
Cinderella: A Retargetable Environment for 
Performance Analysis of Real-Time Software 

Yau-Tsun Steven Li  1 , Sharad Mal ik  2, Andrew Wolfe  2 

1 Hewlett-Packard Company, 1501 Page Mill Rd, MS 6U-J, Palo Alto, CA 94304, USA 
2 Dept of Electrical Engineering, Princeton University, 

Princeton, NJ 08544, USA. 

Abstract .  Real-time systems are characterized by the presence of timing con- 
straints that a task must be completed within a given deadline. In this paper, we 
present a complete environment for determining best-case and worst-case execu- 
tion time of a program when running on a given hardware. Our analysis technique 
is unique in that it allows user to annotate complex program path information and 
at the same time, models cache memory and pipeline accurately. This results in 
tight estimations even for complicated programs running on modem hardware. 
The technique has been implemented on a timing analysis tool - -  c i n d e r e  11 a 3, 
which provides retargetable back-ends for analyzing programs written in differ- 
ent languages and executed on different hardware. We present some experimental 
results of using this tool. 

1 Introduction 

The execution time of a program running on a given system may vary significantly according 
to different input data and initial system states. In many cases it is essential to determine the 
extreme case (best case or worst case) execution time of a program. This information is needed in 
many real-time operating systems for task scheduling. It is also needed in the hardware/software 
partitioning step in embedded system designs. 

The actual extreme case execution time of a program cannot be determined unless all feasi- 
ble input data and system states are simulated. Since a large number of simulations is required, 
this method is impractical. Instead, our objective is to determine a tight bound on all feasible ex- 
ecution times of a program. This bound is denoted as the estimated bound of the program. We 
tackle the problem of determining tight estimated bound by dividing it into two smaller ones: 

Program path analysis This analyzes the structure of the program statically and determines 
the set of paths that corresponds to the extreme case program execution time. Since the number 
of program's feasible paths is in general exponential in its size, no path enumeration is allowed in 
this analysis. Also, many of the statically feasible program paths are never executed in practice. A 
mechanism for the programmer to mark infeasible paths is essential in tightening the estimation. 

Microarchitecture modeling This determines the extreme case execution times of known 
sequences of instructions and passes them to program path analysis. The presence of modem 
microarchitecture features, such as pipelines and caches, varies the instruction execution time 
significantly. The instruction execution time is no longer constant and it depends on the execution 
trace. Hence, this analysis interferes with program path analysis. 

3 In recognition of her hard real-time constraint - -  she had to be back home at the stroke of midnight! 



1309 

Both problems are equally important in determining tight estimated bound of the program. In 
solving the above problems, we also need to consider the retargetability issues so that the solution 
can be applied to a wide range of programs running on different hardware. In the following, we 
will describe our analysis in determining the estimated worst case execution time (WCET) of the 
program. The analysis for the best case execution time is similar. 

2 Related Work 

Early researchers [11, 15, 17, 18, 20] in this area adopted simple microarchitecture modeling 
where instruction execution times are assumed to be constant and independent of each others. 
They focused on program path analysis and proposed different techniques to eliminate false pro- 
gram paths. In particular, Park [17] recognized the use of regular expressions to annotate vari- 
ous path information. However, the analysis of regular expression is complicated and some pes- 
simism approximations are used. 

More recently, many techniques have been proposed to model pipelines [4, 7, 13, 16, 21] 
and caches [2, 3, 9, 13, 14, 19] with various success. In modeling these microarchitecture fea- 
tures, the importance of path annotation are neglected. As a result, these techniques could only 
handle simple programs with fixed loop bounds (e.g. matrix multiplication routines). For more 
complicated programs, like sorting routines, they generated loose estimations. 

Most researchers claimed their methods to be retargetable. However, there are no timing 
analysis tools that actually implement the retargetable framework. Only a few retargetable tools 
exist in pipeline modeling [5, 16]. 

3 Program Path Analysis 

In this analysis, we assume that instruction execution times are all constant. This assumption 
will be removed in Sect. 4. Our analysis technique uses the counting approach to compute the 
estimated WCET. The method converts the problem of solving the estimated WCET into a set of 
integer linear programming (ILP) problems in which the estimated WCET, and the worst case 
execution counts of the instructions are solved for. 

For each basic block [1] B i in the program, we let variable xi be its execution count and 
constant ci be its single execution time. For program with N basic block, the total execution time 
is:  

N 
Total execution time = ~ CiX i. (1) 

i=1 

The possible values of xi's are constrained by the program structure and the program input data. 
This constraints are represented by a set of linear constraints. The linear constraints are divided 
into two parts: (i) structural constraints, which are derived automatically from the program's 
control flow graph (CFG) [1], and (ii) functionality constraints, which are provided by the user 
to specify loop bounds and other path information. Fig. 1 shows a simple code fragment and its 
CFG. Each edge in the CFG is labeled with a variable di which serves both as a label for that 
edge and as a count of the the number of times that the program control passes through that edge. 
Analysis of the CFG is equivalent to a standard network-flow problem. Structural constraints can 
be derived from the CFG from the fact that, for each node Bi, its execution count is equal to the 
number of times that the control enters the node (inflow), and is also equal to the number of times 
that the control exits the node (outflow): 

xi = ~ d_inflow = ~ d_outflow (2) 



1310 

/*  k >= 0 * /  
s = k; 
while (k < i0) 

if (ok) 
]++; 

else { 
j = O; 
ok = true; 

} 

k++; 
} 

r = j; 

xl[BI s = k ; [  
td~ d~ 

I -  x21B2 while(k<lO)I~ 
~ '~  d 3 

d4 ~ ~ d5 
~ x s l  BSj = °; I x4 t - ' - " ~  I °k=true;l 

d t ~ _ ~ d 7  
dt~ x6 I ~6 kc; I 

- - ' T  
x71"r= ;I 

+dl0 

(a) Code (b) Control flow graph 

Fig.  1. An example showing how the structural and functionality constraints are constructed. 

The loop bound information must be provided by the user using functionality constraints. 
Otherwise, the estimated WCET is unbounded. In this example, since k is positive before it en- 
ters the loop, the loop body will be executed at most 10 times each time the loop is entered. This 
information can be represented by the functionality constraints: 0xl < x3 < 10xl. 

Additional path information can also be described by functionality constraints. We have been 
able to show that the functionality constraints are more powerful than Park's IDL [ 17] in describ- 
ing path information [12]. As a simple example, the e l s e  statement (Bs) can be executed at 
most once inside the loop. This information can be specified as: x5 < lxl.  

4 Microarchitecture Modeling 
Microarchitecture modeling models CPU pipeline and cache memory - -  two dominant microar- 
chitecture features that affect the execution time of an instruction. In modeling these features, 
our analysis technique is unique in that the program path analysis model described in previous 
section is retained. 

4.1 Pipeline Modeling 
The pipeline modeling is relatively easy and straightforward. We model the pipeline within each 
basic block and add up the execution time each instruction spent in the execution stage of the 
pipeline [8]. In determining the estimated WCET of the basic block, we assume the pipeline is 
flushed at the end of the basic block. This model is used by many researchers [4, 16, 21]. Our ex- 
periments in modeling the pipeline of Intel i960KB processor showed that it is accurate. Detailed 
results will be given in Sect. 6. 

4.2 Cache Modeling 
Cache is much harder to model than pipeline. In a pipeline, the instruction execution time de- 
pends only on a few of its preceding instructions. But with the presence of cache memory, it 
depends on all instructions that are mapped to the same cache set. A global analysis is required 



1311 

for accurate cache modeling. If not properly modeled, the cache analysis will introduce more 
pessimism than the pipeline analysis. Direct mapped instruction cache analysis will be described 
first. This is followed by set associative instruction cache analysis. 

The goal of cache modeling is to determine for each instruction, the number of fetches that 
result in cache hits/misses. We first partition each basic block into smaller units (called 1-blocks) 
that are aligned with the instruction cache line. Suppose a basic block B i is partitioned into n i 1- 
blocks, they are denoted as Bi.l, Bi. 2 . . . . .  Bi.nl. Since the cache controller always fetches a line of 
code whenever this is a miss, an 1-block Bi.j is either in the i-cache completely, or not in it at all. 
These two cases correspond to two possible execution times of the 1-block, which are represented 

it iss by constants c/h.~ t and cmj ss respectively. We let ~ j  and ~ be integer variables that represent an 
1-block Bi.j 's  hit and miss counts. Given these variables, the total execution time of the program 
can be refined as: 

N nl 
Total execution time = ~ E (chi.St~iJ miss iss +c~.j ~ ). (3) 

i=l j=l 

Since 1-block Bi. j is inside the basic block Bi, its total execution count is equal to x i. Hence 

X i =xh!~ +~/.j ss, j =  1,2 . . . . .  n i (4) 

Eq. (4) links the new cost function (3) with the structural constraints and the functionality con- 
straints, both of which remain unchanged. In addition, the cache activities can now be described 
in terms of the new variables ~5. t 's and ~/.jSS,s. 

For any two 1-blocks mapped to the same cache set, we say that they conflict with each other 
if their address tags [8] are different. Otherwise, they are called non-confl ict ing 1-blocks. 

Direct Mapped Instruction Cache Ana lys i s  Consider a simple case. For each cache set, 
if there is only one 1-block Bk. t mapped to it, then only its first execution may  result in a cache 
miss, therefore, 

~ i  '.~ _< 1. (5) 

When a cache set contains two or more conflicting 1-blocks, the hit/miss counts of all the 
1-blocks mapped to this set will be affected by the execution sequence of these 1-blocks. In this 
case, a cache conflict graph (CCG) [12] is constructed. A CCG captures the control flow of a set 
of l-blocks mapped to the same cache set. Each edge of CCG is labeled with a p variable to count 
the number of times that the control passes through that edge. Suppose that in Fig. l(b), basic 
blocks B 1 , B 4 and B 5 are partitioned into l-blocks and 1-blocks B1.1, B4.1 and Bs. 1 are mapped to 
the same cache set and they conflict with each other, the CCG is shown in Fig. 2(a). The control 
flow from one 1-block Bi. j to the other Bk. l is represented by a variable P(i.j, k.l). 

A set linear constraints can be derived from the CCG to link with the structural and function- 
ality constraints, and also to describe cache hit/miss constraints. At each node Bi.j, the sum of 
control flow going into the node must be equal to the sum of control flow leaving the node, and 
it must also be equal to the total execution count of 1-block Bi. j.  Therefore, two constraints are 
constructed at each node Bi.j: 

xi = ~ p _ i n f l o w  = ~ p _ o u t f l o w  (6) 

Due to the existence of xi's,  this set of constraints is linked to the structural and functionality 
constraints. 

All self loops in CCG indicate cache hits. Therefore, 

it _ _  (7) x~i.j -- P( i . j ,  i . j )  



] 
(a) Cache Conflict Graph 

1312 

(b) Cache State Transition Graph 

Fig.  2. The CCG captures control flow of 1-blocks mapped to the same cache set. The CSTG, 
shown in 2-way set associative i-cache, represents all feasible cache states and their transitions 
due to the flow of these 1-blocks. In this example, the graphs are constructed when l-blocks B H , 
B4.1 and Bs. l in Fig. 1 conflict with each other. 

The above linear constraints are the cache constraints for direct mapped i-cache. These con- 
straints, together with (4), the structural constraints and the functionality constraints, are passed 
to the ILP solver with the goal of maximizing the cost function (3). Because of the cache infor- 
mation, a tighter estimated WCET will be returned. The CCGs are network flow graphs and thus 
the cache constraints are typically solved rapidly by the ILP solver. For programs with function 
calls, the functions are treated as if they are inlined [12]. 

Set Associative Instruction Cache Analysis The modeling of set associative i-cache is 
very similar to that of direct mapped i-cache. Only the direct mapped i-cache constraints (5)-(7) 
are replaced by a set of new ones. 

A cache state transition graph (CSTG) [ 12] is constructed to model all feasible cache state 
transitions of a cache set. Each node of the graph contains a state [Bi.j,Bm.n] showing two 1- 
blocks in the least and most recently used entries. For 2-way set associative i-cache with least 
recently used (LRU) replacement policy, a CSTG is shown in Fig. 2(b). A transition from state 
[Bi.j,Bk.l] to [Bk.l,Bm.n ] represents an execution of 1-block Bm.n. Similar to the CCG, self loops 
in CSTG represent cache hits. In addition, transition from [Bi.j, Bm.n] to [Bm.n,Bi.j] also results 
in cache hits. A p-variable is associated with each edge of the graph to represent the number of 
transition. Based on x's and p's, a new set of flow equations and cache hit linear constraints can 
be generated. 

