto-
mata whose variables can have parametric slopes. SPHA are useful, in
particular, for modeling task-control systems in which the task speeds
can be adjusted for meeting some safety requirement. In this paper, we
present an example of parametric analysis for a simple task system. We
introduce a prototype verification tool that fully automates the analysis.

Keywords: real-time systems, hybrid automata, parametric
polyhedra.

1 I n t r o d u c t i o n

The verification of real-time properties is nowadays a well-known problem, and
its most successful resolution techniques [ACH+95] have been au tomated and
applied to real-size systems [DY95, ttH94, BGK+96]. It consists, clasically, in
verifying a given (timed) property on a given model of the system, and thus
obtaining a binary answer: ' the system satisfies/does not satisfy the property ' .
However, many problems arising in the field of verification are parametric. In-
deed, for a system designer it is often more impor tant to obtain quanti tat ive
information such as: (a') 'for protocol safety, the messages should arrive at des-
t ination in no more than i second' or (fl) 'for the task system to operate correctly,
task 1 should run at least 2 times faster than task 2'.

Parametr ic analysis is the subject of some study and application, although
mainly dealing with (o~)-!ike analysis: finding the possible values of delays for
some property to be satisfied. In a short paper [BBRR97] we presented a first
approach to (fl)-like analysis: the parameters to be computed are speeds rather
than delays.

* Partially supported by Research Grant of the Spanish Ministry of Education and
Culture. This research was carried out in part while the author was visiting the
IRCyN (formerly LAN).

1263

In this paper, we present an application of this approach. The goal is to have
a situation in which the correct parameter values are hard to find by classical,
' t ry and fail until success' verification, since the correct values lie in a broad in-
terval. We find these values automatically, using a prototype tool that we have
implemented using MAPLE V and Prolog IV.

Related work . Parametric analysis of hybrid and timed automata has also
been treated from other view points: [AHV93, HH94] focus on delays, that is,
parameters appear on guards; [CY91] follows a similar approach; [Wan96] defines
Parametric TC TL and redefines the classical model checking algorithm; [KS97]
and [HLM97] deal with the somehow similar problem of controller synthesis;
finally, the only other work to our knowledge combining constraint solving and
model checking is [CABN97].

2 S l o p e - P a r a m e t r i c H y b r i d A u t o m a t a

Slope-Parametric Hybrid Automata (SPHA) are a generalization of Multirate
Automata [ACH+95] in which the rates (slopes) of variables can be parameters.
Let ~ be the set of real numbers.

S y n t a x . A SPHA is a tuple (/:, g, 17,/C, invar, d i f f , guard, reset) where

- £ is a finite set of vertices
- E C L: x / : is a finite set of edges
- 12 = {Xl, .., xn} is a finite set of variables
- IC = {k l , ..,k,~} is a finite set of parameters
-. invar is a function that associates to each vertex an invariant i.e. a predicate

of the form (h i xi ~ ei), where "~E {<, 5 , >, _>} and ci C
- d i f f is a function that associates to each vertex, a parametric differential

law for each variable, i.e an expression of the form d x / d t = ~ m j=l aj • kj + b,
where a j , b C ~ and kj E K: are parameters

- guard is a function that associates to each edge a guard i.e. a predicate of
the form (Ai xi ~ ci), where HE {<, <, >, >} and ci E IR

- reset is a function that associates to each edge a reset expression i.e. an
expression of the form (Ai xi := 0).

The SPHA in figure 1 has five vertices (L1, L2, L3, L4, Lh), three variables
(al, a2, t) and one parameter K. Some evolution laws are parametric and some
are constant. For example, at vertex L2 the evolution laws of al and a2 are para-
metric (dl = K, d2 = 1 - K) while the evolution law for t is constant (i = 1).
The edges are labeled with guards (a2 = 40 for the edge from L2 to L4) and
variable resets (a2 := 0 for the same edge). The invariant for each vertex is also
shown (e.g. t _< 100 A al _< 30 A a2 _< 40 for vertex L2).

1264

L3

L1

t:=0t
al := 0, \ d ~ = O /
a2 : : O ~

t : 4 0 I
a2 :=0 TM

L2
al

al -< 30
a2 < 40
a'l - - K
d2 : 1 -

a2 ~_ 40

di = 0
d 2 : l -

a2 : *iu~}/t < i00
a s : : - - / / al-_<30

L4 (a'l : K
\ d 2 = O

t : i00

~ = 40

0

t :=0 , al :=0 , a2 := 0

F i g u r e 1. Example of slope-parametric hybrid automaton

S e m a n t i c s . A state of a SPHA is defined, as in the case of Multirate Automata
[ACH+95], by a couple (L, v) where L e £ is a vertex and v is a variable valu-
ation, assigning a value v(x) to each variable x 6 IA But in SPHA, variables
can have parametric values i.e. a variable's value can be not only a real number,
but also an expression on the parameters, as for example v(x) = K 2 - 3- K + 1.

A run of a SPHA consists in a sequence of states, obtained by letting the
variables continuously evolve by their differential taws in some vertex, such that
the vertex invariant is continuously satisfied; in crossing some outgoing edge,
when the edge's guard is satisfied; and finally resetting the corresponding vari-
ables. The process is pursued in the newly reached vertex. For instance, in the
SPHA represented in figure 1, consider a run starting at vertex L1 with vari-
ables t, al , a2 = 0. Then, evolution at vertex L1 is given by (dl, d2,i) = (K, 0, 1),
while the invariant t < 40 A a < 30 holds. Vertex L1 will be left, by crossing the
edge from L1 to Lu, when t = 40. But al, whose value is K • 40 at the crossing
moment, cannot exceed 30 (as stated by the vertex L1 invariant); thus we have
a condition on the parameter, in order to continue the run: K 5 3/4.

The previous remark showed that any run of a SPHA defines a sequence of
conditions on the parameters. Indeed, any edge guard must be satisfied by the
variable values when that edge is crossed; since these values are expressions o n
the parameters, the guard satisfaction translates to a condition on the para-
meters. Thus, the analysis of SPHA focuses not only on the existence of a run
between states (like in the case of plain hybrid automata) , but also on computing

1265

and solving the associated sequence of conditions on the parameters. This is the
goal of parametr ic analysis.

P a r a m e t r i c A n a l y s i s . The problem of parametr ic analysis is formulated as
follows: given a slope-parametric hybrid automaton, a temporal logic formula
expressing a reachability property and a set of intervals in R (one for each pa-
rameter) , find the relations among parameters (in the corresponding intervals)
such that the formula is true. For instance, in the au tomaton of figure 1, find
values for parameter K C]0, 1[, for the T C T L formula ~ = {(L1 A al = 0 A a2 =
0 At = O) =~ -,[(-~Ls)3U=~oo(-~L5)]} to be true. This formula means that , s tart-
ing from the initial set of states defined by vertex L1 with al = 0, a2 = 0, t = 0,
it is not possible to avoid vertex L5 for a period of 100 units of time. In other
words, vertex L5 is inevitably reached within 100 t ime units.

3 E x a m p l e

Consider the problem of assigning CPU time to processes that share a single
processor. There are several ways to cope with this problem. One of them is to
allocate resources statically, such that every t ime a process must execute, it will
have its time slice reserved to do it. This is an approach followed in reactive
programming, when processes must be launched as a reaction to an observed
event: if the process has to compete at run t ime for resources, it may fail to
get them and, therefore, it may fail its goal; if, on the contrary, resources are
reserved in advance, it will always be able to run. In our example, processes al
and a2 will share a CPU in fixed proportions: a percentage of t ime of 100 • K
for a~ and of 100 * (1 - K) for a2.

Apar t f rom these allocation considerations, there are other facts in the ex-
ample that interest us. In particular, processes al and a2 must both be executed
within a period of 100 t ime units. Total execution times are 30 t ime units for
al and 40 t ime units for a2 (measured on the processor when each process takes
all resources). Process a~ must wait 40 t ime units from the begining of the
period (t = 0) to be ready to execute, therefore, during the first 40 t ime units
(t E [0,40]) only al runs. From that instant on (t C]40,100]) al and a2 run
concurrently (once one of them has finished, the other will continue alone until
completion). As we said before, the processor allocation is fixed for each process
disregarding whether they run alone or concurrently. We assume that these pro-
cesses don ' t have any interaction and the waiting times (for I /O, for example)
are null.

The slope-parametric hybrid au tomaton of figure 1 represents this schema.
The expression dt = K indicates that process al executes using 1 0 0 , K per
cent of CPU time. Similarly, the expression d2 = 1 - K indicates tha t process
a2 executes using 100 * (1 - K) per cent of CPU time. The expression dl = 0
says that the process al does not execute at all. The fact of having a parameter
(K) in our au tomaton allows us to define parametr ic analysis problems. One
could be: determine the possible values of K C]0, 1[such that processes al and

1266

a2 are both executed, once every 100 seconds. On the SPHA of figure 1, this
translates to the property (already stated in section 2) that , start ing from the
initial situation, vertex L5 is inevitably reached within 100 t ime units. A non
trivial hand calculation shows that, for the above property to hold, K must
lie in a broad interval: K E]0.3, ½[. We recall how to au tomate this calculus
[BBRR97].

4 C o m p u t i n g p a r a m e t e r v a l u e s

Parametr ic analysis comes to operating with parametr ic polyhedra. The lat-
ter are described by sets of linear equations and inequations whose coefficients
can be either constants or symbolic express ions on the parameters; for instance,
0 _ < a l _ < 3 0 A 0 _ < a 2 _ < 4 0 A 4 0 _ < t A a l - - K . t = 0 , where K is a parameter .
The operations involved in parametr ic analysis are extension, res tr ic t ion and
project ion, that incrementally generate conditions on the parameters, at each
passage from a vertex to the next one.

E x a m p l e . Consider the vertex L2 of the au tomaton in figure 1 and an initial
parametr ic polyhedron 0 _< al _< 30 A 0 _< a2 _< 40 A 40 _< t A al - K . t -- 0.
We want to find the conditions on the parameter K, for the control to go from
L2 to L4. For this we ex tend the initial polyhedron in the parametr ic direction
given by dl -- K, d2 = 1 - K and i = 1; as we shall see, this extension has
a finite number of different forms, under different conditions on K. Then, we
restr ict the values of parameter K such that the previous extension intersects the
guard a2 = 40 and the invariant t _< 100 Aal _< 30 A a2 < 40: the intersection
polyhedron is non-empty iff parameter K satisfies some further conditions. Once
we have obtained these conditions, we continue at vertex L4 by projec t ing the
intersection polyhedron on plane a2 = 0 (this corresponds to reinitializing a2 on
the transition). We should of course, apply the same sequence of operations in
L4 to find the conditions on K to cross the edge from L4 to L5.

4.1 Extens ion

m Extension means: given a parametr ic polyhedron P = n j = l (Zr~=lal,j "x i ~ bj)
where ai,j, bj can be constants or symbolic expressions and ~-E {>, >}, find
the polyhedron: p = 3r > 0. Aj=I (~ = l a i , j " (x i -- ki • r) ~ bj) where each
ki is the slope for variable xi (constant or symbolic expressions on parame-
ters). This is f o rward cont inuous s imula t ion [ACH+95] except that we con-
sider parametr ic polyhedra and directions. This imposes to consider several

--+

cases for eliminating the 9 quantifier in the equivalent expression p = 3 r _

[A)1 O. j=l (Z'~=la<J . x~ - r . (Z~_la~,j • k~) > bj .
The eases to consider are, for each sum-of-products ~ = l a i , j . ki, the possibil-

ity that it is negative, positive or 0. As in [AHH93] we eliminate the existential

1267

quantifier by dropping the inequations that correspond to negative sums-of-
products (~ l a i , j • ki < 0), keeping the inequations that correspond to positive
or zero sums-of-products (Z'~=lai,j • ki >_ 0), and linearly combining pairs of
inequations that correspond to one negative and one positive sum-of-products.
The point here is that the sums-of-products are symbolic, so in general we will
not be able to tell at sight the sign of the expressions Zn=lai,j . ki. We must

--+

then consider all the possible cases for these signs, so the extended polyhedron p
has at most 3 m different forms, following the possible signs of the m expressions
Zin=l ai,j • ki.

For the example of figure 1, vertex L2, the extension of the polyhedron
P = 0 < a l _ < 3 0 A 0 _ < a 2 _ < 4 0 A 4 0 _ < t A a l - K . t = 0 b y a ' l = K , d 2 = l - K , i = 1
would give three cases, depending on the sign of expression 1 - K. For instance,
when 1 - K > 0, the extended polyhedron (as automatical ly generated by our
verification tool described in section 5) is:

P1 = [0 _< al A0 _< a2 A40 _< t A 0 = al - - K . t A 3 0 - K - 30 _<
(K - 1) • al + K - a2 A - 3 0 _ K - t - al A 40. K - 40 = a2 + (K - 1) • t A 0 _<

(1 - K) . a l - K . a 2 A - 4 0 . K < a l - K . t A 4 0 . K - 3 0 < K . t - a l A O < (1 - K). t -a2].

The extended polyhedra have different forms when 1 - K = 0 and 1 - K < 0.
In practice, we do not have to generate all 3 "~ cases, since most of them lead to
unsatisfiable conditions on the parameters (for instance, in the above example,
the cases 1 - K = 0 and 1 - K < 0 are eliminated from start since we are looking
for parameters in the interval]0, 1[cf. section 3). We will come back to this
point in section 5.

Note also that the parametr ic slopes have become coefficients in the inequa-
tions of the extended polyhedron e.g. 40 - K - 30 _< K • t - al .

4 . 2 R e s t r i c t i o n

Restriction is: given a parametr ic polyhedron P = Aj=I (~n=lai,j "xi }- bj)
(remember that ai,j, bj are constants or symbolic expressions on the parameters)
find the possible values of parameters such that P is non-empty.

--+

For the parametr ic polyhedron P1 obtained in the previous step, we compute
its intersection with the guard a2 = 40 and the invariant t < 100Aal < 30Aa2 <
40, and find the conditions on K such that this intersection is not empty. We
obtain several cases from which only one is satisfiable (with respect to the values
of K):

- Condition: 0 < K A K < 1 A (K - 1) . K < 0 A K 2 - (K - 1) < 0
- Intersection: the same as for extension plus three additional inequations

- +

(P1 A t < 1 0 0 a a x < 3 0 A a 2 = 4 0) .

The general case can be treated as follows: the polyhedron P is non-empty iff
the expression 3xl .3x2 . . . 3xn .P is ' t rue' . The formal elimination of all variables

1268

in the previous expression generates a symbolic condition on the parameters, that
precisely constitutes the condition for P to be non-empty. Variables xl, .., xn can
be eliminated one by one by successively applying the Fourier-Motzkin elimina-
tion algorithm (see for instance chapter 1 of [Zie95]) that we now describe.

T h e F o u r i e r - M o t z k i n e l i m i n a t i o n a l g o r i t h m . This algorithm computes,
given a system of linear inequations P = Aj~=l (~ = 1 ai,jxi ~- bj), the system ob-
tained by eliminating a variable say xk : P Sk= 3xk. Aj=t (~i=1 aid " xi ~ bj).
The idea is to consider the possible signs of the coefficients ak,j: as in the
case of extension, eliminating variable Xk leads to at most 3 m possible forms
of the result, depending on the signs of the m coefficients ak, j. For a given
combination of signs, denote J> (respectively, J=, J<) the subsets of indices
of { 1 , . . . , m } such that ak, j > 0 (respectively = 0, < 0). Then, P Sk is ob-
tained by keeping the inequations indexed by or=, by eliminating the inequa-
tions indexed by J< and J> (i.e. keep only the inequations where xk does
not occur), and by linearly combining pairs of inequations (one indexed by
some j> E J>, the other indexed by some j< E J<) to eliminate variable
xk. For all j> C J> and j< E J<, generate the following linear combina-
tion: ak,j> [~=1 ai,j<xi ~- bj<] - ak,j< [~=1 ai,j> xi >- bj>] which is equivalent
to ~i'=t [ak,j> ai,j< -ak,j<ai,j>] xi ~ [ak,j> bj< -ak,j<bj>]. In this last inequa-
tion the coefficient of xk is 0 so variable xk has been eliminated.

