Skip to main content

Finding edge-disjoint paths in partial k-trees

An extended abstract

  • Session 6a: Invited Presentation
  • Conference paper
  • First Online:
Book cover Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

Abstract

For a given graph G and p pairs (s i, ti), 1≤ip, of vertices in G, the edge-disjoint paths problem is to find p pairwise edge-disjoint paths P i, 1≤ip, connecting s i and t i. Many combinatorial problems can be efficiently solved for partial k-trees (graphs of treewidth bounded by a fixed integer k), but it has not been known whether the edge-disjoint paths problem can be solved in polynomial time for partial k-trees unless p=O(1). This paper gives two algorithms for the edge-disjoint paths problem on partial k-trees. The first one solves the problem for any partial k-tree G and runs in polynomial time if p=O(log n) and in linear time if p=O(1), where n is the number of vertices in G. The second one solves the problem under some restriction on the location of terminal pairs even if p ≥ log n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. Journal of the Association for Computing Machinery, Vol. 40, No. 5, pp. 1134–1164, 1993.

    Google Scholar 

  2. S. Arnborg, J. Lagergren and D. Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, Vol. 12, No. 2, pp. 308–340, 1991.

    Article  Google Scholar 

  3. H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, Vol. 11, No. 4, pp. 631–643, 1990.

    Article  Google Scholar 

  4. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proc. of the 25th Ann. ACM Symp. on Theory of Computing, pp. 226–234, San Diego, CA, 1993.

    Google Scholar 

  5. R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, Vol. 7, pp. 555–581, 1992.

    Article  Google Scholar 

  6. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation, Vol. 85, pp. 12–75, 1990.

    Article  Google Scholar 

  7. A. Frank. Disjoint paths in rectilinear grids. Combinatorica, Vol. 2, No. 4, pp. 361–371, 1982.

    Google Scholar 

  8. M. Kaufmann and K. Mehlhorn. Routing through a generalized switchbox. J. Algorithms, Vol. 7, pp. 510–531, 1986.

    Article  Google Scholar 

  9. J. Lagergren. Private communication, May 2, 1996.

    Google Scholar 

  10. K. Matsumoto, T. Nishizeki, and N. Saito. An efficient algorithm for finding multicommodity flows in planar networks. SIAM J. Comput., Vol. 14, No. 2, pp. 289–302, 1985.

    Article  Google Scholar 

  11. K. Matshmoto, T. Nishizeki, and N. Saito. Planar multicommodity flows, maximum matchings and negative cycles. SIAM J. Comput., Vol. 15, No. 2, pp. 495–510, 1986.

    Article  Google Scholar 

  12. K. Mehlhorn and F.P. Preparata. Routing through a rectangle. J. ACM, Vol. 33, No. 1, pp. 60–85, 1986.

    Article  Google Scholar 

  13. M. Middendorf. Private communication, May 1996.

    Google Scholar 

  14. M. Middendorf and F. Pfeiffer. On the complexity of disjoint paths problem. Combinatorica, Vol. 13, No. 1, pp. 97–107, 1993.

    Article  Google Scholar 

  15. T. Nishizeki, N. Saito, and K. Suzuki. A linear-time routing algorithm for convex grids. IEEE Trans. Comput.-Aided Design, Vol. 4, No. 1, pp. 68–76, 1985.

    Article  Google Scholar 

  16. N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, Vol. 7, pp. 309–322, 1986.

    Article  Google Scholar 

  17. N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. J. of Combin. Theory, Series B, Vol. 63, No. 1, pp. 65–110, 1995.

    Google Scholar 

  18. H. Suzuki, T. Akama, and T. Nishizeki. Finding Steiner forests in planar graphs. In Proc. of the First Ann. ACM-SIAM Sympo. on Discrete Algorithms, pp. 444–453, 1990.

    Google Scholar 

  19. P. Scheffler. A practial linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical Report, 396, Dept. of Mathematics, Technische Universität Berlin, 1994.

    Google Scholar 

  20. A. Sebö. Integer plane multiflows with a fixed number of demands. J. of Combin. Theory, Series B, Vol. 59, pp. 163–171, 1993.

    Google Scholar 

  21. H. Suzuki, A. Ishiguro, and T. Nishizeki. Edge-disjoint paths in a grid bounded by two nested rectangles. Discrete Applied Mathematics, Vol. 27, pp. 157–178, 1990.

    Article  Google Scholar 

  22. H. Suzuki, T. Nishizeki, and N. Saito. Algorithms for multicommodity flows in planar graphs. Algorithmica, Vol. 4, pp. 471–501, 1989.

    Article  Google Scholar 

  23. K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on series-parallel graphs. Journal of ACM, Vol. 29, No. 3, pp. 623–641, 1982.

    Article  Google Scholar 

  24. J.A. Telle, and A. Proskurowski. Practical algorithms on partial k-trees with an application to domination like problems. Proc. of Workshop on Algorithms and Data Structures, WADS'93, Montreal, Lect. Notes on Computer Science, Springer-Verlag, 709, pp. 610–621, 1993.

    Google Scholar 

  25. J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math., Vol. 61, pp. 83–90, 1995.

    Article  Google Scholar 

  26. D. Wagner and K. Weihe. A linear-time algorithm for edge-disjoint paths in planar graphs. Proc. of the First Europ. Symp. on Algorithms (ESA'93), Lect. Notes in Computer Science, Springer-Verlag, 726, pp. 384–395, 1992.

    Google Scholar 

  27. X. Zhou and T. Nishizeki. Optimal parallel algorithms for edge-coloring partial k-trees with bounded degrees. IEICE Trans. on Fundamentals of Electronics, Communication and Computer Sciences, Vol. E78-A, pp. 463–469, 1995.

    Google Scholar 

  28. X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Journal of Algorithms, to appear.

    Google Scholar 

  29. X. Zhou, H. Suzuki, and T. Nishizeki. A linear algorithm for edge-coloring series-parallel multigraphs. Journal of Algorithms, Vol. 20, pp. 174–201, 1996.

    Article  Google Scholar 

  30. X. Zhou, S. Tamura, and T. Nishizeki. Finding edge-disjoint paths in partial k-trees. Tech. Rept. 96-1, Dept. of Inf. Eng., Tohoku Univ., Sept. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, X., Tamura, S., Nishizeki, T. (1996). Finding edge-disjoint paths in partial k-trees. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009496

Download citation

  • DOI: https://doi.org/10.1007/BFb0009496

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics