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Abstract. The unification problem of terms in a disjoint combination E, +...+E, of arbitrary
theories is reduced to a combination of pure unification problems in E, where free constants may
occur in terms, and to constant elimination problems like: find all substitutions & such that ¢; is not
a constant in the term o, 1=1,...,n, where t; are terms in the theory 'EJ

The algorithm consists of the following basic steps: First of all the terms to be unified are

transformed via variable abstraction into terms belonging to one particular theory. Terms belonging
to the same theory can now be unified with the algorithm for this theory. For terms in some
multi-equation belonging to different theories it is sufficient to select some theory and collapse all
terms not belonging to this particular theory into a common constant. Finally constant elimination
must be applied in order to solve cyclic unification problems like {x = f(x)).
The algorithm shows that a combination of finitary unifying regular theories, of Boolean rings, of
Abelian groups or of theories of Hullot-type is of unification-type finitary, since these theories
have finitary constant-elimination problems. As a special case, unification in a combination of a
free Boolean ring with free function symbols is decidable and finitary; the same holds for Abelian
groups. Remarkably, it can be shown that unification problems can be solved in the general case
E,+...+E, if for every i there is a method to solve unification problems in a combination of E
with free function symbols. Thus, unification in a combination with free function symbols is the
really hard case.

This paper presents solutions to the important open questions of combining unification
algorithms in a disjoint combination of theories. As a special case it provides a solution to the
unification of general terms (i.e. terms, where free function symbols are permitted) in Abelian
groups and Boolean rings. It extends the known results on unification in a combination of regular
and collapse-free theories in two aspects: Arbitrary theories are admissable and we can use
complete unification procedures (including universal unification procedures such as narrowing)
that may produce an infinite complete set of unifiers for a special theory.
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1. Introduction.

Unification of terms with respect to an equational theory £ [P172, Si75, Si86] is the problem given
a set of equations I" = (s; = t;,...,s, = t ) to find some or all substitutions ¢ such that all
equations are solved, i.e. £ implies os; = ot; for all i. There are several theories E for which a
unification algorithm or a unification procedure is known, for example commutativity (C),
associtivity and commutativity or Abelian semigroups (AC), Boolean rings (BR) and Abelian
groups (AG). For a survey see [Si86, Si87].

In general the terms that are allowed as input for a unification algorithm for a theory £ are
restricted. to consist of variables and function symbols that belong to E, for example a
BR-unification algorithm allows only terms built with +,*,0,1 and free constants. All useful
unification algorithms known so far accept terms built with a fixed set of theory function symbols
and arbitrary free constants. However, it is an open problem how to construct from an
E-unification algorithm for E-pure terms (i.e. without free constants) a unification algorithm that
also accepts terms including free constants [Bii86, Bii87]. H.-J. Biirckert and the author have
given an example where unification becomes undecidable after the addition of free constants
[Bii86, Sch87a]. We exclude this problem by assuming that free constants are permitted in terms.

The application of unification algorithms would be rather restricted if only terms containin g the
function symbols belonging to £ and free constants are possible as input. For example in
Automated Deduction systems Skolem-function (i.e., free function symbols) occur frequently and
usually terms containing the theory symbols and free function symbols have to be unified. A
similar situation arises in completion procedures modulo a congruence [LB77, Hug0, JK84],
where in general a unification algorithm for an equational theory plus free function symbols is
required.

The combination of unification algorithms for theories with disjoint sets of function symbols
has been considered first by M. Stickel [St75, St81] , M. Livesey and J. Siekmann [LS78] and F.
Fages [Fa84] for the associative-commutative case. The algorithms accept terms built with several
AC-function symbols and free function symbols. A more general combination problem was tackled
by K. Yellick, C. Kirchner, E. Tidén and A. Herold [Ye87, Ki85, Ti86a, He86]. They came up
with algorithms for a combination of equational theories that obey some restrictions. C. Kirchner
[Ki85] requires the theories to be simple. K.Yellick and A. Herold [Ye87, He86] require the
theories to be regular and collapse-free and E. Tidén [Ti86a, Ti86b] considered the more general
case of collapse-free theories. Recently, P. Jouannaud and A. Boudet [BI87] announced a
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unification procedure for a combination of arbitrary and a simple theory.

We loosen these restrictions to allow arbitrary theories in a disjoint combination. The
presented algoﬁthm can be seen as an extension of C. Kirchner's method to transform systems of
multi-equations. The idea of constant-abstraction [LS78, He86] is indispensible and used heavily
in our algorithm. We show that in order to solve unification problems in-a combination, it is
sufficient to have a unification algorithm for terms with free constants for all theories and a solution
method for constant elimination problems in every theory. Alternatively we can also use a
unification procedure for a combination of every theory with free function symbols. A complete
solution is presented for a combination of theories, where every theory Ein the combination
satisfies one of the following cases: '

i) Eis regular

ii) Eis afree Abelian group

iii) Eis a free Boolean ring

iv) ‘Eadmits a canonical TRS and basic narrowing terminates (is of Hullot-type)

Note that in this paper we will always assume that an Z-unification algorithm also accepts free
constants and that all notions and definitions refer to a signature that includes infinitely many free
constants.

The paper is organised as follows. In the paragraphs 2-4 we give the basic definitions and an
analysis of properties of a combination and paragraph 5 deals with the basic transformation rules
used for unification algorithms. In sections 6 the algorithm for the general combinations is
presented and in section 7 we prove its completeness. Paragraph 8 presents methods to solve
constant-elimination probléms. Paragraphs 9 and 10 deal with the special cases of combining an
arbitrary and a simple theory and combining collapse-free and reégular theories. In paragraph 11 a
decidability result for unification in a combination is given.

2. Equational Theories.

We assume that the reader is familiar with terms, substitutions and algebras [HO80, Hu80, Si87].
The set of terms (X,V) is defined over a signature Z consisting of fixed-arity function symbols
and a countably infinite set of variables V. The set W(Z,V) is a free algebra over £. Nullary
function symbols are also called constants. We shall use hd(t) to denote the top level function
symbol of t or hd(t) =t, if t is a variable. The set of variables in a term t is denoted by V(). A
supstitution o is an endomorphism on 7(X,V) that moves at most finitely many variables.
Substitutions can be represented by a set of variable-term pairs 6 = {x;¢ t;,....x, &t } with
x; # t;. The set {xy,...,x;} is the domain DOM(0) of o and the set {t;,...,t,} is the codomain
COD(0), the set of variables introduced by ¢ is denoted as I(6) := V(COD(6)). The union ot of
two substitutions ¢ and T with DOM(c) " DOM(t) = @ is defined as (6UT)Xx = Ox, if
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x € DOM(o), (cuT)x = 1X, if x € DOM(0) and (oUT)X = X, otherwise. The restriction of a
substitution © to a set of variables W is the substitution oy, With Gjyx = 0x for x e W and ojyyx =
X, otherwise. We also use Uy for the set {o)y, € Ul o € U}. A substitution ¢ is called
idempotent, iff 6o = . Note that 6 is idempotent, iff DOM(c) N I(0) = @.

In order to have access to subterms of a term t, we use occurrences [Hu80]. The subterm of t at
occurrence 7 is denoted by t\r and the term constructed from t by replacing the subterm' at
occurrence Tt by term s is denoted as t[® « s].

In the following we sometimes use the phrase ‘new variable’, which always means that a variable
is now used, which is never used before dependent on the context. Such a choice is always
possible, since there are countably many variables.
An equational theory Eis a pair (X, E) , where X is a signature and E is a set of equations. The
equations in E are also called axioms. If a function symbol occurs in an equation in E it is called
interpreted function symbols, otherwise a free function symbol. The set of free constants in a
term t is denoted by FRC(t).
An algebra A over X satisfies E or is a model of £ (A k= E), if for every assignment of elements
in A to variables in an equation ! = r in E, the corresponding equation holds in A. We say an
equation s = t is a consequence of E (E = s =1), if every model A of E also satisfies s = t. We
will also use s = tinstead of £ F s =t. Note that the relation = is a congruence relation on
2(Z,V) and that ‘1(23,'V)/=£ is a free model of £. The equivalence class of t with respect to = is
denoted as [t],. '
It is well-known [Bi35], that there are derivation systems that produce all consequences of a set of
axioms E: The following rules are sufficient:

) F{t=t} (reflexivity)

i) {(s=t} r {t=s) (symmetry)

i) {r=s} & (s=t} + (r=t} (transitivity)

iv) - {s = t} fors=tinE.

v) {s=t} r {Oos =0t} for all substitutions ©.

vi) {s; =t;1i=1,...,n} + {f(s,,...,s,) =f(t},....t) } for an n-ary function symbol f.

It is also well-known that iv) and v) can be replaced by
iv)' r {os =0t} for all substitutions o and for all s =t in E.
A further complete derivation system is demodulation (also called rewriting) [WRC67, Mc67]. In
order to prove s =4 t, the deduction starts with s and uses only one rule:
s —> S[r ¢« or],

if there is an occurrence T in s, an instance ol = or of an axiom | =r or r =1 such that ol is

syntactically equal to.s\rt.
This derivation system is complete in the sense, that for every valid equation s = t, there is a
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demodulation proof starting with s and arriving at t.

A term rewriting system R is a set of directed equations R = {1, - r; }, where V(r;) < V(1).
The corresponding derivation relation -y, is rewriting where 1, — 1; is used only in the given
direction. A TRS is called terminating, if there are no infinite derivation. A TRS is called
confluent, iff for all terms s, s;,5, with s *—p s, and s *-p, s, there exists a term sy with
s =g s3 and s, *>p s5. A terminating and confluent TRS is called canonical. A term is in
normalform, if no reductions are possible. In an equational theory admitting a canonical TRS
every term t can be reduced a unique normalform, denoted by t{.

An equational theory ‘Eis called consistent, iff there is a nontrivial model of Z, equivalently if the
equation x =y for different variables x and y is not deducable from E. An equational theory £ is
called collapse-free, iff there is no valid equation x =; t, where t is not the variable x. An
equational theory is called regular, iff for every valid equation s =, t we have V(s) = V(t).
Equational theories are regular or collapse-free, iff the corresponding sets of axioms have this
property. A theory Eis called simple, iff s =, t does not hold for a proper subterm s of t. Note
that a simple theory is regular and collapse-free, but that the converse is false [BHS87]. |

We extend Z-equality of terms to substitutions: Two substitutions ¢ and © are equal modulo £
over a set of variables W (6 =, T [W]) , if 0x =, Tx for all variable x e W.

We say o is an instance of T or T is more general than ¢ over a set of variables W
(t <5 6 [W]), if there exists a substitution A with (At =, 6 [W]). Furthermore we say o is
equivalent to T over W (1 =, ¢ [W]), iff T <. 0 [W] and ¢ <.t [W].

LetT:=(s; =t; |i=1,...,n) be a system of equations. (We will also use the letter A for denoting a
system of equations.

A substitution ¢ Z-unifies I' if for every equation s; = t. in I we have os; =, ot. In this case we

) ) J
say O is an Z-unifier of I'. The set of all Z-unifiers is denoted by U (T").

A complete set cU (I) of unifiers of I' is a set satisfying

i) cUD) cULT) (correctness)
ii) Voe UM 3Ite cU(D): 1t<,0[VI)] (completeness)

A complete set is called minimal or a set of most general unifiers (mgus), iff additionally
ili) Vo,1e cUAD) 1<, 0[VI)] =t=0 (minimality)

Minimal sets are also designated as pU(I'). Note that for fixed I all the sets RU I') are
equivalent [FH83].

An equational theory is called unification based, iff pU (") exists for all T".

A unification based equational theory Eis called unitary, finitary or infinitary depending on
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the maximal cardinality of WU (T") for all I'. Theories that are not unification based are also called
nullary.

There are theories of interest in every class [Sz82,5186, FH83, Ba86, Sch86]).

In the unification procedure described later we need constant-elimination problems to unify cyclic
unification problems where several theories are involved. E. Tidén [Ti86] used a similar method
for this urpose, which he called ‘variable elimination’.
A constant elimination problem ( in the theory Zis of the form
C:= (ci 3 tij li=1,...,n, j=1,...,m), where c; are different free constants and tij are E-terms. The
set of solutions of C is the following set: U,(C) := (o IEItij' tij' =g Ot;; and c; ¢ -FRC(tij') for
i=1,..,n, j=1,....m }.
A complete set of constant eliminators cU,(C) is a set of substitutions, such that

) UL cULO)and

ii) For every 8 € U(C) there exists a 6 € cU (), such that 6 <6 [V(O)].

Note that instances of constant eliminators of C may not be constant eliminators for . However, in
special theories like Boolean rings, for which we determine a set of constant eliminators below, it
is always clear how to obtain every constant eliminator by instantiating the most general ones.

3. Combination of Equational Theories.

The following notions and definitions are adapted or generalized notions from [He86, Ye&7,
Ti86a].

In the following we investigate equations and unification in a combination of two equational
theories £, = (£;,E,) and E, = (Z,E,) , where the only symbols common 10 Z; and Z,, are
free constants, i.e., constants that do not occur E; and E,. Furthermore we assume that X, and
2o contain the same set of countably infinitely many free constants FRC. We denote the disjoint
combination as £, +E, := (Z5UZ ), E;UE,). As abbreviation we sometimes write £+ instead of
£,+E,. For the purposes in this paragraph it is no loss of generality to consider the case of a
combination of two equational theories, since all theorems can easily be generalized to the case of
N > 2 theories..

3.1 Assumption. In the following we assume that all ; are consistent theories. ll
From now on we assume that £, and £, are given and that terms are from T UZy, V). We

use the convention that £ denotes a general theory that can be specialized to either £, or €,.
‘Let s be a term, then TH(s) = Z, if the top-level function symbol of s belongs to Z; in this case we
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say s is an ‘E-term or has (syntactical) theory £ We also say that variables and free constants are
‘E-terms. A term s is called pure if s is a term from KX, V) for some theory Z, otherwise a term
is called a mixed or general term. In order to emphasize the theory of its top symbol, we
sometimes say s is z-pure'if TH(t) = £. We also say a term s is a proper Z-term, iff s is an
‘E-term but not a variable or free constant. A subterm s of a term t is called Z-alien, if every
proper superterm of s in t is an ‘E-term, but s is not an E-term. A subterm s of an E-term t is an
alien subterm, iff every proper superterm of s in t is an £-term and s and t have different theories.
The set of all alien subterms of a term t is denoted as ALTEN(t) and the set of all £-alien subterms
is denoted as ALIEN(t). Sometimes we need also the set of equivalence-classes of Z-alien terms
denoted by ALIEN(t, E+) := {[r]lg, | r € ALIEN(t)}. Note that free constants or variables do
not count as alien subterms.

We define the syntactical theory height of a term t as the maximal number of theory changes
of a term [He87, Ti86a): ‘

i) THT() := 0, if tis a variable or free constant.

i) THT(t) := 1, if tis a pure term.

iii) THT(t) := 1 + max {THT(s) | s € ALIEN(p)}.

The following well-known lemma of G. Gentzen [Ge35] states that free constants can be replaced

by new variables. ) |

3.2 Lemma. Let E be an equational theory, let s,t be terms, let c € FRC(s,t) and let y be a new
variable. The terms s' and t' are constructed from s and t, respectively, by replacing every

occurrence of c by y.

Then s=;t & s'=;t.

Proof., "<" is trivial by applying the substitution {y < ¢} to s’ =,t"

"=>" If A be a model of £ and let 'y be a assignment of values to variables in s’ and t'. If we
construct a A' from A by changing the interpretation of ¢ to be c,. := Y(y), then A'is a
£-model, hence Y(s) = Y(t). Furthermore Y(s") = ¥(s) = (t) = Y(t), hence ¥(s") = Y(t') in the
model A. This arguments hold for every £-model and interpretation, hence s'=,t'. il

The addition of free constants is a conservative extension:
3.3 Lemma. Let €= (X, E) be an equational theory, let C be a set of free constants and let ¥ =
(& L C, E) be the theory where free constants are added.
Then for all E-termss,t: s=;t ¢ s =gt
Proof. "=" is trivial, since E-deductions are also 7deductions.
"¢=" Let s,t be terms with s # t and let A be an E-model such that y(s) # y(t) for some
interpretation y. Then A can be made an F-model by assigning arbitrary values to free
constants from C. Since we have y(s) # Y(t) in the Fmodel A, we have also s #,t. 1
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3.4 Corollary. Let £ be a consistent theory.
Then a #, b for different free constants. B

In the following we construct a model A of £+, which turns out to be isomorphic to the free
term-model. As a consequence of this construction we get the same results as E. Tidén [Ti86a],
that the combination of several theories does not influence equality of pure terms, i.e. that the
combination of disjoint equational theories is a consaervative extension of every theory, and that
complete sets of unifiers of pure terms can be computed locally in the corresponding theory,
however, the construction given below appears to be simpler than the proofs in [Ti86a]. Weaker
versions of these results are proved in [Ye87, He86].

We proceed by defining a chain of sets Aj n and Bj’n with partially defined operations.
Let Ag:= A} g:= Ay o= FRCU V and let Aj,l = ‘I‘(ij,V)/=£j be the free term model of &,
j=12. Since E; and £, are consistent, we can assume that A, is embedded in Aj,l by
considering a and [a]=,£j as the same element where ‘a’ is a variable or free constant.
Let B, ; := Aj | — Ag for j = 1,2. For convenience we assume that By o= B, = 3.
(Note that we use the term 3-j in order to switch from 1 to 2 or from 2 to 1.)
For j = 1,2 we define Aj,n recursively as Aj,n = T(ZZJ'U B3_J-J|_1;V)/=zj where the elements of .
B3-j,n-l are considered as free constants. It is assumed that free constants and variables are
identified with their congruence-class, i.e. a and [a]=£j are considered as the same element where
ae B3-j,n-l (0 Ao. Let Bj,n = Aj,ﬂ - (AO () B3-’j,n-1) -
Intuitively, the sets B; ; contain all terms that cannot be collapsed to elements in Ag U B3 ; 5 1.
Due to Lemma 3.3 we can assume that A,  is embedded in A, inthe case By ;1 < B3 in
The following holds:

i) Aj'ngA- jforn21andj=12.

J.n+
i) Bjp < Bipyforn21landj=12.
Proof:  The base cases for induction are Aj 0S Aj,l and Bj 0s Bj,l , which hold trivially.
For some n 2 1 let the induction hypothesis be Aj s Aj,n and Bj nl& Bj-,n forj=1,2.
n+1 DY the definition of Aj,n~
Anelementb e BJ- n is an element in T(Zgu B3-j,n-1’v)/='£j that is not equal to a constant
or a variable (in this algebra). If we extend B3_j n-10Y B3_j q» then Lemma 3.3 yields that
Aj’n can be embedded into Aj hence b € Aj,n +1— Aoy _B3_j’n). We conclude that
Bjn S Bjne- U
Note that B, ;, B, ;; and A are pairwise disjoint. The following diagram shows as an illustrating

From B3—j,n-1 o B3-_],ﬂ we derive Aj,n [t Aj

,n+1°

example the set-diagram of A, 2°
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By, — By

] ’

A ° Bl,l B2,1
22 °

The algebra A is defined as the union of all sets Aj,n’ ie., A:= U{Aj’n_ In=1,2,...,j=1,2}. We
define also Bj’oo:= U.{Bj,n fn=1.2,.., }. Note that A = Ay L Bl,“, ) Bz’,,, where the union is

disjoint.

The set A is an algebra for £, Z, if we use the following interpretation:
Free constants in ij are interpreted by themselves. Let f € Zﬂj be a function symbol and let
ay,...,a, € A, There is an m such that 3, € Az By [, U B,  for alli=1,...,n. Then all a; are

elements in A

i, m +1-We define f, (ay,...,a,) :=f(a},...,a,)/=F. This is an element in A,

2] J,m+1*

Lemma 3.5 A is an £, +E, -model: _
Proof. Let 1 =1 be an axiom in E and let 'y be an assignment of values from A to variables in
V(l,r). There is an m such that yx € Ay L B, mY Bz’mvfor all x e V(l,r). We can view the
assignment y as a mapping with values in Aj m+1- Since Aj,m +1 18 a model of 1=r1, we have

that y1 denotes the same element as yr. B

Every term tin T (4, UZ,,, V) has a unique interpretation 15 (t) in A if variables are interpreted
by themselves and function symbols f as f,.

The combination Z;+%, is a conservative extension of €; and E,:

3.6 Lemma. Let s,t be Ej-pure terms.
Thens=gt & s=g,t.

Proof. "=" is trivial.
"e=": Lets #gt. Consider the model A of E1+E,. Obviously we have 1,(s) # 1,(t), hence also
s#g, t. W

3.7 Lemma. A is isomorphic to the free term model WE | UZp,, V)/=4,
Proof. We show that 1,/=;, : AEypUEpy, V)=, — A is an isomorphism:
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Since A is an E; +E,-model, we have that s =t implies that 1 A(S) =1,(D.

In order to show the converse let 1,(s) =1 A(D. By the construction of A it is obvious that the
relation = on AL, VEL,, V) induced by 1, via s = tiff 1 A(8) = 1,(0) is a congruence-relation
with s = timplies s =, .t. B

The above construction also yields as a corollary that the decidability of the word-problem of the
involved theories is inherited to the combination. This result is also implicitly contained in [Ti86a].
Y.Toyama [To86, To87] investigates the disjoint combination of theories admitting a canonical
term rewriting system and shows that confluence is inherited, but not termination. This corollary
can be seen as a supplement to Toyama's results.

3.8 Corollary. If the word-problem in £, and £, is decidable, then the word-problem in
E,+E, is decidable. '
Proof. The embedding 1, is computable, if the word-problem in E; and £, is decidable.H

The following notions of semantical theory and semantical theory height are needed in order to deal
with unification problems in combinations of arbitrary theories. In the case where all theories in a
combination are collapse-free and regular, those semantical notions coincide with the syntactical
notions.
3.9 Definition.
i) We say a term t has semantical theory £ iffLp(t) e Bj,w or semantical theory E, iff
15(t) € A(. We denote this by S-THT(t) = 'Ej or S-THT(t) = %, , respectively.
ii) The semantical theory height is defined as follows:
If t € Ay, then S-THT(1) = 0,
otherwise it is the smallest number m, such that 1,(t) € Bj,m for some j.
iii) A term t is called Z+-normalized, iff for every subterm s of t : S-THT(s) = THT(s).
iv) A term t is called ZZj-normalized, iff every Zj-alicn subterm is E+normalized.
iv) A substitution o is T,j-normalized, iff every term in COD(0) is £j-normalized. |

The construction of the model A shows that the notions of semantical theory and semantical theory
height are uniquely defined. '

Note that an Zj-normalizcd term t may not be E+-normalized, in particular it may have another
semantical theory than ;. Furthermore an E+normalized term may not be the smallest possible
representative of a term. For example if E, = {f(x y) = f(x' y)} and E, is empty, then f(g(a), g(a))
is E+-normalized, but E+equal to f(a, g(a)).

In equations between fj-normalized terms we can replace alien terms by new free constants:
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3.10 Lemfna. Lets and t be Zj-normalized terms and let s' and t' be constructed from s and t by
replacing all _T:j-alien terms consistently by new variables, i.e. E+-equal fj-alien terms are
replaced by the same variable and E+-unequal terms by different variables.

Thens =, t &5 =gt

Proof. "<": Obvious.

"=": Let s,t be terms with s =, _t. In the E+-model A we have 1,(s) = 1,(t). Since 'Ej-alien
terms have a different semantical theory than E, this means precisely, that s and t are equal,
if zj-alien subterms are considered as constants. With Lemma 3.2 we can replace the
free constants by new variables. This proves the claim. Il

If s and t are not E-normalized, then Lemma 3.10 may be false:

3.11 Example. Let E, := (f(x, x) = g(x, x)} and E, := {h(x) = x}. Then f(h(x), X) =,
g(h(x), h(x)). We have ALIEN,(f(h(x), x)) = {h(x)} and ALIEN, (g(h(x), h(x))) = {h(x)}.
If we replace h(x) by y, then we would have the equation f(y, x) =, g(y, y), which does not
hold. W :

3.12 Lemma. If the substitution G is ’Ej-normalized and the term t is E;-pure, then ot is
'Ej-normalized. [ |

The following lemma is Lernma 3.2.1 in [Ti86a] . We give a proof as a corollary of Lemma 3.6.
3.13 Lemma. LetT' = {s; =t li=1,...,n} be an Ej-pure system of equations.
Then Uﬂ(l“) is a complete set of E+-unifiers for U, (D).

Proof. Let o be an E+unifier of I'. It suffices to show that there exists an Zj-uniﬁcr Omg of I,
which is more general than ¢ over V(I'). We can assume without loss of generality that G is
E;-normalized. Then all terms os; and ot; are also Z-normalized by Lemma 3.12. Lemma 3.10
shows that the equations in oI” remain solved, if ¢ is changed such that the Ej-alien subterms of
codomain terms of ¢ are replaced by new variables. This gives an Ej-pure substitution O’
which solves I" with respect to £+ and hence by Lemma 3.6 also with respect to ;.
Furthermore O, is more general than ¢ over V(I'). W

4. Properties of Essential Terms.

For E-normalized terms t we say o..(t) is an Z-variable-abstraction of t, iff every E-alien
subterm r of t is replaced by a new variable Y such that for alien subterms r and r' we have
I =g, 1" if and only if yjy = y[. Similarily an E-constant-abstractions B is defined, where
new free constants are used instead of new variables. Obviously the terms ou(t) and B(t) are pure
E-terms. It is obvious that abstractions can be simultaneously defined for finite sets of terms.
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We will also abstract Z-normalized substitutions o: the E-variable abstraction «.(o) of o is
defined by a(0)x := 0 (0ox) for all x. In the same way we define the constant-abstraction of an
E-normalized substitution.

4.1 Lemma. Lets, t be Z-normalized terms and let o be a variable abstraction and B, be a
constant-abstraction.
Then s=g t & 0xs) =g ag(t) < Bs) =5 PO .

Proof. Follows from Lemmas 3.2 and 3.10.

In nonregular theories E there are usually terms s,t with s =4 1, but V(s) #¢ V(t). The following
definitions and investigations are in order to deal with this problem.
The set ESS-FRC(t) of essential free constants of an ‘E-pure term t is the intersection of all

sets FRC(t') for all terms t' with t' =, t. The same can be defined for variables in a pure term t
and the corresponding set of essential variables is denoted as ESS-V(t). Variables or constants
in FRC(t) — ESS-FRC(t) or V(t) — ESS-V(t) are called inessential.

If tis an E-normalized term, then we define the set of equivalence classes of essential E-alien
subterms of t, denoted as ESS-ALIEN (t, E+) as the E+-equivalence-class of Z-alien terms, that
are replaced by an essential variable in the E-variable-abstraction.

The set ESS-ALIEN(t) is the set of all Z-alien subterms r of t with [r], € ESS-ALIEN,(t, E+).
A term from ALIEN,(t) — ESS-ALIEN(t) is called inessential.

An obvious fact is that for E-pure terms s,t with s =t we have ESS-FRC(s) = ESS-FRC(t) and
ESS-V(s) = ESS-V(t) and that for ‘E-normalized terms s,t with s =, t we have
ESS-ALIEN (s, £+) = ESS-ALIEN(t, £+),

4.2 Lemma. Lettbe an £;purc term. Then the following statements are equivalent:

1) c & ESS-FRC(t) for 4 free constant c.

ii) t=gt', where t' is obtained from t by replacing all occurrences of ¢ by a new variable x...

iii) t = t", where t" is obtained from t by replacing all occurrences of ¢ by a new constant d.
Proof. (ii) < (iii) follows from Lemma 3.2, since d and x do not occur int.

ii) = i) follows, since c & ESS-FRC(t') and t = t'.

i) = ii): There exists a term t; with t = t,, such that ¢ ¢ FRC(ty).

With Lemma 3.2 we obtain t' =, t, hence by transitivity we obtain t' =, t. ll

4.3 Lemma. Let t be an £-normalized term and let r € ALIEN,(t). The following statements are
equivalent:
i) re ESS-ALIEN.(1).
ii) t =g, t', where t'is obtained from t by replacing all Z-alien subterms E+—equal to r by a
new variable x .
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iii) t =¢, t", where t" is obtained from t by replacing all Z-alien subterms E+-equal to r by a
new constant C,.
Proof. (ii) ¢ (iii) follows from Lemma 3.2, since c, and x, do not occur in t.
il) = 1) follows from the definition of essential E-alien subterms and L.emma 4.1.
i) = ii): From t we construct B(t) by a constant-abstraction. By definition we have that
B(r) is an inessential constant in Bﬂ(t), hence we can use Lemma 4.2 to consttuct a
term t' with B(t) =, B(t). Lemma 3.2 and Lemma 4.1 show thatt =, t'. I
4.4 Lemma.
i) For every Z-pure termt, there exists a term s with s =, t and ESS-FRC(t) = FRC(s).
i) For every E-normalized term t, there exists an E-normalized term s with s =, t and
ESS-ALIEN(t, E+) = ALIEN(s, E+).
Proof. i) follows from Lemma 4.2 and ii) follows from Lemma 4.3 by repeated application.ll

4.5 Proposition. Let t be an E-normalized term and let s be an E-alien subterm of t with
S-THT(s) = S-THT(t). |
Then s is an inessential Z-alien subterm of t.

Proof. Assume s is an essential E-alien subterm of t and let n = max {S-THT(r) |r € ALIEN(t)}.
Consider the construction of the F+-model A. If we consider all alien terms as constants, then
all terms equal to t in the model Aj 5 contain the constant corresponding to s. Hence there is no
m less than S-THT(s) such that1,(t) is in Aj,m . This means that S-THT(t) > S-THT(s), which
contradicts our assumption. l '

If £is regular, then there are no inessential terms:

4.6 Lemma. If £is regular, then
i) For every E-pure term t: ESS-FRC(t) = FRC(t).
ii) For all Z-pure terms s, t with s =t : FRC(s) = FRC(t).
iii) For every Z-normalized t: ESS-ALIEN(t, £+) = ALIEN(t, £+).
iv) For all Z-normalized terms s, t with s =, t: ALIEN (8, E+) = ALIEN (1, E+).
Proof. Due to Lemma 4.1, 4.2 and 4.3 it is sufficient to prove i), which in turn follows
immediately from Lemma 4.2, since  is regular. Bl

5. Unification as Transformations of Systems of Equations

We consider the process of unification (or solving equations) as a sequence of (maybe
nondeterministic) transformations that starts with a system of equations and stops with one in
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solved form. This follows the ideas of J. Herbrand [Her30], A. Martelli, U. Montanari [MM82]
and C. Kirchner [Ki85]. We shall also use multi-equations instead of equations, since they are
more appropriate. We assume that I is a set of multi-equations and that each multi-equation M; is a
set of terms {t;,...,t,}, also denoted as t; = t, = .... =t,. Obviously every system of equations
can be considered to have this form. We use s =t € I' synonymously with s,t € M, where
M e I. Furthermore we assume that merging is built-in, i.e. if r = s and s = t are in I, then also
r=tisin I, or equivalently that all multi-equations are disjoint. Note that ‘merge’ usually means to
consider only variables common to some multi-equations and that we consider also common terms.
As abbreviation we shall also use equations of the form S = T, where the uppercase letters denote
sets of terms and S = T means the conjunction of all equations s; = Y fors;e S and L€ T. With
VAR(T') and TER(I') we denote the set of variables and terms, respectively, that occur as
arguments of equations in I'.

In the following we consider transformations of an system of equations I to a system I'y with
respect to a set of variables W, denoted by I'} =y, I',. This set W is usually the set of variables of
an orginal system of equations I to be solved. We will sometimes call the set W the set of
significant variables, and the other variables auxiliary variables. Usually we abbreviate
r =v(r) I"'as T'=T".

We say a transformation I' =y, I is correct, iff U () 2 Uz(I")y, and that T =y, I is
complete (or preserves solutions), iff Ug(I)yw = Ug(I'")y. We say a set of correct
transformations {I" =y, I'; lie I} isa complete set of alternatives, iff U (I')y =
U{U T )w | i € I}. This is of particular interest if the set of transformations comes from a rule.
In this case we say this rule provides a complete set of alternatives.

The proofs of the following three lemmas are straightforward.

5.1 Lemma.
i) Forall oe Uy, te SUBgand 6 <t [V(I)] = 1€ Ug).
ii) Forall 6 e U I),te SUBgando=,T[V()] = 1€ Uy (D).
iii) For every & € Ug(I'), there exists an idempotent substitution T € U £(') such that
o=1[VI)], DOM(1) = V(I') and I(t) consists of new variables. Wl

We have the following criteria to recognize the completeness of transformations:
5.2 Lemma.
) {T=>wTI;lie I} isa complete set of alternatives, iff
forevery 6 € ULI) there exists a te \U{UT) i€ I} with 6 =,1[W] and
forevery e U{U4I) lie I} there exists a 6 € U (I") with o=,1 [W].
i) (T =2y I;lie I} isa complete set of alternatives, iff
forevery o € Ug(D) there existsat e U{ULT) lie I} with o=,1[W]and
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forevery te€ U{ULT) lie I} there existsac € Ug(I) with o=,1[W]. W

5.3 Lemma.

i) IfI'} = I, and I, =y, 'y are correct, then I'y =y, I'y is correct.

ii) IfI'; => I, is complete and I", =y, I'; is complete, then I'y =, I'; is complete.

iii) If V. W and I'y =y, T’ is correct, then Iy =y T, is correct

iv)IfVC Wand I'; =y I’y is complete, then I'} =y, I', is complete

v) fVcWand {T =y Ilie I} isa complete set of alternatives , then
{T =y I;lie I} is a complete set of alternatives.

wilf f Vg Wand {T =y I';lie I} is a complete set of alternatives and
{(ry =>w 1.j lje J} is a complete set of alternatives then
(T=yGlie I-{1}) U {T =y I‘IJ lje J} isa complete set of alternatives.

vi) If V(I')) ¢ Wand V(I',) ¢ W then:
I') =w I, is complete, iff ULT)) = UxI).

viii) I’y =y, T, is complete, iff for every idempotent substitution ¢ € U (I'{) with
DOM(o) = V(I'}) there exists a A with DOMA) ¢ V(T')-V(T'y), such that
oA € UgT,). B

In the case where an infinite number of free constants is in the signature, it makes no difference to
use ground substitutions instead of arbitrary substitutions for testing completeness. If ¢ is an
idempotent unifier of I' with DOM(o) = V(I'), then let o, be the constantified unifier, where every
variable in I(0) is replaced by a free constant not in I'. Obviously o, is a unifier of I'. Conversely,
if o, is a unifier of I', then ¢ is also a unifier due to Lemma 3.2.

In the following we denote the conjunction of two problems I'y and I as I'; &Iy Obviously we
have Uy(T',&I'p) = U(I')) N UTI,). The following lemma shows that complete tranformations
made on one conjunct can be lifted provided the transformation introduces only new variables.

5.4 Lemma. Let I'; and A be systems of equations.
i) Let W be a set of variables and let T’y =y I, be complete such that all variables in
V(T,) —V(y) are new ones.
Then T’y & A =y I’y & Ais complete.
ii) Let W be a set of variables and let {I" v [';1i e I} be a complete set of alternatives
* such that all variables in U{V([’)) |i € I} — V(') are new ones.
Then {T" & A =y, T; & Ali e 1} is a complete set of alternatives .
Proof. It is sufficient to prove ii):
Let o be a solution of I & A with DOM(0) ¢ V(I & A). Since {I" =v(r) I'ilieI}isa
complete set of alternatives, there exists an index j and a substitution T & UE(I‘j) with
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DOM(1) ¢ V(Fj) and Sivay =TIv(r): Now 0 := TUO |y (A)-V(T) is a unifier of Fj & A, since
0=0[V@QA)].

In order to prove the converse, let j € I and let T be a solution of Fj & A with
DOM(T) ¢ V(I‘j). There exists a substitution 6 € Uz(I') with DOM(c) ¢ V(I') and
Siv(r) = Tv(ry NoW 0UTy ) v () is a unifierof ' & A. W

A special complete transformation is to replace a system I" by a complete set of Z-unifiers of I.
We use (o) to denote the system of equations that come from a substitution o, i.e., if ¢ =
{x1 & ty,ee, X ¢ t3 ], then (O) = (x] = t;,....x, = t.).

5.5 Proposition. Let I' be a unification problem and let U be a complete set of
idempotent E-unifiers of I", such that DOM(0) ¢ v(ITy.
Then (I Svo) (o) | o € U} is a complete set of alternatives.

Proof.

1) Correctness: Let T € Ug({(0)) for some 6 € U. Then we have 1x =, tox for all x e V().
Hence o<, 1 [V(I)], which implies T € U, (I) by Lemma 5.1. ‘

ii) Completeness: Let T € UT). Then there exists a 6 € U, such that 0 <t [V(I")], hence there
exists a substitution A such that Ao =, 1 [V(I)]. For a component x = ox in {(G), we have
x € Y(I), hence Aox = Loox and thus A6 € U((0)). Since Ao =zt [V(I))], we are ready
by Lemma 5.2. R

The idempotency of unifiers is necessary in Proposition 5.5:
Consider the system of equations {(x = f(y)). Then {x « f(x), y «x} is a most general unifier for
[, but the system {x = f(x), y =x} is unsolvable.

A cycle in I' is defined as follows:

Let x; =t;,i =1,...,n be equations in I', where x; is a variable and t; is a nonvariable term, such that
X;41 € V() fori=1,...,n-1 and x; € V(t). Then x;, ¢, ,i=1,...,nisacycle inI". A system of
multi-equations I is in sequentially solved form, iff in every multiequation there is at most
one nonvariable term and I" contains no cycle. It is in solved form, iff no variables in VAR(I')
occur in some term from TER(I'). Note that every sequentially solved system can be transformed
into a solved one by the replacement rule defined below without loosing solutions. From every I
in solved form, we can immediately construct an idempotent substitution o as follows: If M is a
multi-equation in I with a nonvariable term t, then let px :=tforallx e M. If Misa
multi-equation in I" consisting only of variables, then choose a variable y € M and let opx :=y for
all x € M. Obviously or- is idempotent for systems I" in solved form.

Solved equation systems have the right solution and are unitary solvable:
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5.6 Lemma. Let I' be a solved equational system. Then
O is a most general E-unifier of T'.

Proof. Let o be a E-unifier of I" = {x, =t,,....x, = t,}. Then ox; =, ot, fori = 1,...,n. We have
to show ¢ =, ¢ o [V(I]. For x € {x;,...,x,}, this follows from ox; = ot; = 6O X;. For
x € V(ty,....t)), we have 6x =; OO x, since oprx=x. B

In the following we give some transformation rules that are useful for all equational theories.

First we describe some general don’t care rules that can be applied to systems of equations,
i.e., these rules are compiete. The first four rules are also referred to as reduction rules. Note
that we do not mention the usual merge-rule, since we assume that it is built-in.

In the following rules we mean by s = t that s and t are different terms of the same multi-equation
MinI

5.7 Definition.

Rule: Trivial Multi-equations. M&T'= T,
if M contains only one element.

Rule: Auxiliary Variables. &M =y I' & M-{z},
if z¢ W and z does not occur elsewhere in I'.

Rule: Theory-Merge. M, &M, =M, UM,,
if there are terms t; € M; and t, € M, witht; =, t,.

Rule: Equal terms. M = M-(s],
if M contains two different terms s, t with s =gl

Rule: Demodulation. s=t =>s' =t
ifs =, s'.

Rule: Replacement. s=t&r=1 = s=t&rret] =1,
if rot =g s.

Rule: Variable elimination x=t&I'= x=t& {x «t)T
if xe V().

Rule: Renaming. ' xeX'I'&x=x,

where x € V(1) for some t € TER(I") and x' is a new variable.
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Rule: Unfold. s=t = s[nex]=t&x=r,
if r is an alien subterm of s at occurrence & and x is a new variable. M

Note that the variable-elimination rule can be simulated by the replacement rule.
5.8 Proposition. The rules in Definition 5.7 are complete transformation rules. l

This proposition together with Lemma 5.4 and Proposition 5.5 shows also that the computation of
minimal sets of unifiers can be sequentialized. In order to solve I'; &I’ first compute a minimal set
of unifiers for I'}, apply the obtained unifiers to I'y and solve the obtained system. The only
requirement for this method to be complete is that unifiers of I'; should not introduce variables that
occur only in I'y.

We emphasize that the deletion of auxiliary variables is not just for the sake of efficiency, but is an
important rule that ensures termination of the general unification algorithm in a combination. Such
a rule also appears in [NRS87].

6. A Unification Procedure for Mixed Terms.

We present in the following the basic steps, the nondeterministic rules and a strategy for unification
in a combination of disjoint theories E; The procedure is described in a way suitable for proving
completeness and termination. We do not consider all possible failure rules. In this paragraph we
only prove termination, completeness is more complicated and proved in a separate paragraph.

In order to design such an nondeterministic algorithm one should have in mind that a solution ¢
of the original system of equations I, is given and that it must be possible to direct the solution

process such that a solution G,  is returned that is more general than ¢ over V(I'y). We design the

steps and rules in such a way tiat for every nondeterministic step in this process, the number of
different possibilities is finite unless an involved theory povides an infinite set of unifiers or
constant-eliminators.

The procedure is described for a combination of N theories, since we have found no way to solve
constant-elimination problems in a combination if there are algorithms for every theory, which
would be required by an induction argument.

We denote the actual system of multi-equations with I' and assume that it consists of
multi-equations M, ie.,I'={M;li=1,...,.M}.

We will use E standing for the ‘theory’ of free constant.

We assume in the followin g that the reduction rules are performed whenever possible and do not
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explicitely mention them. However, we do not assume that all possibilities for the rule
theory-merge and equal terms are peformed, since we may run into trouble if the word-problem in
-E+ 1s undecidable. However, we assume that after the application of a unifier o to terms s and t
the resulting terms Os and ot are £+-equal and that the reduction rules can use this fact.

We describe the procedure as a sequence of steps that use some specified rules.

GU-Step 1.Transform I into unfolded normalform.

6.1 Definition. A system I" in unfolded normalform (UNF) has the following form and

properties:
" consists of the multi-equations M, , i = 1,...,M. Every multi-equation M; has the form
X; = T;p=T;; = ... =T\, where some constituents may be empty.

The set U{X, li=1,...,M} contains exactly the significant variables and significant variables '
do not occur elsewhere in I'. The sets Tij , j=1,...,N contain all proper Ej-pure terms and all
variables of VAR(M;) N V(Tij li=1,..,M]}., and the sets T;, contain all free constants in
TER(M)).

Proper £j-terms in Tij’ j=1,...,N do not contain free constants.

The Ey-part does not contain variables.

We have V(Tij li=1.. .M]NnV(Tyli=1,.. M}=@forj+k

The variables in V(Tj; i = 1,...,M} are called the Z;-related variables and the terms in
U{Tij li=1,...,M} are called the % -related terms. '

The part I"j_is the set of multi-equations { Tij lj=1,...,M} and is called the 'Ej-part of .

For example the unfolded normalform of (x = f(x*y)) is:

significant Boolean ring free functions
variables
( x = x' = f(z)
y = y'
x"*y' = z )

6.2 Lemma. Every system of equations can be transformed into UNF.
Proof. First one can use unfolding to make all terms pure. As a second step it is possible to
satisfy the disjointness conditions for variables by application of renaming . B

6.3 Lemma. Let I be an unfolded normalform, let E; be a theory and let ¢ be an idempotent

substitution such that DOM(o) ¢ V(Fj), I(o) consists of new variables, and all terms in
COD(o) are variables, free constants or pure 'Ej-terms.Thcn the following holds:
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i) I & (o) =3y, ol is a complete transformation.

ii) oI is in unfolded normalform.

ii1) the number of multi-equations in oI  is less or equal the number of multi-equations in I',

iv) the number of ‘Ej-related terms in oI is less or equal the number of £j-relatcd terms in I
Proof. Note that the application of ¢ to I" has only an effect on the E;-part of T

i) Obviously, I" & (6) =>y, oI & (o) is a complete transformation by Proposition 5.8. After the

application of ©, the variables in DOM(0) do not occur elsewhere in I, and hence we can delete

by Proposition 5.8 the variables z that are in VAR(I')) "DOM(0), since ¢ is idempotent and all

variables in DOM(o) are auxiliary. For a term t € COD(0) there are two posibilities: either t is

a term in oI, or t forms a multi-equation consisting of one element and can then be deleted.

Hence the reduction rules reduce oI” & (o) to ol .

ii) ol is in UNF, since all terms in COD(o) are Ej-terms and all variables in I(G) are new ones.

iii) and iv) are obvious. B

GU-Step 2. Transform I" by several GU-unifications and by one GU-identification until
there is at most one term per theory-part and multi-equation.

Rule: GU-Unification. I' = ol
where G is a (most general) unifier of the Zj-related part Fj.

This rule is nondeterministic, since a complete set of unifiers may contain more than one

substitution. ‘

6.4 Remark. In the following we assume that all substitutions or unifiers introduced by some
operation introduce only new variables and hence are idempotent.

6.5 Lemma. Every nontrivial GU-unification application properly decreases the number of terms
inT.
Proof. Follows from Lemma 6.3 and since at least two terms are made £j—cqual inol.

6.6 Proposition. Every system of multi-equations is transformable by a finite number of
applications of GU-unification into a system in unfolded normalform, such that in every
multi-equation there is at most one E-term.

Proof. By Lemma 6.5 the application of the GU-unification rule terminates. As long as there are
nontrivial multi-equations in some Ej-part of I we can apply unification. Hence the ¢laim of
this proposition holds. B

The following rule is a nondeterministic one and is intended to partition the solution space into
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substitutions with a different identification pattern on the multi-equations.

Rule: GU-Identification.
I'=1T1",
where ~ is some equivalence relation on multi-equations and
I'" is constructed from I" by joining multi-equations M; and M., iff M; ~ Mj.

After an identification, it is sufficient to consider only those substitutions in the solution space that
do not further identify multi-equations. So it is sufficient.to perform GU-identification step only
once. If we write U for GU-unification and I for GU-identification, then the application sequence
is like U*IU™. The GU-identification rule is a proviso for the application of the collapsing-rule by
constan-abstraction, since we can then abstract different multi-equations by different constants.

6.7 Lemma. GU-identification and GU-unification together terminate. Furthermore all resulting
systems are in unfolded normalform. M

In the following we-can assume that the system of equations is in unfolded normalform and that
every multi-equation M; contains at most one E;-term (sometimes denoted tij). For correctness, we
consider the set of solutions of I" as the full set U,(I"), but for co_mplgtcncss, we consider the
following set of solutions: {6 € U,(I) | OM; =, GMJ- fori+jand Mi',Mj eT}.

Step 3: Labeling multi-equations,
We label every multi-equation in I" with exactly one theory ranging from %; to Fy and add to
every multi-equation M, a new extra variable y;, that does not belong to any theory-part. U

This extra variables y; shall play the role of constant abstractions in the following rules.

The rule is nondeterministic in nature and after applying it, the system stands for the following set
of substitutions: {8 € U, (I') | 6M,; #,, 6M, for i #k and M;,M; € T, S-TH(6M,) = 'Ej, if M; has
label 1:]-}.

In general not all possible labelings have to be considered, for example if a multi-equation contains
a free constant, then the only sensible theory is ;. For j = 1,...,N we define the sets I_j and I +j
as follows:

Let I_j = {i1M; € I', M, is not labeled with ‘EJ and M, contains an Zj-tcrm tij}

and let I+j = {i | M; e T, M; is labeled with 'Ej}

The following step should ensure that the system of equations is consistent with the labeling, i.e.
that in multi-equations labeled E there do not occur terms with the wrong syntactical theory.
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Gu-Step 4. Apply GU-collapsing once for every theory E, jefl,...,N}.

Rule: GU-Collapsing.
I' = of,
where E; Ge {1,....N} is a theory and ¢ is a (most general) unifier of the problem
(tij =y,lie I_j), where the y;'s are considered as free constants.

We apply the rule ‘collapsing' exactly once for every proper theory. Note that the substitutions G
generated by this rule may have y;'s in the codomain terms, but only such y; s that are considered
as constants, hence after application of o the terms tjj may contain some y, ‘s, however, all this y;
are from a multi-equations with a different theory and can be considered as constants in this term.

After all applications and simplifications the system of equations has a special form. It consists of
multi-equations of the form:

X;=y;=t; orX; =y, , where X; may be empty. For multi-equations M; labeled % there is

t..
1
only the possibility X; =y, .

Since there is at most one proper theory-term in every multi-equation, in the following we write t;
instead of j- We say also y, or t; is labeled with a theory Z, if the corresponding multi-equation is

labeled with this theory.

The remaining problem now is that the resulting system may have cycles where more than one
theory is involved. If there are cycles, we use constant elimination to resolve the cycles.
Otherwise, the system is in sequentially solved form and we are ready.

GU-Step 5: Choose Constant-elimination problem.
Choose nondeterministically a constant-elimination problem ¢ consisting of pairs y; € t;,
where y, and 1, are labeled with different theories and t; and yy is not labeled with %,

GU-Step 6: Resolve Constant-elimination problem.
I = oTl,
where © is the union 6, ... UGy, where o; are (most general) solution to the E;-parts of
the constant elimination problem C. '
If the system ol is in sequentially solved form after Ej-normalizin’g terms, the system is
returned as solution.

Failure-Rules: The following criteria are used to terminate the procedure with failure:

i) If the Z-part is nontrivial, but not unifiable, then stop with failure.
ii) If a collapse-problem is nontrivial but unsolvable, then stop with failure.
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iii) If a theory-merge of different multi-equations becomes possible after identification, then
stop with failure.

6.8 Theorem. The above nondeterminisitc procedure always terminates. Furthermore if every
theory is finitary unifying and for every theory the constant-elimination problems are finitary
solvable, then the procedure returns finitely many solutions. Il

6.9 Proposition. The procedure above provides correct transformations of systems of
equations, if the systems are considered as pure systems of equations, i.e. without labeling and
without the restriction that solutions do not unify different multi-equations.

Proof. The effect of the application of every rule is either to join some multi-equations or to
instantiate I", which is always sound.Hl

This procedure requires branching at several points. We can always choose émong several most
general unifiers, there are several possibilities for identification, there are several possibilities for
labeling, and in addition several solutions for every collapse problem, in the last step there are
several possible sensible constant-elimination problems and in addition several possible solutions
to every constant-elimination problem. Thus this procedure is not very efficient

Efficiency could eventually be improved by avoiding the rigorous renaming of variables and the
abstraction of constants. However, this requires a more complicated measure for termination and a
new rule for the handling of free constants that appear in I'. For every multi-equation labeled %,
we must try not only the collapsing to y;, but also to all free constants that are in I'. For example,
let f and g be two idempotent function symbols, i.e., f(x, x) = x and g(x, x) = x holds. If the
multi-equation y; = f(x, a) = g(z, ) is labeled with %, then it is not sufficient to collapse f(x, a) to
y; (considered as free constant), since this problem is unsolvable. However, a solution is
{x « a,y «a}.

Furthermore a weaker unification rule may be very useful in practice. The idea is not to solve the
whole Ej-part of I" but only a subsystem, for example a single equation. For example if two terms
x,t belonging to the same theory , where x is a variable and t a term not containing x, are contained
in the same multi-equation, then we can make progress by applying {x « t}. Similarly, it can be
an improvement to make decomposition for decomposable function symbels (cf. [Ki85] ), but it is
not clear whether the procedure with decomposition terminates.

7. The Algorithm is Complete for General Terms.

In this paragraph we show the completeness of the combination algorithm presented in the
previous chapter 6. Due to Proposition 6.9 all operations are correct if we ignore the restrictions on
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GU-identification and theory-labeling. The completeness proof , however, makes heavy use of
these restrictions.

By Lemmas 5.1-5.5 unification provides complete sets of alternatives. We can assume that after
the application of identification, every resulting system stands only for solutions 6 with the
additional property that By; #,, Gyj for 1+ j,i.e. 0 does not further identify multi-equations.

7.1 Lemma. For every solution 8 of Iy we can reach by the above algorithm a system of
equations I such that there exists a solution 0' of I'with 6 =g, 0" [V(I'y)] and 8' does not
identify multi-equations in I" and for every multi-equation M we have that S-TH(6t) = £
wheret e M and 1& is the label of M.

Proof. Obvious. B

We say a solution 6 respects multi-equations and theory-labeling, if OM, =, BMj for i
# j and if eMj has as semantical theory equal to the theory-label of M;.

7.2 Lemma. Collapsing is a complete step for solutions that respect multi-equations
and theory-labeling.

Proof. Let 8 e Ug, (') be a substitution that respects multi-equations and their labeling. We can
assume that 0 is ground (hence idempotent), that DOM(8) = V(I') and that 0 is
E+-normalized.

Let E:= % be a theory such that I is not empty and hence an application of the collapsing
rule is possible. Let A :=(t; =y, lie I ) be the collapsing problem to be solved. We have to
show that the collapsing rule prov1dcs a unifier o, such that there is a unifier 6' of I &(c) with
0=0'[V{)I. :

We construct an abstraction 0, from 6 with DOM(0,, ) = V(t;, |ie I ;) by replacing
every Z-alien subterm in 8x by a variable, such that 8y, is abstracted by y; for i € I and other
E-alien subterms are abstracted by new variables z; (collected in a set Z). Note that
i e 1, implies that 8y; has not semantical theory %, i.e. has either another theory or is a free
constant. Since FRC(ty i€ I}) = @, we can also replace the free constants Oy; that
correspond to £, by the variable y;. Since Oy, #,, GyJ for i # j, this can be done in a
consistent.way, i.e., the abstracted subterms are abstracted by the same variable, iff they are
Z+-equal. Let Y :={y;lie I} and let 7‘9 be the substitution that reverses the abstraction, i.e.
Agy; = Oy, fori & I, and DOM(Ay) = YUZ and 6 = A8, [V(A)] -

Due to Lemma 3.6 and Lemma 3.2 6, is a solution of the collapse-problem (ty = y; lie 1)
with respect to £. Let & be an E-unifier of A, where variables in Y are treated as constants,
such that © is more general than 8, , i.e., 8,p, 2, 6 [V(A)] , DOM(0) = V(A) ~ Y and such
that I(0) -Y consists of new variables .
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We show that there is a solution 0' of I" & (o) such that 6 = 6’ [V(I)}:
Let A4 be such that 6, =, A ;6 [V(A)] and hence 6 =, A460,5, =, Agh 0 [V(A)] , where
DOMO‘G ) =1(0) - (YUZ)
Let 0" := OA g\
We show that 8'= 6 [V(I)]:

For variables y; € Y we have OAgh y; = Odgy; = 80y, = 0y;.

For x € V(A)~ Y we have OAgh x = BAgx = 0x.

For x € V() - V(A) we have BA5A x = OAgx = Ox.
Furthermore ©' is a solution of " & {o):
Let (o) = (xj =5 lj=1,...,m). By the above computations we have 8' =6 [V(I')], hence 6'
solves I'. We have to show that 8'x; =, 0's; for all j = 1,...,m.
We obtain 9'xj = ij since 0'= 0 [V(I")] and X; € DOM(06). = V(A) — Y. Furthermore
6'sj = erkcsj =5 elekccxj =g Gleeabsxj =z Gexj =y ij . Hence €' is a solution of
& {(c) with8=0'[V(I')]. W

In the following lemma we use union of substitutions in the following sense:
{0y | k e K} is a substitution defined by \{oy Ik e K}x =z, O, ifxe DOM(Q‘k). In order
to ensure well-definedness it is required, that for all y € DOM(o;)» DOM(06,) we have

Oy =g, OkY-

7.3 Lemma. Sélecting and solving constant elimination problems is a complete step for solutions
that respect multi-equations and their theory-labeling.
Proof.

Let © be a ground solution of I" that respects multi-equations and theory-labeling. We can

assume that all terms in COD(0) are E+-normalized.

Now choose a constant elimination problem as follows: Let all pairs Yi € t; be in C, where E;

is a theory not equal to %, t; is a theory-term in I" labeled by £ and yy i$ labeled by another

theory than Z; and %, and By, is not an essential Z-alien subterm in 6t;.

Let G be the Ej-part of C.

We construct the abstractions 6, i from 6 by restricting O to V(t; lie I +J-} and then by
replacing every £j-a1ien subterm in Ox forx € V(t;lie 1 +j} by a variable, such that terms
E+-equal to Oy, are abstracted by y; forie I_j and other £J--alicn subterms are
abstracted by new variables collected in Zj. Since Oy; #4, eyj for i # j, this can be done
in a consistent way, i.e., two I:j-alicn subterms are abstracted by the same variable,
iff they are E+equal. Let Y_j := [y, | My is not labeled by £j Jand let Y := {y, li=1,...,M}.
Let Ag j be such that it reverses the abstraction, i.e. DOM(Aq PEYGVT and 7"9,j Vi = Oyy
fory, e Yj ) (CRW J). Hence 6=;, Aq j - I i (v, I’i el +j)]'

Let o; be a solution of 63 that is more general than Gabs J§° We can assume that DOM(GJ-) =
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V(,liel +j) and that O; introduces no new free constants and only new variables (besides
Y; € I__j).
Then there exists a substitution xa,j with DOM(XGJ) = I(cj) - YJ- and
9ast =g, A 5.,jCj [V(t;lie I+_|)]
Leto := u{c |j=1,...,N} be the substitution applied in the constant-elimination rule.
Let 0 := u{exejxcd. 1j=1,...,N}.
1) 0'is well-defined:

The only variables common to some domains of A JZ. . may be the variables y;.

We have 6 ch Y= Ol j¥i and since Ay ;i 1s either y; or By;, we obtain 79N §Yi=9v;
i) 6 =g, 0[VD):

For y; we have already shown that 8y; =, 0'y;.

For variables x € V(') - Y we have Aq ,17‘ x = x, hence 0x =, 6'x.
iii) @' is a solution of I' & (0), i.e. 0' =, 0'c [V(I)]

Since 8' =, 8 [V(I)], it is sufficient to show that 0' solves (o).

For a variable x in DOM(0) we have to show 0'x =;, 0'cx. Let ; be the theory

corresponding to x. Then

B'ox =g ,0%° Ufo,  lk=1,. ,N}x

=g, G'ij
=, (U{ex_e,k)‘o,k lk=1,.. .,N})ocjx
+ Odg Ao jo0x (since U {OAg Ay I k= 1.0} =¢
Olg ,j"c j [V(ij)] )

+

£+ Ohg {Babs jX
=£,00x =, 6x.
iv) T & (o) can be transformed by a complete step into sequentially solved form:
The transformation I" & {(6) = oI is complete due to Lemma 6.3. A
We can assume that every ¥y that occurs in some oft; is essential, since otherwise we can
choose an equal term that contains no inessential variables due to Lemma 4.4 and
Proposition 5.7.
Assume there is a cycle in ol'. Then the cycle is of the form y;; = dtil, Yi2 = Otjo,
Yi3 = Oti3se.. 5 Yjg = Oty With y;; € V(ot;; ), and y;; € V(oty), where
Yij € {y; li=1,... M} and t-- € {yi=1,,M}.
We have that 6' solves th1s cycle: 0’ Oty = 8't; by iii) and 0't..
a unifier of I'. Hence 0'oy; =4, 0'y; = Btu =, ()ylJ 0'y;
Without loss of generality we can assume that 0'ct;; = 6t;; has the smallest semantical
theory height in this chain. Since we have assumed that the semantical theory of 6t;, is
different from the semantical theory of 6t;;, the term 6, is an inessential I:j-alien subterm
of Bt;; by Proposition 4.5. But then we have that y;, € t;; is a pair in C, since in addition
¥j2 and t;; are not labeled by the theory %,. But then y;, is eliminated by ¢ and hence' y;; is

i TE+ Gyij, since 0’ is
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not a variable in ot;. This contradicts our assumption that we have a cycle. B

7.4 Theorem. If there exist complete rIsj-unification procedures for every system of equations
including free constants and an algorithms for every theory E that provides complete sets of
constant eliminators for every constant elimination problem, then our procedure is a correct and
complete procedure for solving unification problems in systems of equations in the

combination of the theories 'EJ [ |

7.5 Corollary. If all- E; are finitary and there always exists a finite complete set of constant
eliminators for % thcn umﬁcatlon in the combination is also finitary.

Proof. The above procedure returns only finitely many solved systems of equations since - at every
choice-point there exist only a finite number of possible choices .l

7.6 Corpllary. If all ; are finitary and regular, then unification in the combination is also
finitary. :

Proof. In regular theories every nontrivial constant elimination problems is unsolvable. Hence
we can use Corollary 7.5. '

8. Solving Constant Elimination Problems.

Besides regular theories, where all nontrivial constant-elimination problems are unsolvable, there
are nonregular theories for which we can describe an algorithm for solving constant-elimination
problems. Note that in general it is obvious that a complete set of constant eliminators is recursive
enumerable.

8.1 Constant-Elimination in Boolean Rings.

The unification problem in Boolean rings is known to be decidable and unitary [MN86,
BS86]. In is well-known that terms in Boolean rings can be transformed into normalform as a
sum of products (cf. [HD83]). Note that a term in normalform has no inessential variables and
constants.

We give a method how to solve constant elimination problems € in Boolean rings.

Let c= {¢; & tij li=1,..,n,j=1,.,m} be a constant elimination problem. Let Cy:=
{c;li=1,...,n} and let V, :=V[tij li=1,..nj=1,...m}={z | k=1,.,K} Let D be
the set of all possible products of elements in CO, ie., D := {cil*ciz*... *Cig |
{i}-. .,ig}c; {1,...,n}}. Note that D contains the element 1 as an empty product and hence the
set D generated by C;, has 2" elements.

We try a ‘general’ substitution ¢ with DOM(0) = V;. A general representation is 0z =
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Z{yk’d*d Id € D}, where Yk g are different new variables and stand for terms not containing
constants from C;. If we apply o to Cwe get the representation ot;; = Xy J,d*d Ide D),

where tijd is a term not containing constants from C;. The unification problem I .
corresponding to Cis as follows: Fp= {‘i\j,d =01d €D where ¢;is afactorof d,i=1,...,n,
j=1,...,m }. This unification problem does not contain constants from Cp and is to be solved
without these constants. The obtained mgu can be transformed into a solution of the
constant-elimination problem C. Since Boolean rings are unitary unifying, there is at most one
most general constant-eliminator necessary in Boolean rings.

Thus we have the Theorem:
8.2 Theorem. Constant-elimination problems in Boolean rings are unitary solvable. ll

8.3 Constant-Elimination in Abelian Groups.
Unification in free Abelian groups is considered in [LBB84] and it is shown there that it is of
type finitary and that a set of most general unifiers can be computed by solving linear
Diophantine equations. We use the operators +,-,0 in Abelian groups. It is well-known that
terms in Abelian groups can be transformed into normalform as a sum of the form Xn;*a; ,
where n;*a; represents a sum of n; elements a; if n, is positive and a sum of -n, elements (-a)
if n; is negative. Note that a term in normalform contains no inessential variables and
constants.
We show how to solve constant elimination problems Cin Abelian groups.
Let C={c;& t;1i=1,...,n, j = 1,...,m} be a constant elimination problem. Let C; :=
{c;li=1,...,n} and let V, =V li=1,...n,j= 1,...m} = {z 1j=1,. K}
A general solution © of Chas the form oz, = Z{Zk,c lceCy} + ey, where z; is a variable
standing for a term n;*a, where n, is an integer and e, does not contain constants from C,,
Substituting this sum into the variables of t; we obtain a representation t;; = t;; o + t;; g, where
tj;,0 contains all ¢;-terms, i.e., all ¢;'s and all variables standing for a sum of c;'s. The
condition thatc; & t; J is now equivalent to the condition t; 0= 0 due to independency. Thus
the solution of the whole problem Ccan be solved by considering the unification problem I .=
{t; 0= Oli=1,...,n,j=1,...,m}. Since unification in Abelian groups is finitary there are at
most finitely many constant eliminators necessary.

Thus the following holds.
8.3 Theorem. Constant-elimination problems in Abelian groups are finitary solvable. Wl

8.4 Constant-Elimination in Canonical Theories.

Let Ebe a theory with a canonical term rewriting system R . Then the first observation is that
every term t in normalform does not contain inessential free variables or constants, since the
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rewriting relation removes variables from terms, but does not add new variables. Hence a

solution 6 to a constant-elimination problem C= {c; & t;; Ii=1,...,n, j= 1,...,m} has the

property that ¢; ¢ FRC((Gtij)i). Since we assume that an iilﬁnitc number of free constants is
in the signature, it is sufficient for an investigation of completeness to assume that 6 is ground
and normalized, eventually replacing variables by new free constants. If we know the solution
0 then consider the unification problem (tij = (Btij)l). Let’s try to solve this problem by basic
narrowing [Hul80, NRS87]. Narrowing steps have to be performed only on the left hand side,
(i.e. on tij) until there is a derived term tij' that is syntactically more general than (Gtij)l.
Obviously FRC(tij') does not contain c;.. Now J.-M. Hullot [Hul80] has shown that basic
narrowing is a complete unification procedure for theories admitting a canonical TRS. An
application of this result shows that we get a complete set of constant-eliminators, if basic
narrowing is performed on the terms j and all narrowing substitutions are returned that
correspond to a set of derived terms that satisfy the elimination conditions.

For a special case of theories for which basic narrowing always terminates we obtain always
finite complete sets of constant-eliminators. A criterion for termination of basic narrowing
given in [Hul80] is that basic narrowing terminates on the right hand sides of the rules in a

TRS.

8.5 Theorem. Basic narrowing is a complete procedure for solving constant-elimination
problems for theories admitting a canonical TRS. Furthermore, if basic narrowing always
terminates, then constant-elimination problems are finitary solvable. ll

8.6 Remark. In order to have an approximation of the solutions of a constant-elimination
problem, it is possible to use an idea of E. Tidén [Ti86a). Instead of solving ¢ & t solve the
unification problem t = t', where t' is obtained from t by replacing the constant ¢ by a new
constant ¢' and by renaming all variables in t. A complete set of unifiers to this problem is
complete for the constant-elimination problem, but it may contain unifiers that are not
eliminators, hence for the exact solution a search for the right instances is necessary. Since the
application of a substitution is always correct in the algorithm below, such an approximation
(E. Tidén called it a total complete set of eliminators) may be of practical use. This idea works
for a variety of theories.

Note that in general a set of constant-elimination problems cannot be encoded this way, a
counterexample can be constructed from Example 11.4. I
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9. Combining Disjointly an Arbitrary and a Simple Theory.

The above procedure can be improved for the special case of a disjoint combination E+%, where £
is arbitrary and is a simple theory. The improvements over the general procedure of paragraph 7
originate in some nice properties of simple theories. For example a proper syntactical #-term is also
a semantical #-term and cyclic systems of equations in simple theories are not solvable. Note that
this algorithm is not a specialization of the general algorithm.

The improvements are that identification is only necessary for multi-equations containing proper
F-terms. A further improvement is that no labelling of multi-equations is necessary and that free
constants remain in the terms and are not abstracted by variables.

In this procedure we do not introduce the theory £, and we assume in contrast to the general
procedure that free constants are allowed in the terms in an unfolded normalform. Thus an
ASU-UNF is like an UNF, but free constants are not abstracted.

ASU-step 1. Transform I into a system in ASU-UNF.
ASU-step 2. Transform I into a system in separated UNF by the rules GU-unification and
ASU-Identification

The ASU-identification rule used for step 2 is more restricted than GU-identification:

Rule: ASU-Identification. r=1"T",
where in I'" some multi-equations containing proper #-terms from I" are joined together.

If we write ‘U’ for unification and ‘I’ for identification, then the application sequence is like
U*(IU*)* in contrast to U*IU™ for the general case.

Every multi-equation in the system has now at most one term for every theory. Furthermore the
system is intended to represent only solutions 6 with 6s 6t for different proper F-terms s and
tin T

The next step is like collapsing. The goal is to solve equations s = t, where s is a proper pure
F-term and t is a pure Z-term. The method used is constant-abstraction [LS78, He871: |

ASU-step 3. Abstract -proper F-terms by different constants and solve the system with
respect to E.

We add to every multi-equation M, that contains a proper F-term a new variable y;, which is used
as constant-abstraction. The set of such indices is denoted by I.
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Rule: ASU-Collapsing. I'=>ol,
where © is a (most general) unifier of A, where the y; are treated as constants during
unification. The system A is the E-part of I including the y;'s.

The system has now the following properties: Every multi-equation that contains a proper 7-term
does not contain an Z-term. The variables y; may occur in proper Z-terms. Note that thete tay be
multi-equations containing an F-variable and an Z-term.

Note that after ASU-collapsing there may be some theory-merges possible for multi-equations M;
and Mj wherei ¢ Iorje¢ L. Thus there may occur new problems for the theory Fof the type x =t.
If x € V(t), then we have failure, if not, we can apply {x ¢t} to I' and then delete x from I'. This
is a complete transformation. Hence we can assume that multi-equations have one of the following
forms :i) X =y, =tg i) X =t i) X=x=t,

ASU-step 4. Select a constant-elimination problem corresponding to I" and Z.

This is performed by choosing nondeterministically a constant-elimination problem C consisting of
pairs y; & G where y; € M;, tj is the E-term in Mj, and M, has a nontrivial #-part.

ASU-Step 5. Transform I into oT,
where ¢ is a (most general) constant-eliminator of C.
A solution to the original system is obtained, if the system oI is in sequentially solved form
after deletion of inessential variables.

Failure-Rules: The following criteria are used to terminate the procedure with failure:
i) If the E-part (Fpart) is nontrivial, but not unifiable, then stop with failure.
if) If the coliapse-problem is nontrivial, but unsolvable, then stop with failure.
iii) If in step 3, 4 or 5 a theory-merge of different multi-equations containing proper F-terms
becomes possible, then stop with failure.

First we investigate termination of the above procedure.

9.1 Lemma. GU-unification and ASU-identification terminate.
Proof. Follows since unification decreases properly the number of terms in I” and decreases
the number of multi-equations in I' and ASU-identification properly decreases the number of

multi-equations.

9.2 Proposition. The procedure ASU terminates. ll
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The completeness of the procedure is shown similarily to the completeness of the general
procedure. Since unification provides a complete set of alternatives, we have:

9.3 Lemma. For every solution 6 of I', we can reach by the procedure ASU in a finite number of
steps a system of multi-equations I" such that there exists a solution 6' of I' with
0 =5, 0'[V(I'p)] and ©' does not identify multi-equations in I that contain a proper F-term.
Proof. Obvious, W

9.4 Lemma. ASU-Collapsing is a complete step for solutions that respect multi-equations
with proper F-terms.
Proof. We adapt the proof of Lemma 7.2.

Let 6 € Ug (I') be a substitution that respects multi-equations with proper #-terms. We
can assume that © is ground (hence idempotent), that DOM(6) = V(I") and that 6 is
‘E+-normalized.
Let A be the collapsing problem to be solved. Without loss of generality we can assume that
A is nontrivial. We have to show that the collapsing rule provides a unifier 6, such that there is
a unifier 0' of I &(o) with 6 = 6' [V(ID)].
We construct an abstraction 0,  from 6 with DOM(6,,,) = V(A) by replacing
every E-alien subterm in 6x by a variable, such that Oy, is abstracted by y; and other
Z-alien subterms are abstracted by other new variables z; (collected in a set Z). Note that
Oy; has semantical theory #. This can be done in a consistent way, i.e.,
the abstracted subterms are abstracted by the same variable, iff they are E+-equal. Let Y :=
{y;!i e I} and let Ag be the substitution that reverses the abstraction, i.e. Agy; =0y;forie I
and DOM(Ag) = YUZ and 0 =, 440, [V(A)] .
Due to Lemma 3.6 0, is a solution of the collapse-problem A with respect to £ Let © be an
Z-unifier of A, where variables in Y are treated as constants, such that ¢ is more general than
0.ps 1-€., 0,4, 2, 0 [V(A)] , DOM(0) = V(A) —Y and such that I(0) -Y consists of new
variables . ' _
We show that there is a solution 6' of I" & (o) such that 6 = 0' [V(I)]:
Let A be such that 0,; . =, A 6 [V(A)] and 0 = Ag0,, . =¢ Aghs0 [V(A)] , where
DOM(@A,) =1(0) - (YUZ)
Let ©' := OAgA 5.
We show that ' = 0 [V(ID)]:

For variables y; € Y we have 6AgA y; = OAgy; =08y, =0y,.

For x € V(A) — Y we have BAgA x = OAgx = 0x.

For x € (V(I) - V(A)) we have BAgA x = Oxex = Ox.
Furthermore 0'is a solution of I" & {o):
Let (o) = (xj =5; |j=1,...,m). By the above computations we have 8' = 6 [V(I')], hence 6'

abs
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solves I". We have to show that (-)’xj =z, 9'sj foralj=1,...,m.

We obtain G'xj = Oxj since 8' =0 [V(I')] and X; € DOM(c) = V(A) — Y. Furthermore
0's; = Ohghgs; =g OhghsOX; =¢ OhgO,,cX; =¢ 00x; = Ox; . Hence 8' is a solution of
I'& (o) with 8=0'[V(I)].

9.5 Lemma. Selecting and solving constant elimination problems is a complete step for solutions
that respect multi-equations and their labeling.

Proof. We adapt the proof of Lemma 7.3.
Let 6 be a ground solution of I" that respects multi-equations with proper #-terms. We can
assume that all terms in COD(0) are £+-normalized.
Now choose a constant elimination problem as follows: Let all pairs y; ¢ 4 be in C, where g isa
E-term'in I" and Mj contains an #-term and Oy is not an essential Z-alien subterm in th. Let
V. be the set of variables occurring in Z-terms.
We construct an abstractions 0,
E-alien subterm in Ox for x € V. by a variable, such that terms E+-equal to Oy, are abstracted

from 6 by restricting 6 to V- and then by replacing every

by y; for i € I and other E-alien subterms are abstracted by new variables collected in Z.
Since Oy; #;, Oyj for i # j, this can be done in a consistent way, i.e., two Z-alien subterms are
abstracted by the same variable, iff they are Z+equal. Let Y := {y; l ie I}.
Let 7‘9 be such that it reverses the abstraction, i.e. DOM(ke) cYuZ and Xeyk = Oy,
for yp € Y N 1(8,,). Hence 0=, Ag 0, [V,
Let © be a solution of C that is more general than 0,, .. We can assume that DOM(0) = V.
and that G introduces no new free constants and only new variables (besides y; € Y).
Then there exists a substitution A ; with DOM(A;) = 1(6) ~ Y and 6, =,, A0 [V.].
Let 0" := OAgA . )
) 0=, 0[VIDI

We have OAg); y; = OAgy; and since Agy; is either y; or 8y;, we obtain OA4y; = 0y;.

Hence Oy; =, 6'y;.

For variables x € V(I') - Y we have Ag Ag x = x, hence 6x =, 6'.
ii) 0" is a solution of I' & {0), i.e. 8' =;, 8'c [V(I')]

Since €' =, 6 [V(I)], it is sufficient to show that 6’ solves (o).

For a variable x in DOM(0) we have to show 6'x =, 0'0x.We have

0'ox

it A 97‘97‘00"

=, g0 X sincexe Vg

=g, 0:0x =, Ox.
iii) I" & (o) can be transformed by a complete step into sequentially solved form:

The transformation I' & () = oI is complete due to Lemma 6.3.

We can assume that every variable that occurs in some o*tj is essential, since otherwise we
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can choose an E+-equal term that contains no inessential variables due to Lemma 4.4 and
Proposition 5.7.

Assume there is a cycle in oI". Then the cycle is of the form x;; = Gt;4, ¥;1 = 8;1, Xjp = Oty
Yi2 = Sigs--+ > Xjk = Oty » ¥y = S With y;; € V(0t; ), x5 € V(55 5.1), and x;y € V(sy0),
where Yij € {y;lie I} and t; is a Z-term from I and Sij is a proper #-term from I'.

We have that 8' solves this cycle: 8'cty; = 8't;; by ii) and 6't; =, Oxy;, since 8" is
a unifier of I'. Furthermore Byi; =4 0s;;, since €' is a unifier of I'. Hence O'ct; =4, 0
=0t =¢, Oxij = 9'xij and 0's;; = Bs;; =4, Oy;; = e'yij .

The condition that Oyij is an essential Z-alien subterm of B‘O'tij = Otij and that Fis regular
yields that the semantical theory-height must decrease along the cycle, hence all terms have
the same semantical theory height. Since 0s;; has semantical theory ¥ all terms 9xij and Byij
have semantical theory ¥. Since is regular and Yij is an essential variable in Otjjs
Gyij =z, G'O‘tij =, Gxij by Lemma 4.6. This gives a contradiction to the simplicity of 7,
since then €' is a unifier of the cyclic pure F-problem x;; = s;;, X;5 = S;2,-+-» Xji = Sjp-

[

we have

9.6 Theorem. If there exist complete Z- and F-unification procedures for every system of
equations including free constants and an algorithm for the theory  that provides a complete
set of constant eliminators for every constant elimination problem, then the ASU procedure is a
correct and complete procedure for solving systems of equations in the combination of the
theories £+ 7.0

9.7 Corollary. If £ and ¥ are finitary unifying and there always exists a finite complete set of
constant eliminators for £, then ASU returns a finite, complete set of unifiers .l

9.8 Example. Solving x = f(x*y).
We consider the unification problem (x = f(x*y)}) in a combination of a Boolean ring with
operators *,+,0,1 and a free function symbol f.
This problem was posed by U.Martin at the first unification workshop in Val d'Ajol as a
test-example [Ki87b]. We use the algorithms for a combination of an arbitrary and a simple
theory. :
The unfolded normal form of this problem is:
(x =x"'=1(z),y=y,x*y' =z). Unification or ASU-identification is not applicable.
ASU-step 3 means to transform this system into (x =y; =x'=f(z),y =y, x*y' =2 ) and
then to solve (x' = y;). Application of the solution {x' <~ y;} yields the multi-equation system
{x =y, =1(z),y =Yy, y;*y = z). This system has a cycle and hence is not in solved form.
‘The only possible constant-elimination problems is: C:= {y; ¢ y,*y'}, where y, is to be
considered as a constant. A constant-eliminator of ¢ ={y; € y;*y'} is computed as follows:
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Lety' =y, +yp*y,. The problem to be solved is y; & y,*(y, + y,*y, ), which is equivalent
to the condition y,+y;, = 0, since y; is treated as a constant and y, is not allowed in terms that
are substituted for y, or y;. The unique solution is y, =y, , hence the constant-eliminator is
{y' « y"(1+y;)}. The application to the original problem gives the solution
{x « f(0), y « y"*(1+£(0)) }.1

Note that unification in a combination of a Boolean ring and free function symbols is not unitary,
since the unification problem {f(x)*{(y) = f(a)*f(b)) (cf. [MN86] ) has as a minimal complete set of
unifiers consisting of two substitutions: {{x < a, y «<-b}, {y < a, x «b}}.

10. Comb}ning Collapse-free, Regular Theories.

In this paragraph we show how to obtain an algorithm for two theories £, and Z, that are
collapse-free and regular. Unification algorithms for this special case have been given by K.
‘ Yellick, A. Herold, E. Tidén and C. Kirchner [Ye87, Ki85, He86, Ti86a]. Our aim is to give a
very simple algorithm for this case that can be compared to theirs. The described algorithm appears
to be closest to the algorithm of C. Kirchner’s, which uses variable abstraction, but I believe that
also the algorithm of A. Herold [He86]| that uses the constant-abstraction method can be
reformulated with the tools developed in this paper.
Two important facts for a combination of two collapse-free and regular theories are (cf. [Ye87,
Ki85, He86, Ti86a]:

i) if sis a proper 'Ztl-term and t is a proper Z,-term, then s and t are not unifiable.

ii) if " has a cycle that contains proper terms from both theories, then I is not unifiable.

The algorithm has the following basic steps:

1) Transform I" into UNF, but do not abstract constants by variables.

ii) Perform (nondeterministically) unification steps on the E, and E,-part until the E;-part and
E,-part is solved.
Note that constants are both in the £,-part and Z,-part.
Now every multi-equation of the system that has a nontricial £,-part and a nontricial Z,-part
has the form x = t.

iii) Check whether the resulting I" has a cycle. If there is none, return I'as solution.

It is straightforward to proof the correctness and completeness of this procedure using the methods
in this paper. It is obvious that it nondeterministically always terminates, but the number of
alternatives may be infinite if the number of mgu’s for some intermediate unification problem is
infinite.
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An improvement of the algorithm can be obtained, if not the whole Ej-part is unified, but only a
subsystem for which solutions are easily computable. For example if there are two variables x;, X,
in the E;-part and in the same multi-equation, then apply the unifier {xq & X', x5 < x'}, where X’

is a new variable. This is in effect the variable-canonization described in [Ki85].

11. Decidability of Unification in £+.

The following variation of the general procedure shows that unification in the general combination
E,+...+Ey is decidable if unification in the combination of every theory with free function
symbols is decidable. The main difference to the general procedure is that unification and
collapsing are delayed to the end, which is necessary, since complete sets of unifiers may be
infinite.

The nondeterminisitic test-procedure has the following steps:

Step 1. Transform I" into UNF.

Step 2. Apply the general identification step.

Step 3. Label every multi-equations by a theory E; where j € {0,1,...,N} and add a new
variable y; to every multi-equation not labeled %

Step 4. Select a minimal cycle-free constant-elimination problem ¢ consisting of pairs y; € yj.,
where y; and y, are labeled with different theories and neither y; nor y, are labeled with
-

Step 5. Check unifiability of all (I j,Cj) (defined below) and return ‘unifiable’, if this is the case
forallje {1,...,N}.

Let Y be the set of the new variables y;. :

This constant-climination problems are denoted a bit different from the ones defined in
paragraph 2. The meaning is similar, namely that for a solution 8 and a pair y, ¢ y, in C, 8y, is

not an essential alien subterm of Oy,. By cycle-free we mean that for every cycle y;;, ¥ip,---»¥ipo
Yike1 & Yip) fory; € Y, where y;; and y; j+1 have different theory label, there is an index j such
that Yij € Yije1 is in ¢. Minimal means that every subset of Cis not cycle-free. Let <. be the

transitive relation defined by the pairs y; <, v}, iff y; € yy is not a pair in C. That Cis minimal
cycle-free means that the relation <, is a transitive, assymetric and irreflexive relation. that is
maximal in the following sense. Whenever a relation y; <. yj is added for y;, y) labeled
differently, then <_ has a cycle.

11.1 Lemma. Let C be minimal cycle-free . Then for all y;, y, labeled differently, either
yi <c yk or yk <C yi hOldS.
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Proof. If neither y; <. y; nor yy <. y; holds, then we can add one of them without creating a cycle
in the relation <. This contradicts the maximality of < .1

11.2 Corollary. C is minimal cycle-free iff for all y;, y, labeled differently, exactly one of either
Y;€ Y Ory, € y;arein C.H

The problem (l"j,c:i) for the theory % is constructed as follows:

I‘j consists of the Ej-parts of the multi-equations and the variables y;. G consists of the pairs
Y; € Yy in C, where y; is not labeled with % and y, is labeled . The variables y; that are not
labeled with ; are considered as constants in this problem. A substitution ¢ is a solution of
(l“j,Cj), iff o solves I' » OYi =Y; for y, not labeled E; and if y; € y is in Gs then y; is not an
essential constant in Oy, .

11.3 Proposition. Let € be a minimal cycle-free constant-elimination problem and let (I‘j,Cj) be
the j-part. Then there exists an equivalent unification problem A in a combination. of % with
free function symbols, such that Fj is solvable, iff CJ is solvable.

Proof. First we construct the unification problem A from (Fj,Cj). A is derived from I'; by
replacing the y; that are not labeled £ by g; := f,(...), where {; is a new free function symbol
and g; has as arguments the variables y, with y; € y; in G-

i) Let A be solvable.

Then there is a ground substitution 0 that solves A. We can assume that 0 is
E;-normalized. If we construct an abstraction 6,
zj-alien terms by variables such that 8q; is replaced by y,, we obtain a
solution of Fj that additionally satisfies G since for y; € y, in G the term 6Oq; is not

of © by consistently replacing all

essential in Oy, since y, occurs in g;.
ii) Let (I‘j,C}) be solvable.

Then there is a substitution 0 that solves (I‘j,Cj). We can assume that 9 is ground and

Ej-normalizcd. We construct an equation system (L) from 0 be replacing all subterms y;
(not labeled i:j) by the term g;. Now it is obvious (by abstraction) that every solution of (1)
is also a solution of A. It suffices to show that (i) has a solution which is the case if and
only if (i) s cycle-free. Every cycle in (i) immediately yields a cycle in <. Hence () is
cycle-free, since < is assumed to be cycle-free.ll

This shows that all the constant-elimination problems in a specific theory, which are relevant for a
combination algorithm, can be encoded as unification problems of the form x = t(... £.(0x,000)
...) by replacing the constants ¢ by terms f (...,x,...). The following example shows that this
methods fails in general .

11.4 Example. Let E := { g(x, x, y) = h(y)} and consider the constant elimination problem
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C:={ae g(x,a,y), be gy, b, x)}). The only solution is {x « a, y « b}. The intuitive
encoding would be {(x; = g(x, fy(x;), ¥), x5 = g(y, fp(x2), X)), where f, and f, are free unary
function symbols. However, to remove the x;-cycle and x,-cycle requires the substitution
{x & f(x)), x & fy(x3)}. This results in the equation system

(xq = h(f(x,)), x, = h(f,(x;))), which has no solution. W

We have to show that the above nondeterminisitic procedure can be used as decision algorithm for
unifiability of a system T, if decision algorithms for the problems (I" j’C:i) for every theory %;,
j €{1,...,N} exist. Since the branching rate of the procedure is finite, the unifiability problem of
the originial system is then equivalent to a finite disjunction of a conjunction of problems (I‘j,Cj).

11.5 Lemma. If the original system Iy is unifiable, then there is an execution of the procedure
such that all the final problems (l"j,q) are solvable.

Proof. Let 0 be a unifier of [';. Without loss of generality we can assume that 8 is ground and
‘E-normalized. It is obvious that up to step 3 there is a path, i.e. we can-assume that we have a
labeled system I = {M,...,My;]} and a substitution 0 such that OM, = GMj for i= j and the
semantical theory of 6M; corresponds to the label of M;.

Let Cj be the following set of pairs: y; & y, is in (,, iff 8y, and Oy, are not equal to free

constants, 8y; and 8y, have different semantical theory and Oy, is not an essential alien subterm
of 8y,. It follows from Proposition 4.5 that ¢ is cycle-free. As C we choose a minimal
cycle-free subset of G,. For every theory E; we abstract 6, such that Oy; is abstracted by y;, iff
y; is labeled different from i The obtained substitution is a solution to the problem (I‘j,C}). n

11.6 Lemma. If the procedure says unifiable, then the original system has a solution.

Proof. The only nontrivial step is to show that whenever all problems (I" -,Cj) are solvable, then
the system obtained in step 3 has a solution. Therefore it is sufficiént to show that the solutions
of the systems (I, ) can be combined.

Let S; be solutions of (Pj,C‘j), j€{1,...,N} restricted to V(I'y,....I9)-

Application of all oj's to I'3, the system obtained in step 3, has the following effect: Every
multi-equations labeled % can be transformed into one of the form X =y, or X =y; =a and
every other multi-equation labeled £; into one of the form X =y; or X =y; =, where t; isan

E;-term and if y, €Y is an essential variable in t;, then y; <.y;. Since <. is cycle-free, the

J . .
obtained system is in sequentially solved form and hence has a solution. Il

Finally, we have the following result on decidability of unification in the combined theory £+
11.7 Theorem. Unification in £+ is decidable, if for every &, unification in a combination of %
with free function symbols is decidable.
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The following open problem remains to be solved.
11.8 Open Problem. Is unification in a combination of E with free functions decidable, if
unification in ‘Eis decidable?

Conclusion.

This paper gives a unification procedure for mixed terms in a combination of arbitrary disjoint
theories. This algorithm is constructed on the base of an F-unification algorithm for every involved
theory and a method to solve constant-elimination problems in every theory E.

It is not clear whether there exists a general method to construct an algorithm for constant
elimination from a unification algorithm as it is possible for Boolean rings and Abelian groups or
whether a theory with decidable E-unification also has decidable constant elimination problems.

Unfortunately, the described general combination procedure has a high complexity, for example
for every significant variable in the problem we have to guess its semantical labeling. So some
research is needed to recognize possible redundant steps in this algorithm and to find more
efficient versions of our algorithm. Some possibilities to enhance efficiency are i) to make partial
unification, i.e. to solve only parts of an Ej-part instead of the whole Ej-part, ii) to loosen the rigid
sequence of steps and rules in order to support a lazy unification method. iii) to avoid the renaming
of variables and the abstraction of constants.

This paper also provides a basis for future research in the combinatin of nondisjoint equational
theories. I conjecture that theories can be combined if the combination can be described as a
disjoint combination over some equational theory.
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