4.3 P r o j e c t i o n

Projection on the xk = 0 plane means: given a parametric polyhedron P =
Ajm__l (~n=lai , j .xi ~-bj), find the parametric polyhedron Pl~=o obtained by

-4-

projecting P on the plane xk = 0. Consider the polyhedron P =P1 A{t _<
100Aal < 30Aa2 = 40} of the previous example. The projection of P on a2 = 0
for c o n d i t i o n s 0 < K A K < 1 A (K - 1) . K < 0 A K 2 . (K - 1) < O i s

P{a~=0 =0 _< at A0 = as Act < 30A40 _< t Aal - K . t = 0A
t < 1 0 0 A - 4 0 . K < a ~ - K . t A
- 3 0 _< K .t - a~ A40. K - 3 0 <_ K . t - a 1 A

3 0 - K - 3 0 _ < (I f - 1) . a l - (K - 1) - K . t A
- 10- K - 30 < (K - 1) .aa A

40- (If - 1) - K _< (I - K) -ai -+- (K - t) - K . t A
3 0 . K - - 3 0 < (K - 1) . a l A
70- K - 40. K 2 - 30 ___ (K - 1). al - - (K - 1)- K . t A
0 < (1 - K) . t A 4 0 - 4 0 . K < (1 - K) . t A
0 ~ (1 - K) . a l A 4 0 _ < (1 - K) . t A
4 0 . K - 4 0 < _ (K - 1) - t A 4 0 . K _ < (1 - K) . a t A
S 0 - 4 0 - K < (1 - K) - t A 4 0 . K - 8 0 _ < (K - 1) . t

In general, to obtain the projected parametric polyhedron we use the Fourier-
Motzkin elimination algorithm and the identity Plxk=0 = 3xk.P A (xk = 0).

1269

4.4 T h e o p e r a t i o n s a t w o r k

To obtain the conditions on the parameters for a reachability formula to be true,
combine the three operations as follows. First, choose a vertex path that links a
vertex from the initial region to a vertex from the final region (as defined by the
teachability formula). Then, iterate the three operations on that vertex path,
to generate a tree whose nodes are pairs (vertex, parametr ic polyhedron), and
whose edges are labeled by symbolic conditions on the parameters.

Starting from the pair (initial vertex, polyhedron defined by the initial values
of variables) as the root, apply the extension procedure to the initial polyhedron
to generate all the possible extended polyhedra, and associate a node (successor
of the root) to each one. The branch leading to a node is labeled with the
condition under which the node's extended polyhedron was obtained. Likewise,
for each new node, generate its successors by applying the restriction procedure,
and label the new branches correspondingly. For the lastly obtained successors,
continue with the projection procedure. I terate the sequence of procedures in
this order until the final vertex is reached, and terminate by a restriction to
intersect the final region.

At this point, any sequence of branches of the constructed tree, from the root
to a leaf, defines a sufficient condition on the parameters, for the final region to
be reachable from the initial one (it is the conjunction of the conditions on all
branches). The disjunction of these sufficient conditions, for all the sequences
of branches in the tree (from the root to a leaf), constitute the necessary and
sufficient condition for the final region to be reachable from the initial one, just
by the particular vertex path in the automaton that was initially chosen.

But, in general, there are an infinity of vertex paths in the automaton, from
a formula 's initial vertex to a final one; this means that in order to generate the
necessary and suffÉcient conditions on the parameters for the reachability to hold,
we might need to iterate the above operations on an infinite number of vertex
paths, making our problem undecidable. However, we have noted in [BBRR97]
that, for a restricted class of SPHA and formulas, the problem remains decidable:
these are uniformly low-bounded SPHA and time-bounded teachability formulas.

Uniformly low-bounded SPHA are characterized by the fact that any cyclic
run has a duration at least equal to some strictly positive e, which does not
depend on the run or the parameter values. For instance, the 2 cycles of the
au tomaton in figure 1 : L 1 - L2 - L3 - L5 - L1 and L1 - L~ - L4 - L~ - L1,
always have a duration 100 whatever the parameters, so this SPHA falls into
the uniformly low-bounded case. Now for such SPHA and for t ime-bounded
reachability formulas, it is necessary to propagate extension, restriction, and
projection, only on a finite number of vertex paths [BBRR97].

Furthermore, some conditions on the parameters might be unsatisfiable.
Therefore, every t ime a condition is generated it is important to test if it is satis-
fiable; this will prevent us from analyzing branches that would lead us nowhere.
As it will be described in section 5, there exist automat ic means to do it.

1270

4.5 S o l v i n g o u r e x a m p l e p r o b l e m

Consider the above au tomaton and the t ime-bounded reachability formula ~ =
{(L1 A al = 0 A a2 = 0 A t = 0) ~ -,[(-~Lh)3U=loo(~Lh)]}. This means that,
start ing from the initial state, vertex L5 is inevitably reached within 100 t ime
units. Alternatively, this can be written as: -,{(L1 A al = 0 A as = 0 A t =
0) A [(L1 V L2 V L3 V L4)3U=100 (L1 V Ls V La V L4)]} meaning that , start ing from
the initial region (L1 A al = 0 A as = 0 A t = 0), it is not possible to stay within
vertices L1, L2, L3 and L4 for 100 t ime units.

In order to solve our initial parametr ic problem, we shall find values for K
such that (a): it is possible to stay vertices L1, Ls, L3 and L4 for I00 time
units, and then take the complement for K (in]0,1D .

To solve (a) we have to iterate the extension, restriction and projection
operations on two vertex paths (L1 - L2 - L3 and L1 - Ls - L4). At each vertex
L~ (i E {1, 2, 3, 4}), we find a set Pi of parametr ic polyhedra with their associated
conditions on K; they constitute the result of propagating the initial region up
to that vertex. In order to see if it is possible to be at vertex Li at t ime = 100,
we restrict each polyhedron in ;oi with t = 100, that is, we find the conditions
on parameter K such that their intersection with t = 100 is non-empty.

For vertices L1 and L2, these final conditions are unsatisfiable. For vertex L4,
the condition is h r < 0.3. For vertex L3, it is K E [1/3, 3/4]. The complement
of these conditions in interval]0, 1[is: K e]0.3, 1/3[m]3/4, 1[. But for K > 3/4,
the system is so-called Zeno (cf. section 4.6). Thus, the answer to our parametr ic
problem is: K E]0.3, 1/3[.

4.6 N o n - Z e n o n e s s a n d b a c k w a r d s r e a c h a b i l i t y

Consider again the SPHA of figure 1. For some values of the parameter K E]0, 1[,
the au tomaton is affected by so-called Zeno behaviours [HNSY94]. We have seen
an example of such behaviour in section 2: if K > 3/4, the run start ing from
initial state L1Aal = 0Aas = OAt = 0 is unable to leave vertex L1 but it is also
unable to stay in L1 forever, since Ll'S invariant eventually becomes false (after
at most 40 t ime units). The system is so-called Zeno [HNSY94], meaning that
values K > 3/4 are intrinsically bad for the system, whatever further properties
we might want it to satisfy (e.g. tasks terminating within 100 t ime units). So a
new problem of parametr ic analysis is to find the possible values of parameters
of a SPHA, for the SPHA to be non-Zeno. To solve this problem, we use an ex-
isting technique [HNSY94]: a hybrid au tomaton is non-Zeno iff from any state of
the automaton, it is possible to have a run of duration 1. In our parametr ic con-
text, checking non-Zenoness means finding the possible values of the parameters,
such that from any state of the automaton, it is possible have a run of duration 1.

P a r a m e t r i c b a c k w a r d a n a l y s i s . The existence of a run of duration 1 from
each state cannot be checked directly by the forward parametr ic analysis as pre-
sented in section 4, because one would have to perform the analysis starting
from all the (continuously infinite number) states of the SPHA. Instead, the

1271

analysis should proceed backwards. For example, consider the SPHA in figure
1; to measure the global time, we enrich the SPHA with a new variable z be-
having like a clock (constant slope 1 at all vertices), which is never reset 1. Let
us start indicating how to compute, for instance, the states from which it is
possible to reach vertex L2 in 1 t ime unit. For this, we first consider all the
states of the au tomaton at vertex L2 and at instant 1, given by L2's invariant:
P0 = t _< 100 A al < 30 A a2 < 40 A z = 1. Then, we compute the set of states
P1 from which it is possible to reach some state in P0 by continuously remaining
in vertex L2: this can be done by the backwards extension of P0. Next, we com-
pute the states P2 from which it is possible to reach some state in P1 by some
discrete edge crossing i.e. by crossing the edge from L1 to L2: this is done by
backwards projection on the edges's reset (a2 := 0) followed by restriction to the
edges's guard (a2 = 40).

Restriction has been defined in section 4.2, and backwards extension/pro-
jection are similar to the restrict ion/projection described in sections 4.1 and
4.3. For instance, backwards extension of polyhedron P0 = t _< 100 A a, _< 30
Aau _< 40 A z = 1 in direction (dl, d=, ~, }) = (K, 1 - K, 1, 1) coincides with the
forward extension of the polyhedron in the opposite direction (- K, K - 1, - 1, - 1);
and backwards projection of polyhedron P1 following the reset (a~ := 0) is just
3a~.P1 i.e. the Fourier-Motzkin elimination defined in section 4.2.

These operations should be iterated backwards on all the vertex paths of
the SPHA, and at each step i, by restricting the obtained set of parametr ic
polyhedra 7)i with condition z = 0, we obtain states from which it is possible
to have a run of duration 1. The iteration should continue until for the lastly
obtained set of states, the restriction to z = 0 is empty. This last condition
becomes true after a finite number of iterations, if SPHA has uniformly low-
bounded cycles [BBRR97]. For example, in the hybrid au tomaton of figure 1,
the above operations should be iterated only once on each cycle, because each
cycle is guaranteed to last more than 1 t ime unit.

Thus, after a finite number of steps, the algorithm terminates, and one ob-
tains the whole set of states :P from which it is possible to have a run of duration
1, under the form of a set of parametr ic polyhedra. By imposing the condition
that 7) contains all the states of the automaton, on obtains the necessary and
sufficient condition on the parameters, for the SPHA to be non-Zeno.

5 T h e t o o l

We have implemented the extension, restriction and projection procedures in
MAPLE V, a tool for symbolic computat ion. As we have seen, these operations
generate conditions on the parameters that, in general, take the form of systems
of non-linear inequalities whose unkowns are the variables of the hybrid automa-
ton and the parameters. Such systems of inequalities are not solvable by the
classical numerical methods but, instead, propagation methods [Sac87, Bro81]

1 in section 4.5, we used directly t as a clock to measure global time, since it was never
reset on the paths that interested us.

t272

must be used to calculate a "rectangular envelope" of the solution. This en-
velope defines upper and lower bounds on the unknowns and its meaning is as
follows: (a) if the envelope is empty then the system of inequalities has no solu-
tion, and (/3) if the envelope is non-empty and if the system of inequalities has a
solution, then the envelope covers the solution. Note that, as we are interested
in those values of parameters that make an unsafe state reachable, in order to
discard them, an over approximation is always valid (as long as its complement
is not empty). We use in our prototype the propagation features of Prolog IV.

Furthermore, we have implemented the following optimizations:

C o n s i s t e n t ease g e n e r a t i o n . Considering all possible combinations of
signs of sum-of-products, in the extension procedure, and of coefieients, in
Fourier-Motzkin, may lead to generation of unsatisfiable cases as K A - K A
K ¢ 0. The prototype is aware of this, and does not generate unsatisfiable
c a s e s .

- On t h e fly b r a n e h p r u n i n g . The conditions associated with a case may be
unsatisfiable in conjunction with the corresponding parametric polyhedron,
leading to a useless branch in the tree. The tool prunes all such branches.

- A l t e r n a t i v e r e s t r i e t i o n p r o e e d u r e . The aim of the restriction procedure
is to generate conditions on the parameters for a given parametric polyhedron
to be non-empty. This is a very expensive procedure whose result can be
approximated as follows: approximate the conditions on the parameters by
the envelope obtained by propagating the system of inequalities defined by
the parametric polyhedron.

Table 1 shows the execution times for the example of section 4.5 measured
on a Sun SPARCclassic. Times are in seconds.

Path Tree generation
(Maple)

L1 - L2 - L3 3.750
L1 - L2 - L4 3.333

Branch pruning
(Prolog)

0.350

Envelope calculation Total
(Prolog)

0.060 4.16
0.380

Tab l e 1. Execution times

0.060 3.773

The maximum number of cases generated is 9. This extremely low number
of cases and the low executuion times are due to the application of the three
optimizations described above.

6 C o n c l u s i o n

In this paper we have presented an example of system analysis using the slope-
parametric hybrid automata presented in [BBRR97]. The method focuses on
computing slopes of variables (rather than delays) for some safety requirement
to be respected, and it may be seen as an extension of the polyhedra-based
symbolic analysis [ACH+95] of hybrid automata. The main operation is the

1273

Fourier-Motzkin's algorithm to deal with parametric polyhedra, which imposes,
in theory, to consider a large number of cases. In practice, however, many of these
cases are either redundant or unsatisfiable and can be discarded, making the
problem computationMly tractable. We have presented a prototype verification
tool which fully automates the anMysis, and shown its applicability to a simple
example.
A c k n o w l e d g m e n t s . We thank G~rard Verfaillie for suggesting us to use Protog
IV, and Olivier Roux and Frederic Boniol for following this work.

R e f e r e n c e s

ACH+95.

AHH93.

AHV93.

BBRR97.

BGK+96.

Bro81.

CABN97.

CY91.

DY95.

HH94.

HLM97.

HNSY94.

KS97.

Sac87.

Wan96.

Zie95.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. TCS, 138:3-34, 1995.
R. Alur, T. A. Henzinger, and P-H. Ho. Automatic symbolic verification of
embedded systems. In Proe. I}gEE t~TSS'93, pages 2-11, 1993.
R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning.
In Proc. ACM STOC'93, pages 592--601, 1993.
F. Boniol, A. Burguefio, O. Roux, and V. Rusu. Analysis of slope-parametric
hybrid automata. In Proc. HART'97, volume 1201 of LNCS, pages 75 80,
1997.
J. Bengtsson, D. Griflioen, K. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an audio protocol with bus collision
using UPPAAL. In Proc. CAV'96, volume 1102 of LNCS, 1996.
R. A. Brooks. Symbolic reasoning among 3-D models and 2-D images. Art.
Int., 17:285-348, 1981.
W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In Proc. CAV'97, 1997.
C. Courcoubetis and M. Yannakakis. Minimum and maximun delay prob-
lems in real-time systems. In Proc. CAV'91, volume 575 of LNCS, pages
399-409, 1991.
C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with Kronos. In Proc. IEEE RTSS'95, 1995.
T. A. Henzinger and P.-H. Ho. HyTech: the Cornell HYbrid TECHnology
tool. In Hybrid Systems I[, volume 999 of LNCS, pages 265-294, 1994.
M. Heymann, F. Lin, and G. Meyer. Control synthesis for a class of hy-
brid systems subject to configuration-based constraints. In Proc. HART'97,
volume 1201 of LNCS, pages 376-390, 1997.
T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Inf. and Comp., 111(2):193 244, 1994.
D. Kapur and R. K. Shyamasundar. Synthesizing controllers for hybrid
systems. In Proc. HART'97, volume 1201 of LNCS, pages 361-375, 1997.
E. Sacks. Hierarchical reasordng about inequalities. In Proc. AAAI'87,
volume 2, pages 649-654, 1987.
F. Wang. Parametric timing analysis for real-time systems. In]. and Comp.,
130(2):131-150, 1996.
G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, 1995.