5 Implementation and Retargetability Issues 
The above analysis technique has been implemented in our timing analysis tool c inderel la. 
The tool features several retargetable back-ends (Fig. 3(a)) so that it can be easily ported to 
model different hardware, as well as programs written in different source language. The core 
performs program path analysis and cache analysis. The objectfile handler reads the executable 
file of the program directly and utilizes debugging information to map binary code to source code 
so that path information can be entered at source level. This approach allows programs written in 
different languages and compiled by different compilers to be analyzed. The instruction set han- 
dler decodes the binary code and passes information to the core for building control flow graph 
and also to the machine handler, which models instruction pipelines and provides instruction tim- 
ings and cache configurations to the core. The separation of instruction set decoding and machine 



1313 

I h  . . . . . . . . . .  I111 • . . . . . . .  

[TopL~lFunCtlo.: f ~ t  Es~mar.edbound: [15~026.~Ol~2]¢y~les 1 [~13 

FFT,C } , 3 813 

341 nn, n, m~aM, m, J, istep, is~qn, £1 ~ 7 813 

44:x2 if ~ > ~) ( r Bl 
45; x3 dataIi] ) ; $ ~ I ~  Sl 82 S3 

£ ~  ~ 
i ~xo~oooolo Ida (rl) + OxlO. rl -~6xi*~=O 

OxOSOOOOf4 stq 8, (glS) + 0~(0 -IO23xl+XS-O 8) 8~ 
0=080000f8 Ida ~x400, ~0  -512×11 ÷×13- O 85 86 

l!~ O=080000fe ida Oxl, 93 c12 - I023~ - O 87 88 OzOSOOOtO0 Ida (r iO) <<  X + OxO00OOOOO, 913 1024~1-~Z-O BS 810 
OxOSOOOt08 ld, Oxt, tit ~II-~12,-0 811 
0x08000t0c ida 0xl,  ~3 -~ll+lOxlg-O 811 OxOSOOOtZO e~tb~e r3. gt3, 0~00000~90 ]le~l I -~12>. 0 BII 

x) 0x08000~14 ~mpible ~11~ c3~ 0=08000168 <il) - )d l3<-[ j  Bl l  
512~12 -xil3"m ~ Bll 

(a) Block diagram (b) Snapshot  

F i g .  3.  C i n d e r e l  l a ' s  retargetable back-ends and its graphical user interface. 

T a b l e  1. Set o f  benchmark examples,  their descriptions, source file line sizes and Intel i960KB 
binary code sizes. 

Program Description Lines Bytes 
check_data Check if any element in an array is negative, from Park [17] 
circle 

des 

dhry 

djpeg 
fdct 

fft 

line 

matcnt 

matcnt2 

piksrt 

sort 

sort2 

stats 

stats2 

whetstone 

23 88 
Circle drawing routine, from Gupta [6] 100 1588 
DataEncryption Standard 192 1,852 
Dhrystone benchmark 761 1,360 
Decompression of 128×96 color JPEG image 857 5,408 
JPEG forward discrete cosine transform 300 996 
1024-point Fast Fourier Transform 57 500 
Line drawing routine, from Gupta [6] 165 1,556 
Summation of 2 100x 100 matrices, from Arnold [2] 85 460 
Matcnt with inlined functions 73 400 
Insertion sort of l0 elements 19 104 
Bubble sort of 500 elements, from Arnold [2] 41 152 
Sor t  with inlined functions 30 148 
Calculate the sum, mean and variance of two 1,000-element arrays, from Arnold [2] 100 656 
S t a t s  withinlined functions 90 596 
Whetstone benchmark 196 2,760 

t iming model  allows one to model  a family o f  processors easily. Currently, we have implemented  
modules  for model ing programs running on Motorola M68000 and Intel i960KB processors.  The 
tool also features a user-friendly graphical interface (Fig. 3(b)). It can be downloaded from its 
WWW home page (http : //www. ee. princeton, edu/~yauli/cinderella/). 

6 Experimental Results 

We have analyzed a large set o f  programs to validate our analysis technique. The programs are 
shown in Table I. Some of  them comes  f rom other researchers.  Others are much more  compli-  
cated software benchmarks  and application programs. 



1314 

Tab le  2. Benchmark program analysis results. Estimated bounds and measure bounds are shown 
in units of clock cycles. 

Estimated Bound  Measured bound Pessimism" CPU Time 
Program lower upper lower upper lower upper (sec.) 
check-data 34 471 3 4  430 0.00 0.10 (0,0) 
circle 465 15,364 585 14,483 0.21 0.06 (0,0) 
des 86,570 369,840 111,468 243,676 0.22 0.52 (6, 4) 
dhry 458,966 756,961 575,492 575,622 0.20 0.32 (2, 0) 
djpeg 13,225,736 70,414,320 14,975,268 35.636.948 0.12 0.98 (4, 6) 
fdct 6,145 9,115 7,616 9.048 0.t9 0~01 (0,0) 
f f t  1,589,026 2,630,132 1,719,832 2,204,472 0.08 0.19 (0,0) 
line 578 6,088 929 4,836 0.38 0.26 (0, 0) 
matcnt 1,722,105 5,463,383 2,202,276 2,202,698 0.22 1.48 (0,0) 
matcnt2 t,482,086 2,113,328 1,862,007 1,862.333 0.20 0.13 (0,0) 
plksrt 236 1,740 337 t,705 0.30 0.02 (0,0) 
s o r t  13,965 27,866,978 16,942 9,991,172 0.18 1.79 (0,0) 
sort2 13,965 7,117,043 16,507 6,747,664 0.15 0.05 (0,0) 
s t a t s  1,008,085 2,213,764 1,158,142 1,158,469 0.13 0.91 (0,0) 
s t a t s 2  894,017 1,235,696 1,060,t18 1,060.380 0.16 0.17 (0,0) 
whets tone  5,970,554 10,546,246 6,935,612 6,.935,668 0.14 0.52 (0,0) 

a Pessimism is calculated as: l o w e r  - M e a .  l o w e r - E s t ,  l o w e r  _ E s t .  u p p e r - M e a ,  u p p e r  
- -  ~ , u p p e r  - M e a .  u p p e r  .... " 

We studied each program carefully, determined its loop bounds and path information, and 
used c 2 n d e r e l  l a  to compute the estimated bound. To validate this estimation, we determined 
each program's extreme case input data sets and then used logic analyzer to measure the exe- 
cution time of the program when running on an Intel QT960 evaluation board [10] containing a 
20 MHz i960KB processor. The processor has an on-chip 512 bytes direct-mapped i-cache and a 
4-stage execution pipeline. 

Table 2 shows the results of analysis. All estimated bounds bound their corresponding mea- 
sured bounds. For most programs, the estimated bound is very close to the measured bound. We 
have also conducted other experiments to validate program path analysis and cache analysis sep- 
arately [12]. These experiments indicate that when given enough path information, our analy- 
sis technique is very accurate. A few programs have looser estimation. For programs d e s  and 
d j p e g ,  this is because the extreme case input data set could not be determined, random input 
data sets were used and as a result, the measured bound might not be close to the actual bound 
of the program. For programs matcnt, sort and stats, the reason for loose estimation is 
that i960KB processor features 4 register windows, which were not modeled in our tool. Con- 
servation assumptions were used in modeling the execution times of call and return instructions 
and large pessimism will occur for programs with lots of small function calls. We inlined the 
frequently called functions in these programs. The results are programs m a t c n t 2 ,  s o r t 2  and 
s t a t s 2 .  Their estimated bounds are much tighter. The ILP problems were solved by a commer- 
cial ILP solver CPLEX. They were solved efficiently on a Silicon Graphics Indigo2 workstation 
containing a 150 MHz MIPS R4400 processor with 256 MB main memory. 

7 Concluding Remarks 

In this paper, we have described an efficient and powerful method based on integer linear pro- 
gramming to determine the execution time bounds of real-time programs. When compared with 
other existing methods, ours offers more powerful path annotation mechanism and more accu- 
rate cache modeling. Even better, the ILP formulation allows both to be applied simultaneously. 



1315 

This results in very tight estimations even for complicated programs. Our implementation is more 
complete than others. C ± n d e r e  3_1-a features a user-friendly graphical interface and retargetable 
back-ends. We have conducted extensive experiments to validate that our tool is capable of ana- 
lyzing large and complicated programs accurately, 

References 
1. A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Techniques, and Toots. Addison-Wesley, 1986. 
2. R. Arnold, E Mueller, D. Whalley, and M. Harmon. Bounding worst-case instruction cache perfor- 

mance. In Proc. of the 15th IEEE Real-Time Systems Symposium, Dec 1994. 
3~ S. Basumallick and K. Nilsen. Cache issues in real-time systems.. In Prec. ofACM PLDI WorL~hap on 

Language, Compiler, and Tool Support tbr ReaI-~me Systems, Jun 1994. 
4. S. Bharrat and K. Jeffay. Predicting worst case execution times on a pipelined RISC processor. Tech- 

nical report, Dept of Computer Science, University of North Carolina at Chapel Hill, Apr 1994. TR94- 
072. 

5. D. Bradtee. Retargetable Instruction Scheduting.~r Pipelined Processors. PhD thesis, University of 
Washington, 1991. 

6. R. Gupta. Co-Synthesis of Hardware and Software.[?)r Digital Embedded Systems. PhD thesis, Stanford 
University, Dec 1993. 

7. C. Healy, D. Whalley, and M. Harmon. Integrating the timing analysis of pipelining and instruction 
caching. In Proc~ ~ t6 th  IEEE Real-Time Systems Symposium, Dec 1995. 

8. J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach, 2nd Ed. Morgan 
Kanfmann Publishers, Inc., 1996. ISBN 1-55860-329-8. 

9. Y. Hur, Y.-H. Bae, S.-S. Lira, S.-K. Kim, B.-D. Rhee, S.-L. Min, C.-Y. Park, M. Lee, H. Shin, and C.-S. 
Kim. Worst ease timing analysis of RISC processors: R3000/R3010 case study. In Prec. qf 16th IEEE 
Real-Time Systems Symposium, Dec 1995. 

10. Intel Corp. QT960 O~verManual, 1990. Order Number 270875-00I. 
11. E. Kligerman and A. Stoyenko. Real-time Euclid: A language for reliable real-time systems. IEEE 

Trans. on Software Engineering, Sep 1986. 
12. Y.-T. Li. Pe~brmance Analysis of Real-Time Embedded Software. PhD thesis, Princeton University, 

1997. 
13. S.-S. Lira, Y.-H. Bae, G.-T. Jang, B.-D. Rhee, S.-L. Min, C.-Y. "Park, H. Shin, K. Park, and C.-S. Kim. 

An accurate worst case timing analysis technique for RISC processors. In Proc. of the 15th IEEE Real- 
Time Systems Symposium, Dec 1994. 

14. J.-C. Liu and H.-J. Lee. Deterministic upperbounds of the worst-case execution times of cached pro- 
grams. In Proc. of the 15th 1EEE Real-Time Systems Symposium, Dee 1994. 

15. A, Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight execution time bounds of pro- 
grams by annotations. In Pmc. of the 6th IEEE Workshop on Real-~me Operating Systems and Soft- 
ware, May 1989. 

16. K. Narasimhan and K, Nilsen. Portable execution time analysis for RISC processors. In Proc. of ACM 
PLDI World, hop on Language, Compiler, and Tool SupportJbr Real-Time Systems, Jun 1994. 

17. Co-Y. Park. Predicting Deterministic Execution Times of Real-Time Programs. PhD thesis, University 
of Washington, Aug 1992. 

18. E Puschner and Ch. Koza. Calculating the maximum execution time of real-time programs, The Jour- 
nal of ReaI-Time Systems, Sep 1989. 

19. J. Rawat. Static analysis of cache performance for real-time programming. Master's thesis, Iowa State 
University of Science and Technology, Nov 1993. TR93-19. 

20. A. Shaw, Reasoning about time in higher-level language software. IEEE Trans. on Software Engineer- 
ing, Jul 1989, 

21. N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst-case execution times. Journal 
of Real-Time Syste~, Oct 1993. 


